You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

228 lines
7.4 KiB

6 months ago
import numpy as np
import pytest
from pandas._libs import index as libindex
from pandas.compat import IS64
import pandas as pd
from pandas import (
DataFrame,
IntervalIndex,
Series,
)
import pandas._testing as tm
class TestIntervalIndex:
@pytest.fixture
def series_with_interval_index(self):
return Series(np.arange(5), IntervalIndex.from_breaks(np.arange(6)))
def test_getitem_with_scalar(self, series_with_interval_index, indexer_sl):
ser = series_with_interval_index.copy()
expected = ser.iloc[:3]
tm.assert_series_equal(expected, indexer_sl(ser)[:3])
tm.assert_series_equal(expected, indexer_sl(ser)[:2.5])
tm.assert_series_equal(expected, indexer_sl(ser)[0.1:2.5])
if indexer_sl is tm.loc:
tm.assert_series_equal(expected, ser.loc[-1:3])
expected = ser.iloc[1:4]
tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 2.5, 3.5]])
tm.assert_series_equal(expected, indexer_sl(ser)[[2, 3, 4]])
tm.assert_series_equal(expected, indexer_sl(ser)[[1.5, 3, 4]])
expected = ser.iloc[2:5]
tm.assert_series_equal(expected, indexer_sl(ser)[ser >= 2])
@pytest.mark.parametrize("direction", ["increasing", "decreasing"])
def test_getitem_nonoverlapping_monotonic(self, direction, closed, indexer_sl):
tpls = [(0, 1), (2, 3), (4, 5)]
if direction == "decreasing":
tpls = tpls[::-1]
idx = IntervalIndex.from_tuples(tpls, closed=closed)
ser = Series(list("abc"), idx)
for key, expected in zip(idx.left, ser):
if idx.closed_left:
assert indexer_sl(ser)[key] == expected
else:
with pytest.raises(KeyError, match=str(key)):
indexer_sl(ser)[key]
for key, expected in zip(idx.right, ser):
if idx.closed_right:
assert indexer_sl(ser)[key] == expected
else:
with pytest.raises(KeyError, match=str(key)):
indexer_sl(ser)[key]
for key, expected in zip(idx.mid, ser):
assert indexer_sl(ser)[key] == expected
def test_getitem_non_matching(self, series_with_interval_index, indexer_sl):
ser = series_with_interval_index.copy()
# this is a departure from our current
# indexing scheme, but simpler
with pytest.raises(KeyError, match=r"\[-1\] not in index"):
indexer_sl(ser)[[-1, 3, 4, 5]]
with pytest.raises(KeyError, match=r"\[-1\] not in index"):
indexer_sl(ser)[[-1, 3]]
def test_loc_getitem_large_series(self, monkeypatch):
size_cutoff = 20
with monkeypatch.context():
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
ser = Series(
np.arange(size_cutoff),
index=IntervalIndex.from_breaks(np.arange(size_cutoff + 1)),
)
result1 = ser.loc[:8]
result2 = ser.loc[0:8]
result3 = ser.loc[0:8:1]
tm.assert_series_equal(result1, result2)
tm.assert_series_equal(result1, result3)
def test_loc_getitem_frame(self):
# CategoricalIndex with IntervalIndex categories
df = DataFrame({"A": range(10)})
ser = pd.cut(df.A, 5)
df["B"] = ser
df = df.set_index("B")
result = df.loc[4]
expected = df.iloc[4:6]
tm.assert_frame_equal(result, expected)
with pytest.raises(KeyError, match="10"):
df.loc[10]
# single list-like
result = df.loc[[4]]
expected = df.iloc[4:6]
tm.assert_frame_equal(result, expected)
# non-unique
result = df.loc[[4, 5]]
expected = df.take([4, 5, 4, 5])
tm.assert_frame_equal(result, expected)
msg = (
r"None of \[Index\(\[10\], dtype='object', name='B'\)\] "
r"are in the \[index\]"
)
with pytest.raises(KeyError, match=msg):
df.loc[[10]]
# partial missing
with pytest.raises(KeyError, match=r"\[10\] not in index"):
df.loc[[10, 4]]
def test_getitem_interval_with_nans(self, frame_or_series, indexer_sl):
# GH#41831
index = IntervalIndex([np.nan, np.nan])
key = index[:-1]
obj = frame_or_series(range(2), index=index)
if frame_or_series is DataFrame and indexer_sl is tm.setitem:
obj = obj.T
result = indexer_sl(obj)[key]
expected = obj
tm.assert_equal(result, expected)
def test_setitem_interval_with_slice(self):
# GH#54722
ii = IntervalIndex.from_breaks(range(4, 15))
ser = Series(range(10), index=ii)
orig = ser.copy()
# This should be a no-op (used to raise)
ser.loc[1:3] = 20
tm.assert_series_equal(ser, orig)
ser.loc[6:8] = 19
orig.iloc[1:4] = 19
tm.assert_series_equal(ser, orig)
ser2 = Series(range(5), index=ii[::2])
orig2 = ser2.copy()
# this used to raise
ser2.loc[6:8] = 22 # <- raises on main, sets on branch
orig2.iloc[1] = 22
tm.assert_series_equal(ser2, orig2)
ser2.loc[5:7] = 21
orig2.iloc[:2] = 21
tm.assert_series_equal(ser2, orig2)
class TestIntervalIndexInsideMultiIndex:
def test_mi_intervalindex_slicing_with_scalar(self):
# GH#27456
ii = IntervalIndex.from_arrays(
[0, 1, 10, 11, 0, 1, 10, 11], [1, 2, 11, 12, 1, 2, 11, 12], name="MP"
)
idx = pd.MultiIndex.from_arrays(
[
pd.Index(["FC", "FC", "FC", "FC", "OWNER", "OWNER", "OWNER", "OWNER"]),
pd.Index(
["RID1", "RID1", "RID2", "RID2", "RID1", "RID1", "RID2", "RID2"]
),
ii,
]
)
idx.names = ["Item", "RID", "MP"]
df = DataFrame({"value": [1, 2, 3, 4, 5, 6, 7, 8]})
df.index = idx
query_df = DataFrame(
{
"Item": ["FC", "OWNER", "FC", "OWNER", "OWNER"],
"RID": ["RID1", "RID1", "RID1", "RID2", "RID2"],
"MP": [0.2, 1.5, 1.6, 11.1, 10.9],
}
)
query_df = query_df.sort_index()
idx = pd.MultiIndex.from_arrays([query_df.Item, query_df.RID, query_df.MP])
query_df.index = idx
result = df.value.loc[query_df.index]
# the IntervalIndex level is indexed with floats, which map to
# the intervals containing them. Matching the behavior we would get
# with _only_ an IntervalIndex, we get an IntervalIndex level back.
sliced_level = ii.take([0, 1, 1, 3, 2])
expected_index = pd.MultiIndex.from_arrays(
[idx.get_level_values(0), idx.get_level_values(1), sliced_level]
)
expected = Series([1, 6, 2, 8, 7], index=expected_index, name="value")
tm.assert_series_equal(result, expected)
@pytest.mark.xfail(not IS64, reason="GH 23440")
@pytest.mark.parametrize(
"base",
[101, 1010],
)
def test_reindex_behavior_with_interval_index(self, base):
# GH 51826
ser = Series(
range(base),
index=IntervalIndex.from_arrays(range(base), range(1, base + 1)),
)
expected_result = Series([np.nan, 0], index=[np.nan, 1.0], dtype=float)
result = ser.reindex(index=[np.nan, 1.0])
tm.assert_series_equal(result, expected_result)