You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

461 lines
14 KiB

6 months ago
from collections import deque
import re
import string
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.arrays import SparseArray
@pytest.fixture(params=[np.add, np.logaddexp])
def ufunc(request):
# dunder op
return request.param
@pytest.fixture(params=[True, False], ids=["sparse", "dense"])
def sparse(request):
return request.param
@pytest.fixture
def arrays_for_binary_ufunc():
"""
A pair of random, length-100 integer-dtype arrays, that are mostly 0.
"""
a1 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64")
a2 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64")
a1[::3] = 0
a2[::4] = 0
return a1, a2
@pytest.mark.parametrize("ufunc", [np.positive, np.floor, np.exp])
def test_unary_ufunc(ufunc, sparse):
# Test that ufunc(pd.Series) == pd.Series(ufunc)
arr = np.random.default_rng(2).integers(0, 10, 10, dtype="int64")
arr[::2] = 0
if sparse:
arr = SparseArray(arr, dtype=pd.SparseDtype("int64", 0))
index = list(string.ascii_letters[:10])
name = "name"
series = pd.Series(arr, index=index, name=name)
result = ufunc(series)
expected = pd.Series(ufunc(arr), index=index, name=name)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"])
def test_binary_ufunc_with_array(flip, sparse, ufunc, arrays_for_binary_ufunc):
# Test that ufunc(pd.Series(a), array) == pd.Series(ufunc(a, b))
a1, a2 = arrays_for_binary_ufunc
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)
other = a2
array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
if flip:
array_args = reversed(array_args)
series_args = reversed(series_args) # ufunc(array, series)
expected = pd.Series(ufunc(*array_args), name=name)
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"])
def test_binary_ufunc_with_index(flip, sparse, ufunc, arrays_for_binary_ufunc):
# Test that
# * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b))
# * ufunc(Index, pd.Series) dispatches to pd.Series (returns a pd.Series)
a1, a2 = arrays_for_binary_ufunc
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)
other = pd.Index(a2, name=name).astype("int64")
array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
if flip:
array_args = reversed(array_args)
series_args = reversed(series_args) # ufunc(array, series)
expected = pd.Series(ufunc(*array_args), name=name)
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("shuffle", [True, False], ids=["unaligned", "aligned"])
@pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"])
def test_binary_ufunc_with_series(
flip, shuffle, sparse, ufunc, arrays_for_binary_ufunc
):
# Test that
# * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b))
# with alignment between the indices
a1, a2 = arrays_for_binary_ufunc
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)
other = pd.Series(a2, name=name)
idx = np.random.default_rng(2).permutation(len(a1))
if shuffle:
other = other.take(idx)
if flip:
index = other.align(series)[0].index
else:
index = series.align(other)[0].index
else:
index = series.index
array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
if flip:
array_args = tuple(reversed(array_args))
series_args = tuple(reversed(series_args)) # ufunc(array, series)
expected = pd.Series(ufunc(*array_args), index=index, name=name)
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("flip", [True, False])
def test_binary_ufunc_scalar(ufunc, sparse, flip, arrays_for_binary_ufunc):
# Test that
# * ufunc(pd.Series, scalar) == pd.Series(ufunc(array, scalar))
# * ufunc(pd.Series, scalar) == ufunc(scalar, pd.Series)
arr, _ = arrays_for_binary_ufunc
if sparse:
arr = SparseArray(arr)
other = 2
series = pd.Series(arr, name="name")
series_args = (series, other)
array_args = (arr, other)
if flip:
series_args = tuple(reversed(series_args))
array_args = tuple(reversed(array_args))
expected = pd.Series(ufunc(*array_args), name="name")
result = ufunc(*series_args)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", [np.divmod]) # TODO: np.modf, np.frexp
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.filterwarnings("ignore:divide by zero:RuntimeWarning")
def test_multiple_output_binary_ufuncs(ufunc, sparse, shuffle, arrays_for_binary_ufunc):
# Test that
# the same conditions from binary_ufunc_scalar apply to
# ufuncs with multiple outputs.
a1, a2 = arrays_for_binary_ufunc
# work around https://github.com/pandas-dev/pandas/issues/26987
a1[a1 == 0] = 1
a2[a2 == 0] = 1
if sparse:
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0))
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0))
s1 = pd.Series(a1)
s2 = pd.Series(a2)
if shuffle:
# ensure we align before applying the ufunc
s2 = s2.sample(frac=1)
expected = ufunc(a1, a2)
assert isinstance(expected, tuple)
result = ufunc(s1, s2)
assert isinstance(result, tuple)
tm.assert_series_equal(result[0], pd.Series(expected[0]))
tm.assert_series_equal(result[1], pd.Series(expected[1]))
def test_multiple_output_ufunc(sparse, arrays_for_binary_ufunc):
# Test that the same conditions from unary input apply to multi-output
# ufuncs
arr, _ = arrays_for_binary_ufunc
if sparse:
arr = SparseArray(arr)
series = pd.Series(arr, name="name")
result = np.modf(series)
expected = np.modf(arr)
assert isinstance(result, tuple)
assert isinstance(expected, tuple)
tm.assert_series_equal(result[0], pd.Series(expected[0], name="name"))
tm.assert_series_equal(result[1], pd.Series(expected[1], name="name"))
def test_binary_ufunc_drops_series_name(ufunc, sparse, arrays_for_binary_ufunc):
# Drop the names when they differ.
a1, a2 = arrays_for_binary_ufunc
s1 = pd.Series(a1, name="a")
s2 = pd.Series(a2, name="b")
result = ufunc(s1, s2)
assert result.name is None
def test_object_series_ok():
class Dummy:
def __init__(self, value) -> None:
self.value = value
def __add__(self, other):
return self.value + other.value
arr = np.array([Dummy(0), Dummy(1)])
ser = pd.Series(arr)
tm.assert_series_equal(np.add(ser, ser), pd.Series(np.add(ser, arr)))
tm.assert_series_equal(np.add(ser, Dummy(1)), pd.Series(np.add(ser, Dummy(1))))
@pytest.fixture(
params=[
pd.array([1, 3, 2], dtype=np.int64),
pd.array([1, 3, 2], dtype="Int64"),
pd.array([1, 3, 2], dtype="Float32"),
pd.array([1, 10, 2], dtype="Sparse[int]"),
pd.to_datetime(["2000", "2010", "2001"]),
pd.to_datetime(["2000", "2010", "2001"]).tz_localize("CET"),
pd.to_datetime(["2000", "2010", "2001"]).to_period(freq="D"),
pd.to_timedelta(["1 Day", "3 Days", "2 Days"]),
pd.IntervalIndex([pd.Interval(0, 1), pd.Interval(2, 3), pd.Interval(1, 2)]),
],
ids=lambda x: str(x.dtype),
)
def values_for_np_reduce(request):
# min/max tests assume that these are monotonic increasing
return request.param
class TestNumpyReductions:
# TODO: cases with NAs, axis kwarg for DataFrame
def test_multiply(self, values_for_np_reduce, box_with_array, request):
box = box_with_array
values = values_for_np_reduce
with tm.assert_produces_warning(None):
obj = box(values)
if isinstance(values, pd.core.arrays.SparseArray):
mark = pytest.mark.xfail(reason="SparseArray has no 'prod'")
request.applymarker(mark)
if values.dtype.kind in "iuf":
result = np.multiply.reduce(obj)
if box is pd.DataFrame:
expected = obj.prod(numeric_only=False)
tm.assert_series_equal(result, expected)
elif box is pd.Index:
# Index has no 'prod'
expected = obj._values.prod()
assert result == expected
else:
expected = obj.prod()
assert result == expected
else:
msg = "|".join(
[
"does not support reduction",
"unsupported operand type",
"ufunc 'multiply' cannot use operands",
]
)
with pytest.raises(TypeError, match=msg):
np.multiply.reduce(obj)
def test_add(self, values_for_np_reduce, box_with_array):
box = box_with_array
values = values_for_np_reduce
with tm.assert_produces_warning(None):
obj = box(values)
if values.dtype.kind in "miuf":
result = np.add.reduce(obj)
if box is pd.DataFrame:
expected = obj.sum(numeric_only=False)
tm.assert_series_equal(result, expected)
elif box is pd.Index:
# Index has no 'sum'
expected = obj._values.sum()
assert result == expected
else:
expected = obj.sum()
assert result == expected
else:
msg = "|".join(
[
"does not support reduction",
"unsupported operand type",
"ufunc 'add' cannot use operands",
]
)
with pytest.raises(TypeError, match=msg):
np.add.reduce(obj)
def test_max(self, values_for_np_reduce, box_with_array):
box = box_with_array
values = values_for_np_reduce
same_type = True
if box is pd.Index and values.dtype.kind in ["i", "f"]:
# ATM Index casts to object, so we get python ints/floats
same_type = False
with tm.assert_produces_warning(None):
obj = box(values)
result = np.maximum.reduce(obj)
if box is pd.DataFrame:
# TODO: cases with axis kwarg
expected = obj.max(numeric_only=False)
tm.assert_series_equal(result, expected)
else:
expected = values[1]
assert result == expected
if same_type:
# check we have e.g. Timestamp instead of dt64
assert type(result) == type(expected)
def test_min(self, values_for_np_reduce, box_with_array):
box = box_with_array
values = values_for_np_reduce
same_type = True
if box is pd.Index and values.dtype.kind in ["i", "f"]:
# ATM Index casts to object, so we get python ints/floats
same_type = False
with tm.assert_produces_warning(None):
obj = box(values)
result = np.minimum.reduce(obj)
if box is pd.DataFrame:
expected = obj.min(numeric_only=False)
tm.assert_series_equal(result, expected)
else:
expected = values[0]
assert result == expected
if same_type:
# check we have e.g. Timestamp instead of dt64
assert type(result) == type(expected)
@pytest.mark.parametrize("type_", [list, deque, tuple])
def test_binary_ufunc_other_types(type_):
a = pd.Series([1, 2, 3], name="name")
b = type_([3, 4, 5])
result = np.add(a, b)
expected = pd.Series(np.add(a.to_numpy(), b), name="name")
tm.assert_series_equal(result, expected)
def test_object_dtype_ok():
class Thing:
def __init__(self, value) -> None:
self.value = value
def __add__(self, other):
other = getattr(other, "value", other)
return type(self)(self.value + other)
def __eq__(self, other) -> bool:
return type(other) is Thing and self.value == other.value
def __repr__(self) -> str:
return f"Thing({self.value})"
s = pd.Series([Thing(1), Thing(2)])
result = np.add(s, Thing(1))
expected = pd.Series([Thing(2), Thing(3)])
tm.assert_series_equal(result, expected)
def test_outer():
# https://github.com/pandas-dev/pandas/issues/27186
ser = pd.Series([1, 2, 3])
obj = np.array([1, 2, 3])
with pytest.raises(NotImplementedError, match=""):
np.subtract.outer(ser, obj)
def test_np_matmul():
# GH26650
df1 = pd.DataFrame(data=[[-1, 1, 10]])
df2 = pd.DataFrame(data=[-1, 1, 10])
expected = pd.DataFrame(data=[102])
result = np.matmul(df1, df2)
tm.assert_frame_equal(expected, result)
def test_array_ufuncs_for_many_arguments():
# GH39853
def add3(x, y, z):
return x + y + z
ufunc = np.frompyfunc(add3, 3, 1)
ser = pd.Series([1, 2])
result = ufunc(ser, ser, 1)
expected = pd.Series([3, 5], dtype=object)
tm.assert_series_equal(result, expected)
df = pd.DataFrame([[1, 2]])
msg = (
"Cannot apply ufunc <ufunc 'add3 (vectorized)'> "
"to mixed DataFrame and Series inputs."
)
with pytest.raises(NotImplementedError, match=re.escape(msg)):
ufunc(ser, ser, df)
# TODO(CoW) see https://github.com/pandas-dev/pandas/pull/51082
@td.skip_copy_on_write_not_yet_implemented
def test_np_fix():
# np.fix is not a ufunc but is composed of several ufunc calls under the hood
# with `out` and `where` keywords
ser = pd.Series([-1.5, -0.5, 0.5, 1.5])
result = np.fix(ser)
expected = pd.Series([-1.0, -0.0, 0.0, 1.0])
tm.assert_series_equal(result, expected)