You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

762 lines
29 KiB

6 months ago
""" Test cases for .boxplot method """
import itertools
import string
import numpy as np
import pytest
from pandas import (
DataFrame,
MultiIndex,
Series,
date_range,
plotting,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
_check_axes_shape,
_check_box_return_type,
_check_plot_works,
_check_ticks_props,
_check_visible,
)
from pandas.io.formats.printing import pprint_thing
mpl = pytest.importorskip("matplotlib")
plt = pytest.importorskip("matplotlib.pyplot")
def _check_ax_limits(col, ax):
y_min, y_max = ax.get_ylim()
assert y_min <= col.min()
assert y_max >= col.max()
class TestDataFramePlots:
def test_stacked_boxplot_set_axis(self):
# GH2980
import matplotlib.pyplot as plt
n = 80
df = DataFrame(
{
"Clinical": np.random.default_rng(2).choice([0, 1, 2, 3], n),
"Confirmed": np.random.default_rng(2).choice([0, 1, 2, 3], n),
"Discarded": np.random.default_rng(2).choice([0, 1, 2, 3], n),
},
index=np.arange(0, n),
)
ax = df.plot(kind="bar", stacked=True)
assert [int(x.get_text()) for x in ax.get_xticklabels()] == df.index.to_list()
ax.set_xticks(np.arange(0, 80, 10))
plt.draw() # Update changes
assert [int(x.get_text()) for x in ax.get_xticklabels()] == list(
np.arange(0, 80, 10)
)
@pytest.mark.slow
@pytest.mark.parametrize(
"kwargs, warn",
[
[{"return_type": "dict"}, None],
[{"column": ["one", "two"]}, None],
[{"column": ["one", "two"], "by": "indic"}, UserWarning],
[{"column": ["one"], "by": ["indic", "indic2"]}, None],
[{"by": "indic"}, UserWarning],
[{"by": ["indic", "indic2"]}, UserWarning],
[{"notch": 1}, None],
[{"by": "indic", "notch": 1}, UserWarning],
],
)
def test_boxplot_legacy1(self, kwargs, warn):
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
df["indic"] = ["foo", "bar"] * 3
df["indic2"] = ["foo", "bar", "foo"] * 2
# _check_plot_works can add an ax so catch warning. see GH #13188
with tm.assert_produces_warning(warn, check_stacklevel=False):
_check_plot_works(df.boxplot, **kwargs)
def test_boxplot_legacy1_series(self):
ser = Series(np.random.default_rng(2).standard_normal(6))
_check_plot_works(plotting._core.boxplot, data=ser, return_type="dict")
def test_boxplot_legacy2(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.boxplot, by="X")
def test_boxplot_legacy2_with_ax(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
# When ax is supplied and required number of axes is 1,
# passed ax should be used:
_, ax = mpl.pyplot.subplots()
axes = df.boxplot("Col1", by="X", ax=ax)
ax_axes = ax.axes
assert ax_axes is axes
def test_boxplot_legacy2_with_ax_return_type(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
fig, ax = mpl.pyplot.subplots()
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
ax_axes = ax.axes
assert ax_axes is axes["A"]
def test_boxplot_legacy2_with_multi_col(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
# Multiple columns with an ax argument should use same figure
fig, ax = mpl.pyplot.subplots()
with tm.assert_produces_warning(UserWarning):
axes = df.boxplot(
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
)
assert axes["Col1"].get_figure() is fig
def test_boxplot_legacy2_by_none(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
# When by is None, check that all relevant lines are present in the
# dict
_, ax = mpl.pyplot.subplots()
d = df.boxplot(ax=ax, return_type="dict")
lines = list(itertools.chain.from_iterable(d.values()))
assert len(ax.get_lines()) == len(lines)
def test_boxplot_return_type_none(self, hist_df):
# GH 12216; return_type=None & by=None -> axes
result = hist_df.boxplot()
assert isinstance(result, mpl.pyplot.Axes)
def test_boxplot_return_type_legacy(self):
# API change in https://github.com/pandas-dev/pandas/pull/7096
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
msg = "return_type must be {'axes', 'dict', 'both'}"
with pytest.raises(ValueError, match=msg):
df.boxplot(return_type="NOT_A_TYPE")
result = df.boxplot()
_check_box_return_type(result, "axes")
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
def test_boxplot_return_type_legacy_return_type(self, return_type):
# API change in https://github.com/pandas-dev/pandas/pull/7096
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
with tm.assert_produces_warning(False):
result = df.boxplot(return_type=return_type)
_check_box_return_type(result, return_type)
def test_boxplot_axis_limits(self, hist_df):
df = hist_df.copy()
df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0])
# One full row
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
_check_ax_limits(df["height"], height_ax)
_check_ax_limits(df["weight"], weight_ax)
assert weight_ax._sharey == height_ax
def test_boxplot_axis_limits_two_rows(self, hist_df):
df = hist_df.copy()
df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0])
# Two rows, one partial
p = df.boxplot(["height", "weight", "age"], by="category")
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
dummy_ax = p[1, 1]
_check_ax_limits(df["height"], height_ax)
_check_ax_limits(df["weight"], weight_ax)
_check_ax_limits(df["age"], age_ax)
assert weight_ax._sharey == height_ax
assert age_ax._sharey == height_ax
assert dummy_ax._sharey is None
def test_boxplot_empty_column(self):
df = DataFrame(np.random.default_rng(2).standard_normal((20, 4)))
df.loc[:, 0] = np.nan
_check_plot_works(df.boxplot, return_type="axes")
def test_figsize(self):
df = DataFrame(
np.random.default_rng(2).random((10, 5)), columns=["A", "B", "C", "D", "E"]
)
result = df.boxplot(return_type="axes", figsize=(12, 8))
assert result.figure.bbox_inches.width == 12
assert result.figure.bbox_inches.height == 8
def test_fontsize(self):
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
_check_ticks_props(df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16)
def test_boxplot_numeric_data(self):
# GH 22799
df = DataFrame(
{
"a": date_range("2012-01-01", periods=100),
"b": np.random.default_rng(2).standard_normal(100),
"c": np.random.default_rng(2).standard_normal(100) + 2,
"d": date_range("2012-01-01", periods=100).astype(str),
"e": date_range("2012-01-01", periods=100, tz="UTC"),
"f": timedelta_range("1 days", periods=100),
}
)
ax = df.plot(kind="box")
assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
@pytest.mark.parametrize(
"colors_kwd, expected",
[
(
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
),
({"boxes": "r"}, {"boxes": "r"}),
("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
],
)
def test_color_kwd(self, colors_kwd, expected):
# GH: 26214
df = DataFrame(np.random.default_rng(2).random((10, 2)))
result = df.boxplot(color=colors_kwd, return_type="dict")
for k, v in expected.items():
assert result[k][0].get_color() == v
@pytest.mark.parametrize(
"scheme,expected",
[
(
"dark_background",
{
"boxes": "#8dd3c7",
"whiskers": "#8dd3c7",
"medians": "#bfbbd9",
"caps": "#8dd3c7",
},
),
(
"default",
{
"boxes": "#1f77b4",
"whiskers": "#1f77b4",
"medians": "#2ca02c",
"caps": "#1f77b4",
},
),
],
)
def test_colors_in_theme(self, scheme, expected):
# GH: 40769
df = DataFrame(np.random.default_rng(2).random((10, 2)))
import matplotlib.pyplot as plt
plt.style.use(scheme)
result = df.plot.box(return_type="dict")
for k, v in expected.items():
assert result[k][0].get_color() == v
@pytest.mark.parametrize(
"dict_colors, msg",
[({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
)
def test_color_kwd_errors(self, dict_colors, msg):
# GH: 26214
df = DataFrame(np.random.default_rng(2).random((10, 2)))
with pytest.raises(ValueError, match=msg):
df.boxplot(color=dict_colors, return_type="dict")
@pytest.mark.parametrize(
"props, expected",
[
("boxprops", "boxes"),
("whiskerprops", "whiskers"),
("capprops", "caps"),
("medianprops", "medians"),
],
)
def test_specified_props_kwd(self, props, expected):
# GH 30346
df = DataFrame({k: np.random.default_rng(2).random(10) for k in "ABC"})
kwd = {props: {"color": "C1"}}
result = df.boxplot(return_type="dict", **kwd)
assert result[expected][0].get_color() == "C1"
@pytest.mark.parametrize("vert", [True, False])
def test_plot_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
xlabel, ylabel = "x", "y"
ax = df.plot(kind="box", vert=vert, xlabel=xlabel, ylabel=ylabel)
assert ax.get_xlabel() == xlabel
assert ax.get_ylabel() == ylabel
@pytest.mark.parametrize("vert", [True, False])
def test_plot_box(self, vert):
# GH 54941
rng = np.random.default_rng(2)
df1 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD"))
df2 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD"))
xlabel, ylabel = "x", "y"
_, axs = plt.subplots(ncols=2, figsize=(10, 7), sharey=True)
df1.plot.box(ax=axs[0], vert=vert, xlabel=xlabel, ylabel=ylabel)
df2.plot.box(ax=axs[1], vert=vert, xlabel=xlabel, ylabel=ylabel)
for ax in axs:
assert ax.get_xlabel() == xlabel
assert ax.get_ylabel() == ylabel
mpl.pyplot.close()
@pytest.mark.parametrize("vert", [True, False])
def test_boxplot_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
xlabel, ylabel = "x", "y"
ax = df.boxplot(vert=vert, xlabel=xlabel, ylabel=ylabel)
assert ax.get_xlabel() == xlabel
assert ax.get_ylabel() == ylabel
@pytest.mark.parametrize("vert", [True, False])
def test_boxplot_group_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
xlabel, ylabel = "x", "y"
ax = df.boxplot(by="group", vert=vert, xlabel=xlabel, ylabel=ylabel)
for subplot in ax:
assert subplot.get_xlabel() == xlabel
assert subplot.get_ylabel() == ylabel
mpl.pyplot.close()
@pytest.mark.parametrize("vert", [True, False])
def test_boxplot_group_no_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
ax = df.boxplot(by="group", vert=vert)
for subplot in ax:
target_label = subplot.get_xlabel() if vert else subplot.get_ylabel()
assert target_label == pprint_thing(["group"])
mpl.pyplot.close()
class TestDataFrameGroupByPlots:
def test_boxplot_legacy1(self, hist_df):
grouped = hist_df.groupby(by="gender")
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
_check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
def test_boxplot_legacy1_return_type(self, hist_df):
grouped = hist_df.groupby(by="gender")
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_boxplot_legacy2(self):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(
np.random.default_rng(2).random((10, 3)),
index=MultiIndex.from_tuples(tuples),
)
grouped = df.groupby(level=1)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
_check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
@pytest.mark.slow
def test_boxplot_legacy2_return_type(self):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(
np.random.default_rng(2).random((10, 3)),
index=MultiIndex.from_tuples(tuples),
)
grouped = df.groupby(level=1)
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.parametrize(
"subplots, warn, axes_num, layout",
[[True, UserWarning, 3, (2, 2)], [False, None, 1, (1, 1)]],
)
def test_boxplot_legacy3(self, subplots, warn, axes_num, layout):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(
np.random.default_rng(2).random((10, 3)),
index=MultiIndex.from_tuples(tuples),
)
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grouped = df.unstack(level=1).groupby(level=0, axis=1)
with tm.assert_produces_warning(warn, check_stacklevel=False):
axes = _check_plot_works(
grouped.boxplot, subplots=subplots, return_type="axes"
)
_check_axes_shape(axes, axes_num=axes_num, layout=layout)
def test_grouped_plot_fignums(self):
n = 10
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
df = DataFrame({"height": height, "weight": weight, "gender": gender})
gb = df.groupby("gender")
res = gb.plot()
assert len(mpl.pyplot.get_fignums()) == 2
assert len(res) == 2
plt.close("all")
res = gb.boxplot(return_type="axes")
assert len(mpl.pyplot.get_fignums()) == 1
assert len(res) == 2
def test_grouped_plot_fignums_excluded_col(self):
n = 10
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
df = DataFrame({"height": height, "weight": weight, "gender": gender})
# now works with GH 5610 as gender is excluded
df.groupby("gender").hist()
@pytest.mark.slow
def test_grouped_box_return_type(self, hist_df):
df = hist_df
# old style: return_type=None
result = df.boxplot(by="gender")
assert isinstance(result, np.ndarray)
_check_box_return_type(
result, None, expected_keys=["height", "weight", "category"]
)
@pytest.mark.slow
def test_grouped_box_return_type_groupby(self, hist_df):
df = hist_df
# now for groupby
result = df.groupby("gender").boxplot(return_type="dict")
_check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
@pytest.mark.slow
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
def test_grouped_box_return_type_arg(self, hist_df, return_type):
df = hist_df
returned = df.groupby("classroom").boxplot(return_type=return_type)
_check_box_return_type(returned, return_type, expected_keys=["A", "B", "C"])
returned = df.boxplot(by="classroom", return_type=return_type)
_check_box_return_type(
returned, return_type, expected_keys=["height", "weight", "category"]
)
@pytest.mark.slow
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
def test_grouped_box_return_type_arg_duplcate_cats(self, return_type):
columns2 = "X B C D A".split()
df2 = DataFrame(
np.random.default_rng(2).standard_normal((6, 5)), columns=columns2
)
categories2 = "A B".split()
df2["category"] = categories2 * 3
returned = df2.groupby("category").boxplot(return_type=return_type)
_check_box_return_type(returned, return_type, expected_keys=categories2)
returned = df2.boxplot(by="category", return_type=return_type)
_check_box_return_type(returned, return_type, expected_keys=columns2)
@pytest.mark.slow
def test_grouped_box_layout_too_small(self, hist_df):
df = hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
@pytest.mark.slow
def test_grouped_box_layout_needs_by(self, hist_df):
df = hist_df
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.boxplot(
column=["height", "weight", "category"],
layout=(2, 1),
return_type="dict",
)
@pytest.mark.slow
def test_grouped_box_layout_positive_layout(self, hist_df):
df = hist_df
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
@pytest.mark.slow
@pytest.mark.parametrize(
"gb_key, axes_num, rows",
[["gender", 2, 1], ["category", 4, 2], ["classroom", 3, 2]],
)
def test_grouped_box_layout_positive_layout_axes(
self, hist_df, gb_key, axes_num, rows
):
df = hist_df
# _check_plot_works adds an ax so catch warning. see GH #13188 GH 6769
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(
df.groupby(gb_key).boxplot, column="height", return_type="dict"
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=axes_num, layout=(rows, 2))
@pytest.mark.slow
@pytest.mark.parametrize(
"col, visible", [["height", False], ["weight", True], ["category", True]]
)
def test_grouped_box_layout_visible(self, hist_df, col, visible):
df = hist_df
# GH 5897
axes = df.boxplot(
column=["height", "weight", "category"], by="gender", return_type="axes"
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2))
ax = axes[col]
_check_visible(ax.get_xticklabels(), visible=visible)
_check_visible([ax.xaxis.get_label()], visible=visible)
@pytest.mark.slow
def test_grouped_box_layout_shape(self, hist_df):
df = hist_df
df.groupby("classroom").boxplot(
column=["height", "weight", "category"], return_type="dict"
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2))
@pytest.mark.slow
@pytest.mark.parametrize("cols", [2, -1])
def test_grouped_box_layout_works(self, hist_df, cols):
df = hist_df
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(
df.groupby("category").boxplot,
column="height",
layout=(3, cols),
return_type="dict",
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(3, 2))
@pytest.mark.slow
@pytest.mark.parametrize("rows, res", [[4, 4], [-1, 3]])
def test_grouped_box_layout_axes_shape_rows(self, hist_df, rows, res):
df = hist_df
df.boxplot(
column=["height", "weight", "category"], by="gender", layout=(rows, 1)
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(res, 1))
@pytest.mark.slow
@pytest.mark.parametrize("cols, res", [[4, 4], [-1, 3]])
def test_grouped_box_layout_axes_shape_cols_groupby(self, hist_df, cols, res):
df = hist_df
df.groupby("classroom").boxplot(
column=["height", "weight", "category"],
layout=(1, cols),
return_type="dict",
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(1, res))
@pytest.mark.slow
def test_grouped_box_multiple_axes(self, hist_df):
# GH 6970, GH 7069
df = hist_df
# check warning to ignore sharex / sharey
# this check should be done in the first function which
# passes multiple axes to plot, hist or boxplot
# location should be changed if other test is added
# which has earlier alphabetical order
with tm.assert_produces_warning(UserWarning):
_, axes = mpl.pyplot.subplots(2, 2)
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(2, 2))
@pytest.mark.slow
def test_grouped_box_multiple_axes_on_fig(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = mpl.pyplot.subplots(2, 3)
with tm.assert_produces_warning(UserWarning):
returned = df.boxplot(
column=["height", "weight", "category"],
by="gender",
return_type="axes",
ax=axes[0],
)
returned = np.array(list(returned.values))
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
# draw on second row
with tm.assert_produces_warning(UserWarning):
returned = df.groupby("classroom").boxplot(
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
)
returned = np.array(list(returned.values))
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
@pytest.mark.slow
def test_grouped_box_multiple_axes_ax_error(self, hist_df):
# GH 6970, GH 7069
df = hist_df
msg = "The number of passed axes must be 3, the same as the output plot"
with pytest.raises(ValueError, match=msg):
fig, axes = mpl.pyplot.subplots(2, 3)
# pass different number of axes from required
with tm.assert_produces_warning(UserWarning):
axes = df.groupby("classroom").boxplot(ax=axes)
def test_fontsize(self):
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
_check_ticks_props(
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
)
@pytest.mark.parametrize(
"col, expected_xticklabel",
[
("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
(["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
(
["v", "v1"],
[
"(a, v)",
"(a, v1)",
"(b, v)",
"(b, v1)",
"(c, v)",
"(c, v1)",
"(d, v)",
"(d, v1)",
"(e, v)",
"(e, v1)",
],
),
(
None,
[
"(a, v)",
"(a, v1)",
"(b, v)",
"(b, v1)",
"(c, v)",
"(c, v1)",
"(d, v)",
"(d, v1)",
"(e, v)",
"(e, v1)",
],
),
],
)
def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
# GH 16748
df = DataFrame(
{
"cat": np.random.default_rng(2).choice(list("abcde"), 100),
"v": np.random.default_rng(2).random(100),
"v1": np.random.default_rng(2).random(100),
}
)
grouped = df.groupby("cat")
axes = _check_plot_works(
grouped.boxplot, subplots=False, column=col, return_type="axes"
)
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
assert expected_xticklabel == result_xticklabel
def test_groupby_boxplot_object(self, hist_df):
# GH 43480
df = hist_df.astype("object")
grouped = df.groupby("gender")
msg = "boxplot method requires numerical columns, nothing to plot"
with pytest.raises(ValueError, match=msg):
_check_plot_works(grouped.boxplot, subplots=False)
def test_boxplot_multiindex_column(self):
# GH 16748
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = list(zip(*arrays))
index = MultiIndex.from_tuples(tuples, names=["first", "second"])
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 8)),
index=["A", "B", "C"],
columns=index,
)
col = [("bar", "one"), ("bar", "two")]
axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
expected_xticklabel = ["(bar, one)", "(bar, two)"]
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
assert expected_xticklabel == result_xticklabel