You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
7.9 KiB
217 lines
7.9 KiB
6 months ago
|
import sys
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from numpy.testing import (
|
||
|
assert_, assert_array_equal, assert_raises,
|
||
|
)
|
||
|
import numpy as np
|
||
|
|
||
|
from numpy import random
|
||
|
|
||
|
|
||
|
class TestRegression:
|
||
|
|
||
|
def test_VonMises_range(self):
|
||
|
# Make sure generated random variables are in [-pi, pi].
|
||
|
# Regression test for ticket #986.
|
||
|
for mu in np.linspace(-7., 7., 5):
|
||
|
r = random.vonmises(mu, 1, 50)
|
||
|
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
||
|
|
||
|
def test_hypergeometric_range(self):
|
||
|
# Test for ticket #921
|
||
|
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
|
||
|
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
|
||
|
|
||
|
# Test for ticket #5623
|
||
|
args = [
|
||
|
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
|
||
|
]
|
||
|
is_64bits = sys.maxsize > 2**32
|
||
|
if is_64bits and sys.platform != 'win32':
|
||
|
# Check for 64-bit systems
|
||
|
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
|
||
|
for arg in args:
|
||
|
assert_(random.hypergeometric(*arg) > 0)
|
||
|
|
||
|
def test_logseries_convergence(self):
|
||
|
# Test for ticket #923
|
||
|
N = 1000
|
||
|
random.seed(0)
|
||
|
rvsn = random.logseries(0.8, size=N)
|
||
|
# these two frequency counts should be close to theoretical
|
||
|
# numbers with this large sample
|
||
|
# theoretical large N result is 0.49706795
|
||
|
freq = np.sum(rvsn == 1) / N
|
||
|
msg = f'Frequency was {freq:f}, should be > 0.45'
|
||
|
assert_(freq > 0.45, msg)
|
||
|
# theoretical large N result is 0.19882718
|
||
|
freq = np.sum(rvsn == 2) / N
|
||
|
msg = f'Frequency was {freq:f}, should be < 0.23'
|
||
|
assert_(freq < 0.23, msg)
|
||
|
|
||
|
def test_shuffle_mixed_dimension(self):
|
||
|
# Test for trac ticket #2074
|
||
|
for t in [[1, 2, 3, None],
|
||
|
[(1, 1), (2, 2), (3, 3), None],
|
||
|
[1, (2, 2), (3, 3), None],
|
||
|
[(1, 1), 2, 3, None]]:
|
||
|
random.seed(12345)
|
||
|
shuffled = list(t)
|
||
|
random.shuffle(shuffled)
|
||
|
expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
|
||
|
assert_array_equal(np.array(shuffled, dtype=object), expected)
|
||
|
|
||
|
def test_call_within_randomstate(self):
|
||
|
# Check that custom RandomState does not call into global state
|
||
|
m = random.RandomState()
|
||
|
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
||
|
for i in range(3):
|
||
|
random.seed(i)
|
||
|
m.seed(4321)
|
||
|
# If m.state is not honored, the result will change
|
||
|
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
||
|
|
||
|
def test_multivariate_normal_size_types(self):
|
||
|
# Test for multivariate_normal issue with 'size' argument.
|
||
|
# Check that the multivariate_normal size argument can be a
|
||
|
# numpy integer.
|
||
|
random.multivariate_normal([0], [[0]], size=1)
|
||
|
random.multivariate_normal([0], [[0]], size=np.int_(1))
|
||
|
random.multivariate_normal([0], [[0]], size=np.int64(1))
|
||
|
|
||
|
def test_beta_small_parameters(self):
|
||
|
# Test that beta with small a and b parameters does not produce
|
||
|
# NaNs due to roundoff errors causing 0 / 0, gh-5851
|
||
|
random.seed(1234567890)
|
||
|
x = random.beta(0.0001, 0.0001, size=100)
|
||
|
assert_(not np.any(np.isnan(x)), 'Nans in random.beta')
|
||
|
|
||
|
def test_choice_sum_of_probs_tolerance(self):
|
||
|
# The sum of probs should be 1.0 with some tolerance.
|
||
|
# For low precision dtypes the tolerance was too tight.
|
||
|
# See numpy github issue 6123.
|
||
|
random.seed(1234)
|
||
|
a = [1, 2, 3]
|
||
|
counts = [4, 4, 2]
|
||
|
for dt in np.float16, np.float32, np.float64:
|
||
|
probs = np.array(counts, dtype=dt) / sum(counts)
|
||
|
c = random.choice(a, p=probs)
|
||
|
assert_(c in a)
|
||
|
assert_raises(ValueError, random.choice, a, p=probs*0.9)
|
||
|
|
||
|
def test_shuffle_of_array_of_different_length_strings(self):
|
||
|
# Test that permuting an array of different length strings
|
||
|
# will not cause a segfault on garbage collection
|
||
|
# Tests gh-7710
|
||
|
random.seed(1234)
|
||
|
|
||
|
a = np.array(['a', 'a' * 1000])
|
||
|
|
||
|
for _ in range(100):
|
||
|
random.shuffle(a)
|
||
|
|
||
|
# Force Garbage Collection - should not segfault.
|
||
|
import gc
|
||
|
gc.collect()
|
||
|
|
||
|
def test_shuffle_of_array_of_objects(self):
|
||
|
# Test that permuting an array of objects will not cause
|
||
|
# a segfault on garbage collection.
|
||
|
# See gh-7719
|
||
|
random.seed(1234)
|
||
|
a = np.array([np.arange(1), np.arange(4)], dtype=object)
|
||
|
|
||
|
for _ in range(1000):
|
||
|
random.shuffle(a)
|
||
|
|
||
|
# Force Garbage Collection - should not segfault.
|
||
|
import gc
|
||
|
gc.collect()
|
||
|
|
||
|
def test_permutation_subclass(self):
|
||
|
class N(np.ndarray):
|
||
|
pass
|
||
|
|
||
|
random.seed(1)
|
||
|
orig = np.arange(3).view(N)
|
||
|
perm = random.permutation(orig)
|
||
|
assert_array_equal(perm, np.array([0, 2, 1]))
|
||
|
assert_array_equal(orig, np.arange(3).view(N))
|
||
|
|
||
|
class M:
|
||
|
a = np.arange(5)
|
||
|
|
||
|
def __array__(self):
|
||
|
return self.a
|
||
|
|
||
|
random.seed(1)
|
||
|
m = M()
|
||
|
perm = random.permutation(m)
|
||
|
assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
|
||
|
assert_array_equal(m.__array__(), np.arange(5))
|
||
|
|
||
|
def test_warns_byteorder(self):
|
||
|
# GH 13159
|
||
|
other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
|
||
|
with pytest.deprecated_call(match='non-native byteorder is not'):
|
||
|
random.randint(0, 200, size=10, dtype=other_byteord_dt)
|
||
|
|
||
|
def test_named_argument_initialization(self):
|
||
|
# GH 13669
|
||
|
rs1 = np.random.RandomState(123456789)
|
||
|
rs2 = np.random.RandomState(seed=123456789)
|
||
|
assert rs1.randint(0, 100) == rs2.randint(0, 100)
|
||
|
|
||
|
def test_choice_retun_dtype(self):
|
||
|
# GH 9867
|
||
|
c = np.random.choice(10, p=[.1]*10, size=2)
|
||
|
assert c.dtype == np.dtype(int)
|
||
|
c = np.random.choice(10, p=[.1]*10, replace=False, size=2)
|
||
|
assert c.dtype == np.dtype(int)
|
||
|
c = np.random.choice(10, size=2)
|
||
|
assert c.dtype == np.dtype(int)
|
||
|
c = np.random.choice(10, replace=False, size=2)
|
||
|
assert c.dtype == np.dtype(int)
|
||
|
|
||
|
@pytest.mark.skipif(np.iinfo('l').max < 2**32,
|
||
|
reason='Cannot test with 32-bit C long')
|
||
|
def test_randint_117(self):
|
||
|
# GH 14189
|
||
|
random.seed(0)
|
||
|
expected = np.array([2357136044, 2546248239, 3071714933, 3626093760,
|
||
|
2588848963, 3684848379, 2340255427, 3638918503,
|
||
|
1819583497, 2678185683], dtype='int64')
|
||
|
actual = random.randint(2**32, size=10)
|
||
|
assert_array_equal(actual, expected)
|
||
|
|
||
|
def test_p_zero_stream(self):
|
||
|
# Regression test for gh-14522. Ensure that future versions
|
||
|
# generate the same variates as version 1.16.
|
||
|
np.random.seed(12345)
|
||
|
assert_array_equal(random.binomial(1, [0, 0.25, 0.5, 0.75, 1]),
|
||
|
[0, 0, 0, 1, 1])
|
||
|
|
||
|
def test_n_zero_stream(self):
|
||
|
# Regression test for gh-14522. Ensure that future versions
|
||
|
# generate the same variates as version 1.16.
|
||
|
np.random.seed(8675309)
|
||
|
expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||
|
[3, 4, 2, 3, 3, 1, 5, 3, 1, 3]])
|
||
|
assert_array_equal(random.binomial([[0], [10]], 0.25, size=(2, 10)),
|
||
|
expected)
|
||
|
|
||
|
|
||
|
def test_multinomial_empty():
|
||
|
# gh-20483
|
||
|
# Ensure that empty p-vals are correctly handled
|
||
|
assert random.multinomial(10, []).shape == (0,)
|
||
|
assert random.multinomial(3, [], size=(7, 5, 3)).shape == (7, 5, 3, 0)
|
||
|
|
||
|
|
||
|
def test_multinomial_1d_pval():
|
||
|
# gh-20483
|
||
|
with pytest.raises(TypeError, match="pvals must be a 1-d"):
|
||
|
random.multinomial(10, 0.3)
|