You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

972 lines
34 KiB

6 months ago
""" Test cases for .hist method """
import re
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
Series,
date_range,
to_datetime,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
_check_ax_scales,
_check_axes_shape,
_check_colors,
_check_legend_labels,
_check_patches_all_filled,
_check_plot_works,
_check_text_labels,
_check_ticks_props,
get_x_axis,
get_y_axis,
)
mpl = pytest.importorskip("matplotlib")
@pytest.fixture
def ts():
return Series(
np.arange(30, dtype=np.float64),
index=date_range("2020-01-01", periods=30, freq="B"),
name="ts",
)
class TestSeriesPlots:
@pytest.mark.parametrize("kwargs", [{}, {"grid": False}, {"figsize": (8, 10)}])
def test_hist_legacy_kwargs(self, ts, kwargs):
_check_plot_works(ts.hist, **kwargs)
@pytest.mark.parametrize("kwargs", [{}, {"bins": 5}])
def test_hist_legacy_kwargs_warning(self, ts, kwargs):
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(ts.hist, by=ts.index.month, **kwargs)
def test_hist_legacy_ax(self, ts):
fig, ax = mpl.pyplot.subplots(1, 1)
_check_plot_works(ts.hist, ax=ax, default_axes=True)
def test_hist_legacy_ax_and_fig(self, ts):
fig, ax = mpl.pyplot.subplots(1, 1)
_check_plot_works(ts.hist, ax=ax, figure=fig, default_axes=True)
def test_hist_legacy_fig(self, ts):
fig, _ = mpl.pyplot.subplots(1, 1)
_check_plot_works(ts.hist, figure=fig, default_axes=True)
def test_hist_legacy_multi_ax(self, ts):
fig, (ax1, ax2) = mpl.pyplot.subplots(1, 2)
_check_plot_works(ts.hist, figure=fig, ax=ax1, default_axes=True)
_check_plot_works(ts.hist, figure=fig, ax=ax2, default_axes=True)
def test_hist_legacy_by_fig_error(self, ts):
fig, _ = mpl.pyplot.subplots(1, 1)
msg = (
"Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' "
"instance will be created"
)
with pytest.raises(ValueError, match=msg):
ts.hist(by=ts.index, figure=fig)
def test_hist_bins_legacy(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
def test_hist_layout(self, hist_df):
df = hist_df
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError, match=msg):
df.height.hist(layout=[1, 1])
@pytest.mark.slow
@pytest.mark.parametrize(
"by, layout, axes_num, res_layout",
[
["gender", (2, 1), 2, (2, 1)],
["gender", (3, -1), 2, (3, 1)],
["category", (4, 1), 4, (4, 1)],
["category", (2, -1), 4, (2, 2)],
["category", (3, -1), 4, (3, 2)],
["category", (-1, 4), 4, (1, 4)],
["classroom", (2, 2), 3, (2, 2)],
],
)
def test_hist_layout_with_by(self, hist_df, by, layout, axes_num, res_layout):
df = hist_df
# _check_plot_works adds an `ax` kwarg to the method call
# so we get a warning about an axis being cleared, even
# though we don't explicing pass one, see GH #13188
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.height.hist, by=getattr(df, by), layout=layout)
_check_axes_shape(axes, axes_num=axes_num, layout=res_layout)
def test_hist_layout_with_by_shape(self, hist_df):
df = hist_df
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
_check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
def test_hist_no_overlap(self):
from matplotlib.pyplot import (
gcf,
subplot,
)
x = Series(np.random.default_rng(2).standard_normal(2))
y = Series(np.random.default_rng(2).standard_normal(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes
assert len(axes) == 2
def test_hist_by_no_extra_plots(self, hist_df):
df = hist_df
df.height.hist(by=df.gender)
assert len(mpl.pyplot.get_fignums()) == 1
def test_plot_fails_when_ax_differs_from_figure(self, ts):
from pylab import figure
fig1 = figure()
fig2 = figure()
ax1 = fig1.add_subplot(111)
msg = "passed axis not bound to passed figure"
with pytest.raises(AssertionError, match=msg):
ts.hist(ax=ax1, figure=fig2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
ser = Series(np.random.default_rng(2).integers(1, 10))
ax = ser.hist(histtype=histtype)
_check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize(
"by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))]
)
def test_hist_with_legend(self, by, expected_axes_num, expected_layout):
# GH 6279 - Series histogram can have a legend
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.default_rng(2).standard_normal(30), index=index, name="a")
s.index.name = "b"
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by)
_check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
_check_legend_labels(axes, "a")
@pytest.mark.parametrize("by", [None, "b"])
def test_hist_with_legend_raises(self, by):
# GH 6279 - Series histogram with legend and label raises
index = 15 * ["1"] + 15 * ["2"]
s = Series(np.random.default_rng(2).standard_normal(30), index=index, name="a")
s.index.name = "b"
with pytest.raises(ValueError, match="Cannot use both legend and label"):
s.hist(legend=True, by=by, label="c")
def test_hist_kwargs(self, ts):
_, ax = mpl.pyplot.subplots()
ax = ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
_check_text_labels(ax.yaxis.get_label(), "Frequency")
def test_hist_kwargs_horizontal(self, ts):
_, ax = mpl.pyplot.subplots()
ax = ts.plot.hist(bins=5, ax=ax)
ax = ts.plot.hist(orientation="horizontal", ax=ax)
_check_text_labels(ax.xaxis.get_label(), "Frequency")
def test_hist_kwargs_align(self, ts):
_, ax = mpl.pyplot.subplots()
ax = ts.plot.hist(bins=5, ax=ax)
ax = ts.plot.hist(align="left", stacked=True, ax=ax)
@pytest.mark.xfail(reason="Api changed in 3.6.0")
def test_hist_kde(self, ts):
pytest.importorskip("scipy")
_, ax = mpl.pyplot.subplots()
ax = ts.plot.hist(logy=True, ax=ax)
_check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
_check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
_check_text_labels(ylabels, [""] * len(ylabels))
def test_hist_kde_plot_works(self, ts):
pytest.importorskip("scipy")
_check_plot_works(ts.plot.kde)
def test_hist_kde_density_works(self, ts):
pytest.importorskip("scipy")
_check_plot_works(ts.plot.density)
@pytest.mark.xfail(reason="Api changed in 3.6.0")
def test_hist_kde_logy(self, ts):
pytest.importorskip("scipy")
_, ax = mpl.pyplot.subplots()
ax = ts.plot.kde(logy=True, ax=ax)
_check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
_check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
_check_text_labels(ylabels, [""] * len(ylabels))
def test_hist_kde_color_bins(self, ts):
pytest.importorskip("scipy")
_, ax = mpl.pyplot.subplots()
ax = ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
_check_ax_scales(ax, yaxis="log")
assert len(ax.patches) == 10
_check_colors(ax.patches, facecolors=["b"] * 10)
def test_hist_kde_color(self, ts):
pytest.importorskip("scipy")
_, ax = mpl.pyplot.subplots()
ax = ts.plot.kde(logy=True, color="r", ax=ax)
_check_ax_scales(ax, yaxis="log")
lines = ax.get_lines()
assert len(lines) == 1
_check_colors(lines, ["r"])
class TestDataFramePlots:
@pytest.mark.slow
def test_hist_df_legacy(self, hist_df):
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(hist_df.hist)
@pytest.mark.slow
def test_hist_df_legacy_layout(self):
# make sure layout is handled
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
df[2] = to_datetime(
np.random.default_rng(2).integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, grid=False)
_check_axes_shape(axes, axes_num=3, layout=(2, 2))
assert not axes[1, 1].get_visible()
_check_plot_works(df[[2]].hist)
@pytest.mark.slow
def test_hist_df_legacy_layout2(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)))
_check_plot_works(df.hist)
@pytest.mark.slow
def test_hist_df_legacy_layout3(self):
# make sure layout is handled
df = DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
df[5] = to_datetime(
np.random.default_rng(2).integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, layout=(4, 2))
_check_axes_shape(axes, axes_num=6, layout=(4, 2))
@pytest.mark.slow
@pytest.mark.parametrize(
"kwargs", [{"sharex": True, "sharey": True}, {"figsize": (8, 10)}, {"bins": 5}]
)
def test_hist_df_legacy_layout_kwargs(self, kwargs):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
df[5] = to_datetime(
np.random.default_rng(2).integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
# make sure sharex, sharey is handled
# handle figsize arg
# check bins argument
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.hist, **kwargs)
@pytest.mark.slow
def test_hist_df_legacy_layout_labelsize_rot(self, frame_or_series):
# make sure xlabelsize and xrot are handled
obj = frame_or_series(range(10))
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = obj.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
_check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
@pytest.mark.slow
def test_hist_df_legacy_rectangles(self):
from matplotlib.patches import Rectangle
ser = Series(range(10))
ax = ser.hist(cumulative=True, bins=4, density=True)
# height of last bin (index 5) must be 1.0
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
@pytest.mark.slow
def test_hist_df_legacy_scale(self):
ser = Series(range(10))
ax = ser.hist(log=True)
# scale of y must be 'log'
_check_ax_scales(ax, yaxis="log")
@pytest.mark.slow
def test_hist_df_legacy_external_error(self):
ser = Series(range(10))
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
ser.hist(foo="bar")
def test_hist_non_numerical_or_datetime_raises(self):
# gh-10444, GH32590
df = DataFrame(
{
"a": np.random.default_rng(2).random(10),
"b": np.random.default_rng(2).integers(0, 10, 10),
"c": to_datetime(
np.random.default_rng(2).integers(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
)
),
"d": to_datetime(
np.random.default_rng(2).integers(
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
),
utc=True,
),
}
)
df_o = df.astype(object)
msg = "hist method requires numerical or datetime columns, nothing to plot."
with pytest.raises(ValueError, match=msg):
df_o.hist()
@pytest.mark.parametrize(
"layout_test",
(
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
{"layout": (2, 2), "expected_size": (2, 2)},
{"layout": (4, 1), "expected_size": (4, 1)},
{"layout": (1, 4), "expected_size": (1, 4)},
{"layout": (3, 3), "expected_size": (3, 3)},
{"layout": (-1, 4), "expected_size": (1, 4)},
{"layout": (4, -1), "expected_size": (4, 1)},
{"layout": (-1, 2), "expected_size": (2, 2)},
{"layout": (2, -1), "expected_size": (2, 2)},
),
)
def test_hist_layout(self, layout_test):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
df[2] = to_datetime(
np.random.default_rng(2).integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
axes = df.hist(layout=layout_test["layout"])
expected = layout_test["expected_size"]
_check_axes_shape(axes, axes_num=3, layout=expected)
def test_hist_layout_error(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
df[2] = to_datetime(
np.random.default_rng(2).integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
# layout too small for all 4 plots
msg = "Layout of 1x1 must be larger than required size 3"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1, 1))
# invalid format for layout
msg = re.escape("Layout must be a tuple of (rows, columns)")
with pytest.raises(ValueError, match=msg):
df.hist(layout=(1,))
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.hist(layout=(-1, -1))
# GH 9351
def test_tight_layout(self):
df = DataFrame(np.random.default_rng(2).standard_normal((100, 2)))
df[2] = to_datetime(
np.random.default_rng(2).integers(
812419200000000000,
819331200000000000,
size=100,
dtype=np.int64,
)
)
# Use default_axes=True when plotting method generate subplots itself
_check_plot_works(df.hist, default_axes=True)
mpl.pyplot.tight_layout()
def test_hist_subplot_xrot(self):
# GH 30288
df = DataFrame(
{
"length": [1.5, 0.5, 1.2, 0.9, 3],
"animal": ["pig", "rabbit", "pig", "pig", "rabbit"],
}
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
column="length",
by="animal",
bins=5,
xrot=0,
)
_check_ticks_props(axes, xrot=0)
@pytest.mark.parametrize(
"column, expected",
[
(None, ["width", "length", "height"]),
(["length", "width", "height"], ["length", "width", "height"]),
],
)
def test_hist_column_order_unchanged(self, column, expected):
# GH29235
df = DataFrame(
{
"width": [0.7, 0.2, 0.15, 0.2, 1.1],
"length": [1.5, 0.5, 1.2, 0.9, 3],
"height": [3, 0.5, 3.4, 2, 1],
},
index=["pig", "rabbit", "duck", "chicken", "horse"],
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
column=column,
layout=(1, 3),
)
result = [axes[0, i].get_title() for i in range(3)]
assert result == expected
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(
np.random.default_rng(2).integers(1, 10, size=(100, 2)), columns=["a", "b"]
)
ax = df.hist(histtype=histtype)
_check_patches_all_filled(ax, filled=expected)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend(self, by, column):
# GH 6279 - DataFrame histogram can have a legend
expected_axes_num = 1 if by is None and column is not None else 2
expected_layout = (1, expected_axes_num)
expected_labels = column or ["a", "b"]
if by is not None:
expected_labels = [expected_labels] * 2
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 2)),
index=index,
columns=["a", "b"],
)
# Use default_axes=True when plotting method generate subplots itself
axes = _check_plot_works(
df.hist,
default_axes=True,
legend=True,
by=by,
column=column,
)
_check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
if by is None and column is None:
axes = axes[0]
for expected_label, ax in zip(expected_labels, axes):
_check_legend_labels(ax, expected_label)
@pytest.mark.parametrize("by", [None, "c"])
@pytest.mark.parametrize("column", [None, "b"])
def test_hist_with_legend_raises(self, by, column):
# GH 6279 - DataFrame histogram with legend and label raises
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 2)),
index=index,
columns=["a", "b"],
)
with pytest.raises(ValueError, match="Cannot use both legend and label"):
df.hist(legend=True, by=by, column=column, label="d")
def test_hist_df_kwargs(self):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
_, ax = mpl.pyplot.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
def test_hist_df_with_nonnumerics(self):
# GH 9853
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=["A", "B", "C", "D"],
)
df["E"] = ["x", "y"] * 5
_, ax = mpl.pyplot.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
def test_hist_df_with_nonnumerics_no_bins(self):
# GH 9853
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=["A", "B", "C", "D"],
)
df["E"] = ["x", "y"] * 5
_, ax = mpl.pyplot.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 4)), columns=list("abcd")
)
# primary -> secondary
_, ax = mpl.pyplot.subplots()
ax = df["a"].plot.hist(legend=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are drawn on left ax
# left and right axis must be visible
_check_legend_labels(ax, labels=["a", "b (right)"])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
def test_hist_secondary_secondary(self):
# GH 9610
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 4)), columns=list("abcd")
)
# secondary -> secondary
_, ax = mpl.pyplot.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
_check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
def test_hist_secondary_primary(self):
# GH 9610
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 4)), columns=list("abcd")
)
# secondary -> primary
_, ax = mpl.pyplot.subplots()
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df["b"].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
_check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
def test_hist_with_nans_and_weights(self):
# GH 48884
mpl_patches = pytest.importorskip("matplotlib.patches")
df = DataFrame(
[[np.nan, 0.2, 0.3], [0.4, np.nan, np.nan], [0.7, 0.8, 0.9]],
columns=list("abc"),
)
weights = np.array([0.25, 0.3, 0.45])
no_nan_df = DataFrame([[0.4, 0.2, 0.3], [0.7, 0.8, 0.9]], columns=list("abc"))
no_nan_weights = np.array([[0.3, 0.25, 0.25], [0.45, 0.45, 0.45]])
_, ax0 = mpl.pyplot.subplots()
df.plot.hist(ax=ax0, weights=weights)
rects = [x for x in ax0.get_children() if isinstance(x, mpl_patches.Rectangle)]
heights = [rect.get_height() for rect in rects]
_, ax1 = mpl.pyplot.subplots()
no_nan_df.plot.hist(ax=ax1, weights=no_nan_weights)
no_nan_rects = [
x for x in ax1.get_children() if isinstance(x, mpl_patches.Rectangle)
]
no_nan_heights = [rect.get_height() for rect in no_nan_rects]
assert all(h0 == h1 for h0, h1 in zip(heights, no_nan_heights))
idxerror_weights = np.array([[0.3, 0.25], [0.45, 0.45]])
msg = "weights must have the same shape as data, or be a single column"
with pytest.raises(ValueError, match=msg):
_, ax2 = mpl.pyplot.subplots()
no_nan_df.plot.hist(ax=ax2, weights=idxerror_weights)
class TestDataFrameGroupByPlots:
def test_grouped_hist_legacy(self):
from pandas.plotting._matplotlib.hist import _grouped_hist
rs = np.random.default_rng(10)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
df["D"] = ["X"] * 10
axes = _grouped_hist(df.A, by=df.C)
_check_axes_shape(axes, axes_num=4, layout=(2, 2))
def test_grouped_hist_legacy_axes_shape_no_col(self):
rs = np.random.default_rng(10)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
df["D"] = ["X"] * 10
axes = df.hist(by=df.C)
_check_axes_shape(axes, axes_num=4, layout=(2, 2))
def test_grouped_hist_legacy_single_key(self):
rs = np.random.default_rng(2)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
df["D"] = ["X"] * 10
# group by a key with single value
axes = df.hist(by="D", rot=30)
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
_check_ticks_props(axes, xrot=30)
def test_grouped_hist_legacy_grouped_hist_kwargs(self):
from matplotlib.patches import Rectangle
from pandas.plotting._matplotlib.hist import _grouped_hist
rs = np.random.default_rng(2)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
# make sure kwargs to hist are handled
xf, yf = 20, 18
xrot, yrot = 30, 40
axes = _grouped_hist(
df.A,
by=df.C,
cumulative=True,
bins=4,
xlabelsize=xf,
xrot=xrot,
ylabelsize=yf,
yrot=yrot,
density=True,
)
# height of last bin (index 5) must be 1.0
for ax in axes.ravel():
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
height = rects[-1].get_height()
tm.assert_almost_equal(height, 1.0)
_check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
def test_grouped_hist_legacy_grouped_hist(self):
from pandas.plotting._matplotlib.hist import _grouped_hist
rs = np.random.default_rng(2)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
df["D"] = ["X"] * 10
axes = _grouped_hist(df.A, by=df.C, log=True)
# scale of y must be 'log'
_check_ax_scales(axes, yaxis="log")
def test_grouped_hist_legacy_external_err(self):
from pandas.plotting._matplotlib.hist import _grouped_hist
rs = np.random.default_rng(2)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
df["D"] = ["X"] * 10
# propagate attr exception from matplotlib.Axes.hist
with tm.external_error_raised(AttributeError):
_grouped_hist(df.A, by=df.C, foo="bar")
def test_grouped_hist_legacy_figsize_err(self):
rs = np.random.default_rng(2)
df = DataFrame(rs.standard_normal((10, 1)), columns=["A"])
df["B"] = to_datetime(
rs.integers(
812419200000000000,
819331200000000000,
size=10,
dtype=np.int64,
)
)
df["C"] = rs.integers(0, 4, 10)
df["D"] = ["X"] * 10
msg = "Specify figure size by tuple instead"
with pytest.raises(ValueError, match=msg):
df.hist(by="C", figsize="default")
def test_grouped_hist_legacy2(self):
n = 10
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender_int = np.random.default_rng(2).choice([0, 1], size=n)
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
gb = df_int.groupby("gender")
axes = gb.hist()
assert len(axes) == 2
assert len(mpl.pyplot.get_fignums()) == 2
@pytest.mark.slow
@pytest.mark.parametrize(
"msg, plot_col, by_col, layout",
[
[
"Layout of 1x1 must be larger than required size 2",
"weight",
"gender",
(1, 1),
],
[
"Layout of 1x3 must be larger than required size 4",
"height",
"category",
(1, 3),
],
[
"At least one dimension of layout must be positive",
"height",
"category",
(-1, -1),
],
],
)
def test_grouped_hist_layout_error(self, hist_df, msg, plot_col, by_col, layout):
df = hist_df
with pytest.raises(ValueError, match=msg):
df.hist(column=plot_col, by=getattr(df, by_col), layout=layout)
@pytest.mark.slow
def test_grouped_hist_layout_warning(self, hist_df):
df = hist_df
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
df.hist, column="height", by=df.gender, layout=(2, 1)
)
_check_axes_shape(axes, axes_num=2, layout=(2, 1))
@pytest.mark.slow
@pytest.mark.parametrize(
"layout, check_layout, figsize",
[[(4, 1), (4, 1), None], [(-1, 1), (4, 1), None], [(4, 2), (4, 2), (12, 8)]],
)
def test_grouped_hist_layout_figsize(self, hist_df, layout, check_layout, figsize):
df = hist_df
axes = df.hist(column="height", by=df.category, layout=layout, figsize=figsize)
_check_axes_shape(axes, axes_num=4, layout=check_layout, figsize=figsize)
@pytest.mark.slow
@pytest.mark.parametrize("kwargs", [{}, {"column": "height", "layout": (2, 2)}])
def test_grouped_hist_layout_by_warning(self, hist_df, kwargs):
df = hist_df
# GH 6769
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(df.hist, by="classroom", **kwargs)
_check_axes_shape(axes, axes_num=3, layout=(2, 2))
@pytest.mark.slow
@pytest.mark.parametrize(
"kwargs, axes_num, layout",
[
[{"by": "gender", "layout": (3, 5)}, 2, (3, 5)],
[{"column": ["height", "weight", "category"]}, 3, (2, 2)],
],
)
def test_grouped_hist_layout_axes(self, hist_df, kwargs, axes_num, layout):
df = hist_df
axes = df.hist(**kwargs)
_check_axes_shape(axes, axes_num=axes_num, layout=layout)
def test_grouped_hist_multiple_axes(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = mpl.pyplot.subplots(2, 3)
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
def test_grouped_hist_multiple_axes_no_cols(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = mpl.pyplot.subplots(2, 3)
returned = df.hist(by="classroom", ax=axes[1])
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
def test_grouped_hist_multiple_axes_error(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = mpl.pyplot.subplots(2, 3)
# pass different number of axes from required
msg = "The number of passed axes must be 1, the same as the output plot"
with pytest.raises(ValueError, match=msg):
axes = df.hist(column="height", ax=axes)
def test_axis_share_x(self, hist_df):
df = hist_df
# GH4089
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
# share x
assert get_x_axis(ax1).joined(ax1, ax2)
assert get_x_axis(ax2).joined(ax1, ax2)
# don't share y
assert not get_y_axis(ax1).joined(ax1, ax2)
assert not get_y_axis(ax2).joined(ax1, ax2)
def test_axis_share_y(self, hist_df):
df = hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
# share y
assert get_y_axis(ax1).joined(ax1, ax2)
assert get_y_axis(ax2).joined(ax1, ax2)
# don't share x
assert not get_x_axis(ax1).joined(ax1, ax2)
assert not get_x_axis(ax2).joined(ax1, ax2)
def test_axis_share_xy(self, hist_df):
df = hist_df
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
# share both x and y
assert get_x_axis(ax1).joined(ax1, ax2)
assert get_x_axis(ax2).joined(ax1, ax2)
assert get_y_axis(ax1).joined(ax1, ax2)
assert get_y_axis(ax2).joined(ax1, ax2)
@pytest.mark.parametrize(
"histtype, expected",
[
("bar", True),
("barstacked", True),
("step", False),
("stepfilled", True),
],
)
def test_histtype_argument(self, histtype, expected):
# GH23992 Verify functioning of histtype argument
df = DataFrame(
np.random.default_rng(2).integers(1, 10, size=(10, 2)), columns=["a", "b"]
)
ax = df.hist(by="a", histtype=histtype)
_check_patches_all_filled(ax, filled=expected)