You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1392 lines
40 KiB
1392 lines
40 KiB
6 months ago
|
"""
|
||
|
Base and utility classes for pandas objects.
|
||
|
"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import textwrap
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Generic,
|
||
|
Literal,
|
||
|
cast,
|
||
|
final,
|
||
|
overload,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._config import using_copy_on_write
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
from pandas._typing import (
|
||
|
AxisInt,
|
||
|
DtypeObj,
|
||
|
IndexLabel,
|
||
|
NDFrameT,
|
||
|
Self,
|
||
|
Shape,
|
||
|
npt,
|
||
|
)
|
||
|
from pandas.compat import PYPY
|
||
|
from pandas.compat.numpy import function as nv
|
||
|
from pandas.errors import AbstractMethodError
|
||
|
from pandas.util._decorators import (
|
||
|
cache_readonly,
|
||
|
doc,
|
||
|
)
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
|
||
|
from pandas.core.dtypes.cast import can_hold_element
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_object_dtype,
|
||
|
is_scalar,
|
||
|
)
|
||
|
from pandas.core.dtypes.dtypes import ExtensionDtype
|
||
|
from pandas.core.dtypes.generic import (
|
||
|
ABCDataFrame,
|
||
|
ABCIndex,
|
||
|
ABCSeries,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import (
|
||
|
isna,
|
||
|
remove_na_arraylike,
|
||
|
)
|
||
|
|
||
|
from pandas.core import (
|
||
|
algorithms,
|
||
|
nanops,
|
||
|
ops,
|
||
|
)
|
||
|
from pandas.core.accessor import DirNamesMixin
|
||
|
from pandas.core.arraylike import OpsMixin
|
||
|
from pandas.core.arrays import ExtensionArray
|
||
|
from pandas.core.construction import (
|
||
|
ensure_wrapped_if_datetimelike,
|
||
|
extract_array,
|
||
|
)
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from collections.abc import (
|
||
|
Hashable,
|
||
|
Iterator,
|
||
|
)
|
||
|
|
||
|
from pandas._typing import (
|
||
|
DropKeep,
|
||
|
NumpySorter,
|
||
|
NumpyValueArrayLike,
|
||
|
ScalarLike_co,
|
||
|
)
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
Series,
|
||
|
)
|
||
|
|
||
|
|
||
|
_shared_docs: dict[str, str] = {}
|
||
|
_indexops_doc_kwargs = {
|
||
|
"klass": "IndexOpsMixin",
|
||
|
"inplace": "",
|
||
|
"unique": "IndexOpsMixin",
|
||
|
"duplicated": "IndexOpsMixin",
|
||
|
}
|
||
|
|
||
|
|
||
|
class PandasObject(DirNamesMixin):
|
||
|
"""
|
||
|
Baseclass for various pandas objects.
|
||
|
"""
|
||
|
|
||
|
# results from calls to methods decorated with cache_readonly get added to _cache
|
||
|
_cache: dict[str, Any]
|
||
|
|
||
|
@property
|
||
|
def _constructor(self):
|
||
|
"""
|
||
|
Class constructor (for this class it's just `__class__`).
|
||
|
"""
|
||
|
return type(self)
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
"""
|
||
|
Return a string representation for a particular object.
|
||
|
"""
|
||
|
# Should be overwritten by base classes
|
||
|
return object.__repr__(self)
|
||
|
|
||
|
def _reset_cache(self, key: str | None = None) -> None:
|
||
|
"""
|
||
|
Reset cached properties. If ``key`` is passed, only clears that key.
|
||
|
"""
|
||
|
if not hasattr(self, "_cache"):
|
||
|
return
|
||
|
if key is None:
|
||
|
self._cache.clear()
|
||
|
else:
|
||
|
self._cache.pop(key, None)
|
||
|
|
||
|
def __sizeof__(self) -> int:
|
||
|
"""
|
||
|
Generates the total memory usage for an object that returns
|
||
|
either a value or Series of values
|
||
|
"""
|
||
|
memory_usage = getattr(self, "memory_usage", None)
|
||
|
if memory_usage:
|
||
|
mem = memory_usage(deep=True) # pylint: disable=not-callable
|
||
|
return int(mem if is_scalar(mem) else mem.sum())
|
||
|
|
||
|
# no memory_usage attribute, so fall back to object's 'sizeof'
|
||
|
return super().__sizeof__()
|
||
|
|
||
|
|
||
|
class NoNewAttributesMixin:
|
||
|
"""
|
||
|
Mixin which prevents adding new attributes.
|
||
|
|
||
|
Prevents additional attributes via xxx.attribute = "something" after a
|
||
|
call to `self.__freeze()`. Mainly used to prevent the user from using
|
||
|
wrong attributes on an accessor (`Series.cat/.str/.dt`).
|
||
|
|
||
|
If you really want to add a new attribute at a later time, you need to use
|
||
|
`object.__setattr__(self, key, value)`.
|
||
|
"""
|
||
|
|
||
|
def _freeze(self) -> None:
|
||
|
"""
|
||
|
Prevents setting additional attributes.
|
||
|
"""
|
||
|
object.__setattr__(self, "__frozen", True)
|
||
|
|
||
|
# prevent adding any attribute via s.xxx.new_attribute = ...
|
||
|
def __setattr__(self, key: str, value) -> None:
|
||
|
# _cache is used by a decorator
|
||
|
# We need to check both 1.) cls.__dict__ and 2.) getattr(self, key)
|
||
|
# because
|
||
|
# 1.) getattr is false for attributes that raise errors
|
||
|
# 2.) cls.__dict__ doesn't traverse into base classes
|
||
|
if getattr(self, "__frozen", False) and not (
|
||
|
key == "_cache"
|
||
|
or key in type(self).__dict__
|
||
|
or getattr(self, key, None) is not None
|
||
|
):
|
||
|
raise AttributeError(f"You cannot add any new attribute '{key}'")
|
||
|
object.__setattr__(self, key, value)
|
||
|
|
||
|
|
||
|
class SelectionMixin(Generic[NDFrameT]):
|
||
|
"""
|
||
|
mixin implementing the selection & aggregation interface on a group-like
|
||
|
object sub-classes need to define: obj, exclusions
|
||
|
"""
|
||
|
|
||
|
obj: NDFrameT
|
||
|
_selection: IndexLabel | None = None
|
||
|
exclusions: frozenset[Hashable]
|
||
|
_internal_names = ["_cache", "__setstate__"]
|
||
|
_internal_names_set = set(_internal_names)
|
||
|
|
||
|
@final
|
||
|
@property
|
||
|
def _selection_list(self):
|
||
|
if not isinstance(
|
||
|
self._selection, (list, tuple, ABCSeries, ABCIndex, np.ndarray)
|
||
|
):
|
||
|
return [self._selection]
|
||
|
return self._selection
|
||
|
|
||
|
@cache_readonly
|
||
|
def _selected_obj(self):
|
||
|
if self._selection is None or isinstance(self.obj, ABCSeries):
|
||
|
return self.obj
|
||
|
else:
|
||
|
return self.obj[self._selection]
|
||
|
|
||
|
@final
|
||
|
@cache_readonly
|
||
|
def ndim(self) -> int:
|
||
|
return self._selected_obj.ndim
|
||
|
|
||
|
@final
|
||
|
@cache_readonly
|
||
|
def _obj_with_exclusions(self):
|
||
|
if isinstance(self.obj, ABCSeries):
|
||
|
return self.obj
|
||
|
|
||
|
if self._selection is not None:
|
||
|
return self.obj._getitem_nocopy(self._selection_list)
|
||
|
|
||
|
if len(self.exclusions) > 0:
|
||
|
# equivalent to `self.obj.drop(self.exclusions, axis=1)
|
||
|
# but this avoids consolidating and making a copy
|
||
|
# TODO: following GH#45287 can we now use .drop directly without
|
||
|
# making a copy?
|
||
|
return self.obj._drop_axis(self.exclusions, axis=1, only_slice=True)
|
||
|
else:
|
||
|
return self.obj
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
if self._selection is not None:
|
||
|
raise IndexError(f"Column(s) {self._selection} already selected")
|
||
|
|
||
|
if isinstance(key, (list, tuple, ABCSeries, ABCIndex, np.ndarray)):
|
||
|
if len(self.obj.columns.intersection(key)) != len(set(key)):
|
||
|
bad_keys = list(set(key).difference(self.obj.columns))
|
||
|
raise KeyError(f"Columns not found: {str(bad_keys)[1:-1]}")
|
||
|
return self._gotitem(list(key), ndim=2)
|
||
|
|
||
|
else:
|
||
|
if key not in self.obj:
|
||
|
raise KeyError(f"Column not found: {key}")
|
||
|
ndim = self.obj[key].ndim
|
||
|
return self._gotitem(key, ndim=ndim)
|
||
|
|
||
|
def _gotitem(self, key, ndim: int, subset=None):
|
||
|
"""
|
||
|
sub-classes to define
|
||
|
return a sliced object
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : str / list of selections
|
||
|
ndim : {1, 2}
|
||
|
requested ndim of result
|
||
|
subset : object, default None
|
||
|
subset to act on
|
||
|
"""
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
@final
|
||
|
def _infer_selection(self, key, subset: Series | DataFrame):
|
||
|
"""
|
||
|
Infer the `selection` to pass to our constructor in _gotitem.
|
||
|
"""
|
||
|
# Shared by Rolling and Resample
|
||
|
selection = None
|
||
|
if subset.ndim == 2 and (
|
||
|
(lib.is_scalar(key) and key in subset) or lib.is_list_like(key)
|
||
|
):
|
||
|
selection = key
|
||
|
elif subset.ndim == 1 and lib.is_scalar(key) and key == subset.name:
|
||
|
selection = key
|
||
|
return selection
|
||
|
|
||
|
def aggregate(self, func, *args, **kwargs):
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
agg = aggregate
|
||
|
|
||
|
|
||
|
class IndexOpsMixin(OpsMixin):
|
||
|
"""
|
||
|
Common ops mixin to support a unified interface / docs for Series / Index
|
||
|
"""
|
||
|
|
||
|
# ndarray compatibility
|
||
|
__array_priority__ = 1000
|
||
|
_hidden_attrs: frozenset[str] = frozenset(
|
||
|
["tolist"] # tolist is not deprecated, just suppressed in the __dir__
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def dtype(self) -> DtypeObj:
|
||
|
# must be defined here as a property for mypy
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
@property
|
||
|
def _values(self) -> ExtensionArray | np.ndarray:
|
||
|
# must be defined here as a property for mypy
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
@final
|
||
|
def transpose(self, *args, **kwargs) -> Self:
|
||
|
"""
|
||
|
Return the transpose, which is by definition self.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
%(klass)s
|
||
|
"""
|
||
|
nv.validate_transpose(args, kwargs)
|
||
|
return self
|
||
|
|
||
|
T = property(
|
||
|
transpose,
|
||
|
doc="""
|
||
|
Return the transpose, which is by definition self.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For Series:
|
||
|
|
||
|
>>> s = pd.Series(['Ant', 'Bear', 'Cow'])
|
||
|
>>> s
|
||
|
0 Ant
|
||
|
1 Bear
|
||
|
2 Cow
|
||
|
dtype: object
|
||
|
>>> s.T
|
||
|
0 Ant
|
||
|
1 Bear
|
||
|
2 Cow
|
||
|
dtype: object
|
||
|
|
||
|
For Index:
|
||
|
|
||
|
>>> idx = pd.Index([1, 2, 3])
|
||
|
>>> idx.T
|
||
|
Index([1, 2, 3], dtype='int64')
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def shape(self) -> Shape:
|
||
|
"""
|
||
|
Return a tuple of the shape of the underlying data.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1, 2, 3])
|
||
|
>>> s.shape
|
||
|
(3,)
|
||
|
"""
|
||
|
return self._values.shape
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
# We need this defined here for mypy
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
@property
|
||
|
def ndim(self) -> Literal[1]:
|
||
|
"""
|
||
|
Number of dimensions of the underlying data, by definition 1.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series(['Ant', 'Bear', 'Cow'])
|
||
|
>>> s
|
||
|
0 Ant
|
||
|
1 Bear
|
||
|
2 Cow
|
||
|
dtype: object
|
||
|
>>> s.ndim
|
||
|
1
|
||
|
|
||
|
For Index:
|
||
|
|
||
|
>>> idx = pd.Index([1, 2, 3])
|
||
|
>>> idx
|
||
|
Index([1, 2, 3], dtype='int64')
|
||
|
>>> idx.ndim
|
||
|
1
|
||
|
"""
|
||
|
return 1
|
||
|
|
||
|
@final
|
||
|
def item(self):
|
||
|
"""
|
||
|
Return the first element of the underlying data as a Python scalar.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scalar
|
||
|
The first element of Series or Index.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If the data is not length = 1.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1])
|
||
|
>>> s.item()
|
||
|
1
|
||
|
|
||
|
For an index:
|
||
|
|
||
|
>>> s = pd.Series([1], index=['a'])
|
||
|
>>> s.index.item()
|
||
|
'a'
|
||
|
"""
|
||
|
if len(self) == 1:
|
||
|
return next(iter(self))
|
||
|
raise ValueError("can only convert an array of size 1 to a Python scalar")
|
||
|
|
||
|
@property
|
||
|
def nbytes(self) -> int:
|
||
|
"""
|
||
|
Return the number of bytes in the underlying data.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For Series:
|
||
|
|
||
|
>>> s = pd.Series(['Ant', 'Bear', 'Cow'])
|
||
|
>>> s
|
||
|
0 Ant
|
||
|
1 Bear
|
||
|
2 Cow
|
||
|
dtype: object
|
||
|
>>> s.nbytes
|
||
|
24
|
||
|
|
||
|
For Index:
|
||
|
|
||
|
>>> idx = pd.Index([1, 2, 3])
|
||
|
>>> idx
|
||
|
Index([1, 2, 3], dtype='int64')
|
||
|
>>> idx.nbytes
|
||
|
24
|
||
|
"""
|
||
|
return self._values.nbytes
|
||
|
|
||
|
@property
|
||
|
def size(self) -> int:
|
||
|
"""
|
||
|
Return the number of elements in the underlying data.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For Series:
|
||
|
|
||
|
>>> s = pd.Series(['Ant', 'Bear', 'Cow'])
|
||
|
>>> s
|
||
|
0 Ant
|
||
|
1 Bear
|
||
|
2 Cow
|
||
|
dtype: object
|
||
|
>>> s.size
|
||
|
3
|
||
|
|
||
|
For Index:
|
||
|
|
||
|
>>> idx = pd.Index([1, 2, 3])
|
||
|
>>> idx
|
||
|
Index([1, 2, 3], dtype='int64')
|
||
|
>>> idx.size
|
||
|
3
|
||
|
"""
|
||
|
return len(self._values)
|
||
|
|
||
|
@property
|
||
|
def array(self) -> ExtensionArray:
|
||
|
"""
|
||
|
The ExtensionArray of the data backing this Series or Index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ExtensionArray
|
||
|
An ExtensionArray of the values stored within. For extension
|
||
|
types, this is the actual array. For NumPy native types, this
|
||
|
is a thin (no copy) wrapper around :class:`numpy.ndarray`.
|
||
|
|
||
|
``.array`` differs from ``.values``, which may require converting
|
||
|
the data to a different form.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Index.to_numpy : Similar method that always returns a NumPy array.
|
||
|
Series.to_numpy : Similar method that always returns a NumPy array.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table lays out the different array types for each extension
|
||
|
dtype within pandas.
|
||
|
|
||
|
================== =============================
|
||
|
dtype array type
|
||
|
================== =============================
|
||
|
category Categorical
|
||
|
period PeriodArray
|
||
|
interval IntervalArray
|
||
|
IntegerNA IntegerArray
|
||
|
string StringArray
|
||
|
boolean BooleanArray
|
||
|
datetime64[ns, tz] DatetimeArray
|
||
|
================== =============================
|
||
|
|
||
|
For any 3rd-party extension types, the array type will be an
|
||
|
ExtensionArray.
|
||
|
|
||
|
For all remaining dtypes ``.array`` will be a
|
||
|
:class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
|
||
|
stored within. If you absolutely need a NumPy array (possibly with
|
||
|
copying / coercing data), then use :meth:`Series.to_numpy` instead.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For regular NumPy types like int, and float, a NumpyExtensionArray
|
||
|
is returned.
|
||
|
|
||
|
>>> pd.Series([1, 2, 3]).array
|
||
|
<NumpyExtensionArray>
|
||
|
[1, 2, 3]
|
||
|
Length: 3, dtype: int64
|
||
|
|
||
|
For extension types, like Categorical, the actual ExtensionArray
|
||
|
is returned
|
||
|
|
||
|
>>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
|
||
|
>>> ser.array
|
||
|
['a', 'b', 'a']
|
||
|
Categories (2, object): ['a', 'b']
|
||
|
"""
|
||
|
raise AbstractMethodError(self)
|
||
|
|
||
|
@final
|
||
|
def to_numpy(
|
||
|
self,
|
||
|
dtype: npt.DTypeLike | None = None,
|
||
|
copy: bool = False,
|
||
|
na_value: object = lib.no_default,
|
||
|
**kwargs,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
A NumPy ndarray representing the values in this Series or Index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : str or numpy.dtype, optional
|
||
|
The dtype to pass to :meth:`numpy.asarray`.
|
||
|
copy : bool, default False
|
||
|
Whether to ensure that the returned value is not a view on
|
||
|
another array. Note that ``copy=False`` does not *ensure* that
|
||
|
``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
|
||
|
a copy is made, even if not strictly necessary.
|
||
|
na_value : Any, optional
|
||
|
The value to use for missing values. The default value depends
|
||
|
on `dtype` and the type of the array.
|
||
|
**kwargs
|
||
|
Additional keywords passed through to the ``to_numpy`` method
|
||
|
of the underlying array (for extension arrays).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
numpy.ndarray
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.array : Get the actual data stored within.
|
||
|
Index.array : Get the actual data stored within.
|
||
|
DataFrame.to_numpy : Similar method for DataFrame.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The returned array will be the same up to equality (values equal
|
||
|
in `self` will be equal in the returned array; likewise for values
|
||
|
that are not equal). When `self` contains an ExtensionArray, the
|
||
|
dtype may be different. For example, for a category-dtype Series,
|
||
|
``to_numpy()`` will return a NumPy array and the categorical dtype
|
||
|
will be lost.
|
||
|
|
||
|
For NumPy dtypes, this will be a reference to the actual data stored
|
||
|
in this Series or Index (assuming ``copy=False``). Modifying the result
|
||
|
in place will modify the data stored in the Series or Index (not that
|
||
|
we recommend doing that).
|
||
|
|
||
|
For extension types, ``to_numpy()`` *may* require copying data and
|
||
|
coercing the result to a NumPy type (possibly object), which may be
|
||
|
expensive. When you need a no-copy reference to the underlying data,
|
||
|
:attr:`Series.array` should be used instead.
|
||
|
|
||
|
This table lays out the different dtypes and default return types of
|
||
|
``to_numpy()`` for various dtypes within pandas.
|
||
|
|
||
|
================== ================================
|
||
|
dtype array type
|
||
|
================== ================================
|
||
|
category[T] ndarray[T] (same dtype as input)
|
||
|
period ndarray[object] (Periods)
|
||
|
interval ndarray[object] (Intervals)
|
||
|
IntegerNA ndarray[object]
|
||
|
datetime64[ns] datetime64[ns]
|
||
|
datetime64[ns, tz] ndarray[object] (Timestamps)
|
||
|
================== ================================
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
|
||
|
>>> ser.to_numpy()
|
||
|
array(['a', 'b', 'a'], dtype=object)
|
||
|
|
||
|
Specify the `dtype` to control how datetime-aware data is represented.
|
||
|
Use ``dtype=object`` to return an ndarray of pandas :class:`Timestamp`
|
||
|
objects, each with the correct ``tz``.
|
||
|
|
||
|
>>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
|
||
|
>>> ser.to_numpy(dtype=object)
|
||
|
array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),
|
||
|
Timestamp('2000-01-02 00:00:00+0100', tz='CET')],
|
||
|
dtype=object)
|
||
|
|
||
|
Or ``dtype='datetime64[ns]'`` to return an ndarray of native
|
||
|
datetime64 values. The values are converted to UTC and the timezone
|
||
|
info is dropped.
|
||
|
|
||
|
>>> ser.to_numpy(dtype="datetime64[ns]")
|
||
|
... # doctest: +ELLIPSIS
|
||
|
array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'],
|
||
|
dtype='datetime64[ns]')
|
||
|
"""
|
||
|
if isinstance(self.dtype, ExtensionDtype):
|
||
|
return self.array.to_numpy(dtype, copy=copy, na_value=na_value, **kwargs)
|
||
|
elif kwargs:
|
||
|
bad_keys = next(iter(kwargs.keys()))
|
||
|
raise TypeError(
|
||
|
f"to_numpy() got an unexpected keyword argument '{bad_keys}'"
|
||
|
)
|
||
|
|
||
|
fillna = (
|
||
|
na_value is not lib.no_default
|
||
|
# no need to fillna with np.nan if we already have a float dtype
|
||
|
and not (na_value is np.nan and np.issubdtype(self.dtype, np.floating))
|
||
|
)
|
||
|
|
||
|
values = self._values
|
||
|
if fillna:
|
||
|
if not can_hold_element(values, na_value):
|
||
|
# if we can't hold the na_value asarray either makes a copy or we
|
||
|
# error before modifying values. The asarray later on thus won't make
|
||
|
# another copy
|
||
|
values = np.asarray(values, dtype=dtype)
|
||
|
else:
|
||
|
values = values.copy()
|
||
|
|
||
|
values[np.asanyarray(isna(self))] = na_value
|
||
|
|
||
|
result = np.asarray(values, dtype=dtype)
|
||
|
|
||
|
if (copy and not fillna) or (not copy and using_copy_on_write()):
|
||
|
if np.shares_memory(self._values[:2], result[:2]):
|
||
|
# Take slices to improve performance of check
|
||
|
if using_copy_on_write() and not copy:
|
||
|
result = result.view()
|
||
|
result.flags.writeable = False
|
||
|
else:
|
||
|
result = result.copy()
|
||
|
|
||
|
return result
|
||
|
|
||
|
@final
|
||
|
@property
|
||
|
def empty(self) -> bool:
|
||
|
return not self.size
|
||
|
|
||
|
@doc(op="max", oppose="min", value="largest")
|
||
|
def argmax(
|
||
|
self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs
|
||
|
) -> int:
|
||
|
"""
|
||
|
Return int position of the {value} value in the Series.
|
||
|
|
||
|
If the {op}imum is achieved in multiple locations,
|
||
|
the first row position is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {{None}}
|
||
|
Unused. Parameter needed for compatibility with DataFrame.
|
||
|
skipna : bool, default True
|
||
|
Exclude NA/null values when showing the result.
|
||
|
*args, **kwargs
|
||
|
Additional arguments and keywords for compatibility with NumPy.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
Row position of the {op}imum value.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.arg{op} : Return position of the {op}imum value.
|
||
|
Series.arg{oppose} : Return position of the {oppose}imum value.
|
||
|
numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
|
||
|
Series.idxmax : Return index label of the maximum values.
|
||
|
Series.idxmin : Return index label of the minimum values.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Consider dataset containing cereal calories
|
||
|
|
||
|
>>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0,
|
||
|
... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}})
|
||
|
>>> s
|
||
|
Corn Flakes 100.0
|
||
|
Almond Delight 110.0
|
||
|
Cinnamon Toast Crunch 120.0
|
||
|
Cocoa Puff 110.0
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.argmax()
|
||
|
2
|
||
|
>>> s.argmin()
|
||
|
0
|
||
|
|
||
|
The maximum cereal calories is the third element and
|
||
|
the minimum cereal calories is the first element,
|
||
|
since series is zero-indexed.
|
||
|
"""
|
||
|
delegate = self._values
|
||
|
nv.validate_minmax_axis(axis)
|
||
|
skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs)
|
||
|
|
||
|
if isinstance(delegate, ExtensionArray):
|
||
|
if not skipna and delegate.isna().any():
|
||
|
warnings.warn(
|
||
|
f"The behavior of {type(self).__name__}.argmax/argmin "
|
||
|
"with skipna=False and NAs, or with all-NAs is deprecated. "
|
||
|
"In a future version this will raise ValueError.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
return -1
|
||
|
else:
|
||
|
return delegate.argmax()
|
||
|
else:
|
||
|
result = nanops.nanargmax(delegate, skipna=skipna)
|
||
|
if result == -1:
|
||
|
warnings.warn(
|
||
|
f"The behavior of {type(self).__name__}.argmax/argmin "
|
||
|
"with skipna=False and NAs, or with all-NAs is deprecated. "
|
||
|
"In a future version this will raise ValueError.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
# error: Incompatible return value type (got "Union[int, ndarray]", expected
|
||
|
# "int")
|
||
|
return result # type: ignore[return-value]
|
||
|
|
||
|
@doc(argmax, op="min", oppose="max", value="smallest")
|
||
|
def argmin(
|
||
|
self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs
|
||
|
) -> int:
|
||
|
delegate = self._values
|
||
|
nv.validate_minmax_axis(axis)
|
||
|
skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs)
|
||
|
|
||
|
if isinstance(delegate, ExtensionArray):
|
||
|
if not skipna and delegate.isna().any():
|
||
|
warnings.warn(
|
||
|
f"The behavior of {type(self).__name__}.argmax/argmin "
|
||
|
"with skipna=False and NAs, or with all-NAs is deprecated. "
|
||
|
"In a future version this will raise ValueError.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
return -1
|
||
|
else:
|
||
|
return delegate.argmin()
|
||
|
else:
|
||
|
result = nanops.nanargmin(delegate, skipna=skipna)
|
||
|
if result == -1:
|
||
|
warnings.warn(
|
||
|
f"The behavior of {type(self).__name__}.argmax/argmin "
|
||
|
"with skipna=False and NAs, or with all-NAs is deprecated. "
|
||
|
"In a future version this will raise ValueError.",
|
||
|
FutureWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
# error: Incompatible return value type (got "Union[int, ndarray]", expected
|
||
|
# "int")
|
||
|
return result # type: ignore[return-value]
|
||
|
|
||
|
def tolist(self):
|
||
|
"""
|
||
|
Return a list of the values.
|
||
|
|
||
|
These are each a scalar type, which is a Python scalar
|
||
|
(for str, int, float) or a pandas scalar
|
||
|
(for Timestamp/Timedelta/Interval/Period)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.ndarray.tolist : Return the array as an a.ndim-levels deep
|
||
|
nested list of Python scalars.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For Series
|
||
|
|
||
|
>>> s = pd.Series([1, 2, 3])
|
||
|
>>> s.to_list()
|
||
|
[1, 2, 3]
|
||
|
|
||
|
For Index:
|
||
|
|
||
|
>>> idx = pd.Index([1, 2, 3])
|
||
|
>>> idx
|
||
|
Index([1, 2, 3], dtype='int64')
|
||
|
|
||
|
>>> idx.to_list()
|
||
|
[1, 2, 3]
|
||
|
"""
|
||
|
return self._values.tolist()
|
||
|
|
||
|
to_list = tolist
|
||
|
|
||
|
def __iter__(self) -> Iterator:
|
||
|
"""
|
||
|
Return an iterator of the values.
|
||
|
|
||
|
These are each a scalar type, which is a Python scalar
|
||
|
(for str, int, float) or a pandas scalar
|
||
|
(for Timestamp/Timedelta/Interval/Period)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
iterator
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1, 2, 3])
|
||
|
>>> for x in s:
|
||
|
... print(x)
|
||
|
1
|
||
|
2
|
||
|
3
|
||
|
"""
|
||
|
# We are explicitly making element iterators.
|
||
|
if not isinstance(self._values, np.ndarray):
|
||
|
# Check type instead of dtype to catch DTA/TDA
|
||
|
return iter(self._values)
|
||
|
else:
|
||
|
return map(self._values.item, range(self._values.size))
|
||
|
|
||
|
@cache_readonly
|
||
|
def hasnans(self) -> bool:
|
||
|
"""
|
||
|
Return True if there are any NaNs.
|
||
|
|
||
|
Enables various performance speedups.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1, 2, 3, None])
|
||
|
>>> s
|
||
|
0 1.0
|
||
|
1 2.0
|
||
|
2 3.0
|
||
|
3 NaN
|
||
|
dtype: float64
|
||
|
>>> s.hasnans
|
||
|
True
|
||
|
"""
|
||
|
# error: Item "bool" of "Union[bool, ndarray[Any, dtype[bool_]], NDFrame]"
|
||
|
# has no attribute "any"
|
||
|
return bool(isna(self).any()) # type: ignore[union-attr]
|
||
|
|
||
|
@final
|
||
|
def _map_values(self, mapper, na_action=None, convert: bool = True):
|
||
|
"""
|
||
|
An internal function that maps values using the input
|
||
|
correspondence (which can be a dict, Series, or function).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mapper : function, dict, or Series
|
||
|
The input correspondence object
|
||
|
na_action : {None, 'ignore'}
|
||
|
If 'ignore', propagate NA values, without passing them to the
|
||
|
mapping function
|
||
|
convert : bool, default True
|
||
|
Try to find better dtype for elementwise function results. If
|
||
|
False, leave as dtype=object. Note that the dtype is always
|
||
|
preserved for some extension array dtypes, such as Categorical.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Union[Index, MultiIndex], inferred
|
||
|
The output of the mapping function applied to the index.
|
||
|
If the function returns a tuple with more than one element
|
||
|
a MultiIndex will be returned.
|
||
|
"""
|
||
|
arr = self._values
|
||
|
|
||
|
if isinstance(arr, ExtensionArray):
|
||
|
return arr.map(mapper, na_action=na_action)
|
||
|
|
||
|
return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)
|
||
|
|
||
|
@final
|
||
|
def value_counts(
|
||
|
self,
|
||
|
normalize: bool = False,
|
||
|
sort: bool = True,
|
||
|
ascending: bool = False,
|
||
|
bins=None,
|
||
|
dropna: bool = True,
|
||
|
) -> Series:
|
||
|
"""
|
||
|
Return a Series containing counts of unique values.
|
||
|
|
||
|
The resulting object will be in descending order so that the
|
||
|
first element is the most frequently-occurring element.
|
||
|
Excludes NA values by default.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
normalize : bool, default False
|
||
|
If True then the object returned will contain the relative
|
||
|
frequencies of the unique values.
|
||
|
sort : bool, default True
|
||
|
Sort by frequencies when True. Preserve the order of the data when False.
|
||
|
ascending : bool, default False
|
||
|
Sort in ascending order.
|
||
|
bins : int, optional
|
||
|
Rather than count values, group them into half-open bins,
|
||
|
a convenience for ``pd.cut``, only works with numeric data.
|
||
|
dropna : bool, default True
|
||
|
Don't include counts of NaN.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.count: Number of non-NA elements in a Series.
|
||
|
DataFrame.count: Number of non-NA elements in a DataFrame.
|
||
|
DataFrame.value_counts: Equivalent method on DataFrames.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> index = pd.Index([3, 1, 2, 3, 4, np.nan])
|
||
|
>>> index.value_counts()
|
||
|
3.0 2
|
||
|
1.0 1
|
||
|
2.0 1
|
||
|
4.0 1
|
||
|
Name: count, dtype: int64
|
||
|
|
||
|
With `normalize` set to `True`, returns the relative frequency by
|
||
|
dividing all values by the sum of values.
|
||
|
|
||
|
>>> s = pd.Series([3, 1, 2, 3, 4, np.nan])
|
||
|
>>> s.value_counts(normalize=True)
|
||
|
3.0 0.4
|
||
|
1.0 0.2
|
||
|
2.0 0.2
|
||
|
4.0 0.2
|
||
|
Name: proportion, dtype: float64
|
||
|
|
||
|
**bins**
|
||
|
|
||
|
Bins can be useful for going from a continuous variable to a
|
||
|
categorical variable; instead of counting unique
|
||
|
apparitions of values, divide the index in the specified
|
||
|
number of half-open bins.
|
||
|
|
||
|
>>> s.value_counts(bins=3)
|
||
|
(0.996, 2.0] 2
|
||
|
(2.0, 3.0] 2
|
||
|
(3.0, 4.0] 1
|
||
|
Name: count, dtype: int64
|
||
|
|
||
|
**dropna**
|
||
|
|
||
|
With `dropna` set to `False` we can also see NaN index values.
|
||
|
|
||
|
>>> s.value_counts(dropna=False)
|
||
|
3.0 2
|
||
|
1.0 1
|
||
|
2.0 1
|
||
|
4.0 1
|
||
|
NaN 1
|
||
|
Name: count, dtype: int64
|
||
|
"""
|
||
|
return algorithms.value_counts_internal(
|
||
|
self,
|
||
|
sort=sort,
|
||
|
ascending=ascending,
|
||
|
normalize=normalize,
|
||
|
bins=bins,
|
||
|
dropna=dropna,
|
||
|
)
|
||
|
|
||
|
def unique(self):
|
||
|
values = self._values
|
||
|
if not isinstance(values, np.ndarray):
|
||
|
# i.e. ExtensionArray
|
||
|
result = values.unique()
|
||
|
else:
|
||
|
result = algorithms.unique1d(values)
|
||
|
return result
|
||
|
|
||
|
@final
|
||
|
def nunique(self, dropna: bool = True) -> int:
|
||
|
"""
|
||
|
Return number of unique elements in the object.
|
||
|
|
||
|
Excludes NA values by default.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dropna : bool, default True
|
||
|
Don't include NaN in the count.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.nunique: Method nunique for DataFrame.
|
||
|
Series.count: Count non-NA/null observations in the Series.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1, 3, 5, 7, 7])
|
||
|
>>> s
|
||
|
0 1
|
||
|
1 3
|
||
|
2 5
|
||
|
3 7
|
||
|
4 7
|
||
|
dtype: int64
|
||
|
|
||
|
>>> s.nunique()
|
||
|
4
|
||
|
"""
|
||
|
uniqs = self.unique()
|
||
|
if dropna:
|
||
|
uniqs = remove_na_arraylike(uniqs)
|
||
|
return len(uniqs)
|
||
|
|
||
|
@property
|
||
|
def is_unique(self) -> bool:
|
||
|
"""
|
||
|
Return boolean if values in the object are unique.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1, 2, 3])
|
||
|
>>> s.is_unique
|
||
|
True
|
||
|
|
||
|
>>> s = pd.Series([1, 2, 3, 1])
|
||
|
>>> s.is_unique
|
||
|
False
|
||
|
"""
|
||
|
return self.nunique(dropna=False) == len(self)
|
||
|
|
||
|
@property
|
||
|
def is_monotonic_increasing(self) -> bool:
|
||
|
"""
|
||
|
Return boolean if values in the object are monotonically increasing.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([1, 2, 2])
|
||
|
>>> s.is_monotonic_increasing
|
||
|
True
|
||
|
|
||
|
>>> s = pd.Series([3, 2, 1])
|
||
|
>>> s.is_monotonic_increasing
|
||
|
False
|
||
|
"""
|
||
|
from pandas import Index
|
||
|
|
||
|
return Index(self).is_monotonic_increasing
|
||
|
|
||
|
@property
|
||
|
def is_monotonic_decreasing(self) -> bool:
|
||
|
"""
|
||
|
Return boolean if values in the object are monotonically decreasing.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series([3, 2, 2, 1])
|
||
|
>>> s.is_monotonic_decreasing
|
||
|
True
|
||
|
|
||
|
>>> s = pd.Series([1, 2, 3])
|
||
|
>>> s.is_monotonic_decreasing
|
||
|
False
|
||
|
"""
|
||
|
from pandas import Index
|
||
|
|
||
|
return Index(self).is_monotonic_decreasing
|
||
|
|
||
|
@final
|
||
|
def _memory_usage(self, deep: bool = False) -> int:
|
||
|
"""
|
||
|
Memory usage of the values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
deep : bool, default False
|
||
|
Introspect the data deeply, interrogate
|
||
|
`object` dtypes for system-level memory consumption.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bytes used
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.ndarray.nbytes : Total bytes consumed by the elements of the
|
||
|
array.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Memory usage does not include memory consumed by elements that
|
||
|
are not components of the array if deep=False or if used on PyPy
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> idx = pd.Index([1, 2, 3])
|
||
|
>>> idx.memory_usage()
|
||
|
24
|
||
|
"""
|
||
|
if hasattr(self.array, "memory_usage"):
|
||
|
return self.array.memory_usage( # pyright: ignore[reportGeneralTypeIssues]
|
||
|
deep=deep,
|
||
|
)
|
||
|
|
||
|
v = self.array.nbytes
|
||
|
if deep and is_object_dtype(self.dtype) and not PYPY:
|
||
|
values = cast(np.ndarray, self._values)
|
||
|
v += lib.memory_usage_of_objects(values)
|
||
|
return v
|
||
|
|
||
|
@doc(
|
||
|
algorithms.factorize,
|
||
|
values="",
|
||
|
order="",
|
||
|
size_hint="",
|
||
|
sort=textwrap.dedent(
|
||
|
"""\
|
||
|
sort : bool, default False
|
||
|
Sort `uniques` and shuffle `codes` to maintain the
|
||
|
relationship.
|
||
|
"""
|
||
|
),
|
||
|
)
|
||
|
def factorize(
|
||
|
self,
|
||
|
sort: bool = False,
|
||
|
use_na_sentinel: bool = True,
|
||
|
) -> tuple[npt.NDArray[np.intp], Index]:
|
||
|
codes, uniques = algorithms.factorize(
|
||
|
self._values, sort=sort, use_na_sentinel=use_na_sentinel
|
||
|
)
|
||
|
if uniques.dtype == np.float16:
|
||
|
uniques = uniques.astype(np.float32)
|
||
|
|
||
|
if isinstance(self, ABCIndex):
|
||
|
# preserve e.g. MultiIndex
|
||
|
uniques = self._constructor(uniques)
|
||
|
else:
|
||
|
from pandas import Index
|
||
|
|
||
|
uniques = Index(uniques)
|
||
|
return codes, uniques
|
||
|
|
||
|
_shared_docs[
|
||
|
"searchsorted"
|
||
|
] = """
|
||
|
Find indices where elements should be inserted to maintain order.
|
||
|
|
||
|
Find the indices into a sorted {klass} `self` such that, if the
|
||
|
corresponding elements in `value` were inserted before the indices,
|
||
|
the order of `self` would be preserved.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
The {klass} *must* be monotonically sorted, otherwise
|
||
|
wrong locations will likely be returned. Pandas does *not*
|
||
|
check this for you.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value : array-like or scalar
|
||
|
Values to insert into `self`.
|
||
|
side : {{'left', 'right'}}, optional
|
||
|
If 'left', the index of the first suitable location found is given.
|
||
|
If 'right', return the last such index. If there is no suitable
|
||
|
index, return either 0 or N (where N is the length of `self`).
|
||
|
sorter : 1-D array-like, optional
|
||
|
Optional array of integer indices that sort `self` into ascending
|
||
|
order. They are typically the result of ``np.argsort``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int or array of int
|
||
|
A scalar or array of insertion points with the
|
||
|
same shape as `value`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sort_values : Sort by the values along either axis.
|
||
|
numpy.searchsorted : Similar method from NumPy.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Binary search is used to find the required insertion points.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> ser = pd.Series([1, 2, 3])
|
||
|
>>> ser
|
||
|
0 1
|
||
|
1 2
|
||
|
2 3
|
||
|
dtype: int64
|
||
|
|
||
|
>>> ser.searchsorted(4)
|
||
|
3
|
||
|
|
||
|
>>> ser.searchsorted([0, 4])
|
||
|
array([0, 3])
|
||
|
|
||
|
>>> ser.searchsorted([1, 3], side='left')
|
||
|
array([0, 2])
|
||
|
|
||
|
>>> ser.searchsorted([1, 3], side='right')
|
||
|
array([1, 3])
|
||
|
|
||
|
>>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000']))
|
||
|
>>> ser
|
||
|
0 2000-03-11
|
||
|
1 2000-03-12
|
||
|
2 2000-03-13
|
||
|
dtype: datetime64[ns]
|
||
|
|
||
|
>>> ser.searchsorted('3/14/2000')
|
||
|
3
|
||
|
|
||
|
>>> ser = pd.Categorical(
|
||
|
... ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True
|
||
|
... )
|
||
|
>>> ser
|
||
|
['apple', 'bread', 'bread', 'cheese', 'milk']
|
||
|
Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk']
|
||
|
|
||
|
>>> ser.searchsorted('bread')
|
||
|
1
|
||
|
|
||
|
>>> ser.searchsorted(['bread'], side='right')
|
||
|
array([3])
|
||
|
|
||
|
If the values are not monotonically sorted, wrong locations
|
||
|
may be returned:
|
||
|
|
||
|
>>> ser = pd.Series([2, 1, 3])
|
||
|
>>> ser
|
||
|
0 2
|
||
|
1 1
|
||
|
2 3
|
||
|
dtype: int64
|
||
|
|
||
|
>>> ser.searchsorted(1) # doctest: +SKIP
|
||
|
0 # wrong result, correct would be 1
|
||
|
"""
|
||
|
|
||
|
# This overload is needed so that the call to searchsorted in
|
||
|
# pandas.core.resample.TimeGrouper._get_period_bins picks the correct result
|
||
|
|
||
|
# error: Overloaded function signatures 1 and 2 overlap with incompatible
|
||
|
# return types
|
||
|
@overload
|
||
|
def searchsorted( # type: ignore[overload-overlap]
|
||
|
self,
|
||
|
value: ScalarLike_co,
|
||
|
side: Literal["left", "right"] = ...,
|
||
|
sorter: NumpySorter = ...,
|
||
|
) -> np.intp:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def searchsorted(
|
||
|
self,
|
||
|
value: npt.ArrayLike | ExtensionArray,
|
||
|
side: Literal["left", "right"] = ...,
|
||
|
sorter: NumpySorter = ...,
|
||
|
) -> npt.NDArray[np.intp]:
|
||
|
...
|
||
|
|
||
|
@doc(_shared_docs["searchsorted"], klass="Index")
|
||
|
def searchsorted(
|
||
|
self,
|
||
|
value: NumpyValueArrayLike | ExtensionArray,
|
||
|
side: Literal["left", "right"] = "left",
|
||
|
sorter: NumpySorter | None = None,
|
||
|
) -> npt.NDArray[np.intp] | np.intp:
|
||
|
if isinstance(value, ABCDataFrame):
|
||
|
msg = (
|
||
|
"Value must be 1-D array-like or scalar, "
|
||
|
f"{type(value).__name__} is not supported"
|
||
|
)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
values = self._values
|
||
|
if not isinstance(values, np.ndarray):
|
||
|
# Going through EA.searchsorted directly improves performance GH#38083
|
||
|
return values.searchsorted(value, side=side, sorter=sorter)
|
||
|
|
||
|
return algorithms.searchsorted(
|
||
|
values,
|
||
|
value,
|
||
|
side=side,
|
||
|
sorter=sorter,
|
||
|
)
|
||
|
|
||
|
def drop_duplicates(self, *, keep: DropKeep = "first"):
|
||
|
duplicated = self._duplicated(keep=keep)
|
||
|
# error: Value of type "IndexOpsMixin" is not indexable
|
||
|
return self[~duplicated] # type: ignore[index]
|
||
|
|
||
|
@final
|
||
|
def _duplicated(self, keep: DropKeep = "first") -> npt.NDArray[np.bool_]:
|
||
|
arr = self._values
|
||
|
if isinstance(arr, ExtensionArray):
|
||
|
return arr.duplicated(keep=keep)
|
||
|
return algorithms.duplicated(arr, keep=keep)
|
||
|
|
||
|
def _arith_method(self, other, op):
|
||
|
res_name = ops.get_op_result_name(self, other)
|
||
|
|
||
|
lvalues = self._values
|
||
|
rvalues = extract_array(other, extract_numpy=True, extract_range=True)
|
||
|
rvalues = ops.maybe_prepare_scalar_for_op(rvalues, lvalues.shape)
|
||
|
rvalues = ensure_wrapped_if_datetimelike(rvalues)
|
||
|
if isinstance(rvalues, range):
|
||
|
rvalues = np.arange(rvalues.start, rvalues.stop, rvalues.step)
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
result = ops.arithmetic_op(lvalues, rvalues, op)
|
||
|
|
||
|
return self._construct_result(result, name=res_name)
|
||
|
|
||
|
def _construct_result(self, result, name):
|
||
|
"""
|
||
|
Construct an appropriately-wrapped result from the ArrayLike result
|
||
|
of an arithmetic-like operation.
|
||
|
"""
|
||
|
raise AbstractMethodError(self)
|