You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
327 lines
11 KiB
327 lines
11 KiB
6 months ago
|
from itertools import chain
|
||
|
import operator
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.core.dtypes.common import is_number
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.tests.apply.common import (
|
||
|
frame_transform_kernels,
|
||
|
series_transform_kernels,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("func", ["sum", "mean", "min", "max", "std"])
|
||
|
@pytest.mark.parametrize(
|
||
|
"args,kwds",
|
||
|
[
|
||
|
pytest.param([], {}, id="no_args_or_kwds"),
|
||
|
pytest.param([1], {}, id="axis_from_args"),
|
||
|
pytest.param([], {"axis": 1}, id="axis_from_kwds"),
|
||
|
pytest.param([], {"numeric_only": True}, id="optional_kwds"),
|
||
|
pytest.param([1, True], {"numeric_only": True}, id="args_and_kwds"),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("how", ["agg", "apply"])
|
||
|
def test_apply_with_string_funcs(request, float_frame, func, args, kwds, how):
|
||
|
if len(args) > 1 and how == "agg":
|
||
|
request.applymarker(
|
||
|
pytest.mark.xfail(
|
||
|
raises=TypeError,
|
||
|
reason="agg/apply signature mismatch - agg passes 2nd "
|
||
|
"argument to func",
|
||
|
)
|
||
|
)
|
||
|
result = getattr(float_frame, how)(func, *args, **kwds)
|
||
|
expected = getattr(float_frame, func)(*args, **kwds)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("arg", ["sum", "mean", "min", "max", "std"])
|
||
|
def test_with_string_args(datetime_series, arg):
|
||
|
result = datetime_series.apply(arg)
|
||
|
expected = getattr(datetime_series, arg)()
|
||
|
assert result == expected
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("op", ["mean", "median", "std", "var"])
|
||
|
@pytest.mark.parametrize("how", ["agg", "apply"])
|
||
|
def test_apply_np_reducer(op, how):
|
||
|
# GH 39116
|
||
|
float_frame = DataFrame({"a": [1, 2], "b": [3, 4]})
|
||
|
result = getattr(float_frame, how)(op)
|
||
|
# pandas ddof defaults to 1, numpy to 0
|
||
|
kwargs = {"ddof": 1} if op in ("std", "var") else {}
|
||
|
expected = Series(
|
||
|
getattr(np, op)(float_frame, axis=0, **kwargs), index=float_frame.columns
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"op", ["abs", "ceil", "cos", "cumsum", "exp", "log", "sqrt", "square"]
|
||
|
)
|
||
|
@pytest.mark.parametrize("how", ["transform", "apply"])
|
||
|
def test_apply_np_transformer(float_frame, op, how):
|
||
|
# GH 39116
|
||
|
|
||
|
# float_frame will _usually_ have negative values, which will
|
||
|
# trigger the warning here, but let's put one in just to be sure
|
||
|
float_frame.iloc[0, 0] = -1.0
|
||
|
warn = None
|
||
|
if op in ["log", "sqrt"]:
|
||
|
warn = RuntimeWarning
|
||
|
|
||
|
with tm.assert_produces_warning(warn, check_stacklevel=False):
|
||
|
# float_frame fixture is defined in conftest.py, so we don't check the
|
||
|
# stacklevel as otherwise the test would fail.
|
||
|
result = getattr(float_frame, how)(op)
|
||
|
expected = getattr(np, op)(float_frame)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"series, func, expected",
|
||
|
chain(
|
||
|
tm.get_cython_table_params(
|
||
|
Series(dtype=np.float64),
|
||
|
[
|
||
|
("sum", 0),
|
||
|
("max", np.nan),
|
||
|
("min", np.nan),
|
||
|
("all", True),
|
||
|
("any", False),
|
||
|
("mean", np.nan),
|
||
|
("prod", 1),
|
||
|
("std", np.nan),
|
||
|
("var", np.nan),
|
||
|
("median", np.nan),
|
||
|
],
|
||
|
),
|
||
|
tm.get_cython_table_params(
|
||
|
Series([np.nan, 1, 2, 3]),
|
||
|
[
|
||
|
("sum", 6),
|
||
|
("max", 3),
|
||
|
("min", 1),
|
||
|
("all", True),
|
||
|
("any", True),
|
||
|
("mean", 2),
|
||
|
("prod", 6),
|
||
|
("std", 1),
|
||
|
("var", 1),
|
||
|
("median", 2),
|
||
|
],
|
||
|
),
|
||
|
tm.get_cython_table_params(
|
||
|
Series("a b c".split()),
|
||
|
[
|
||
|
("sum", "abc"),
|
||
|
("max", "c"),
|
||
|
("min", "a"),
|
||
|
("all", True),
|
||
|
("any", True),
|
||
|
],
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
def test_agg_cython_table_series(series, func, expected):
|
||
|
# GH21224
|
||
|
# test reducing functions in
|
||
|
# pandas.core.base.SelectionMixin._cython_table
|
||
|
warn = None if isinstance(func, str) else FutureWarning
|
||
|
with tm.assert_produces_warning(warn, match="is currently using Series.*"):
|
||
|
result = series.agg(func)
|
||
|
if is_number(expected):
|
||
|
assert np.isclose(result, expected, equal_nan=True)
|
||
|
else:
|
||
|
assert result == expected
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"series, func, expected",
|
||
|
chain(
|
||
|
tm.get_cython_table_params(
|
||
|
Series(dtype=np.float64),
|
||
|
[
|
||
|
("cumprod", Series([], dtype=np.float64)),
|
||
|
("cumsum", Series([], dtype=np.float64)),
|
||
|
],
|
||
|
),
|
||
|
tm.get_cython_table_params(
|
||
|
Series([np.nan, 1, 2, 3]),
|
||
|
[
|
||
|
("cumprod", Series([np.nan, 1, 2, 6])),
|
||
|
("cumsum", Series([np.nan, 1, 3, 6])),
|
||
|
],
|
||
|
),
|
||
|
tm.get_cython_table_params(
|
||
|
Series("a b c".split()), [("cumsum", Series(["a", "ab", "abc"]))]
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
def test_agg_cython_table_transform_series(series, func, expected):
|
||
|
# GH21224
|
||
|
# test transforming functions in
|
||
|
# pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
|
||
|
warn = None if isinstance(func, str) else FutureWarning
|
||
|
with tm.assert_produces_warning(warn, match="is currently using Series.*"):
|
||
|
result = series.agg(func)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df, func, expected",
|
||
|
chain(
|
||
|
tm.get_cython_table_params(
|
||
|
DataFrame(),
|
||
|
[
|
||
|
("sum", Series(dtype="float64")),
|
||
|
("max", Series(dtype="float64")),
|
||
|
("min", Series(dtype="float64")),
|
||
|
("all", Series(dtype=bool)),
|
||
|
("any", Series(dtype=bool)),
|
||
|
("mean", Series(dtype="float64")),
|
||
|
("prod", Series(dtype="float64")),
|
||
|
("std", Series(dtype="float64")),
|
||
|
("var", Series(dtype="float64")),
|
||
|
("median", Series(dtype="float64")),
|
||
|
],
|
||
|
),
|
||
|
tm.get_cython_table_params(
|
||
|
DataFrame([[np.nan, 1], [1, 2]]),
|
||
|
[
|
||
|
("sum", Series([1.0, 3])),
|
||
|
("max", Series([1.0, 2])),
|
||
|
("min", Series([1.0, 1])),
|
||
|
("all", Series([True, True])),
|
||
|
("any", Series([True, True])),
|
||
|
("mean", Series([1, 1.5])),
|
||
|
("prod", Series([1.0, 2])),
|
||
|
("std", Series([np.nan, 0.707107])),
|
||
|
("var", Series([np.nan, 0.5])),
|
||
|
("median", Series([1, 1.5])),
|
||
|
],
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
def test_agg_cython_table_frame(df, func, expected, axis):
|
||
|
# GH 21224
|
||
|
# test reducing functions in
|
||
|
# pandas.core.base.SelectionMixin._cython_table
|
||
|
warn = None if isinstance(func, str) else FutureWarning
|
||
|
with tm.assert_produces_warning(warn, match="is currently using DataFrame.*"):
|
||
|
# GH#53425
|
||
|
result = df.agg(func, axis=axis)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df, func, expected",
|
||
|
chain(
|
||
|
tm.get_cython_table_params(
|
||
|
DataFrame(), [("cumprod", DataFrame()), ("cumsum", DataFrame())]
|
||
|
),
|
||
|
tm.get_cython_table_params(
|
||
|
DataFrame([[np.nan, 1], [1, 2]]),
|
||
|
[
|
||
|
("cumprod", DataFrame([[np.nan, 1], [1, 2]])),
|
||
|
("cumsum", DataFrame([[np.nan, 1], [1, 3]])),
|
||
|
],
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
def test_agg_cython_table_transform_frame(df, func, expected, axis):
|
||
|
# GH 21224
|
||
|
# test transforming functions in
|
||
|
# pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
|
||
|
if axis in ("columns", 1):
|
||
|
# operating blockwise doesn't let us preserve dtypes
|
||
|
expected = expected.astype("float64")
|
||
|
|
||
|
warn = None if isinstance(func, str) else FutureWarning
|
||
|
with tm.assert_produces_warning(warn, match="is currently using DataFrame.*"):
|
||
|
# GH#53425
|
||
|
result = df.agg(func, axis=axis)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("op", series_transform_kernels)
|
||
|
def test_transform_groupby_kernel_series(request, string_series, op):
|
||
|
# GH 35964
|
||
|
if op == "ngroup":
|
||
|
request.applymarker(
|
||
|
pytest.mark.xfail(raises=ValueError, reason="ngroup not valid for NDFrame")
|
||
|
)
|
||
|
args = [0.0] if op == "fillna" else []
|
||
|
ones = np.ones(string_series.shape[0])
|
||
|
|
||
|
warn = FutureWarning if op == "fillna" else None
|
||
|
msg = "SeriesGroupBy.fillna is deprecated"
|
||
|
with tm.assert_produces_warning(warn, match=msg):
|
||
|
expected = string_series.groupby(ones).transform(op, *args)
|
||
|
result = string_series.transform(op, 0, *args)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("op", frame_transform_kernels)
|
||
|
def test_transform_groupby_kernel_frame(request, axis, float_frame, op):
|
||
|
if op == "ngroup":
|
||
|
request.applymarker(
|
||
|
pytest.mark.xfail(raises=ValueError, reason="ngroup not valid for NDFrame")
|
||
|
)
|
||
|
|
||
|
# GH 35964
|
||
|
|
||
|
args = [0.0] if op == "fillna" else []
|
||
|
if axis in (0, "index"):
|
||
|
ones = np.ones(float_frame.shape[0])
|
||
|
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
||
|
else:
|
||
|
ones = np.ones(float_frame.shape[1])
|
||
|
msg = "DataFrame.groupby with axis=1 is deprecated"
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
gb = float_frame.groupby(ones, axis=axis)
|
||
|
|
||
|
warn = FutureWarning if op == "fillna" else None
|
||
|
op_msg = "DataFrameGroupBy.fillna is deprecated"
|
||
|
with tm.assert_produces_warning(warn, match=op_msg):
|
||
|
expected = gb.transform(op, *args)
|
||
|
|
||
|
result = float_frame.transform(op, axis, *args)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
# same thing, but ensuring we have multiple blocks
|
||
|
assert "E" not in float_frame.columns
|
||
|
float_frame["E"] = float_frame["A"].copy()
|
||
|
assert len(float_frame._mgr.arrays) > 1
|
||
|
|
||
|
if axis in (0, "index"):
|
||
|
ones = np.ones(float_frame.shape[0])
|
||
|
else:
|
||
|
ones = np.ones(float_frame.shape[1])
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
gb2 = float_frame.groupby(ones, axis=axis)
|
||
|
warn = FutureWarning if op == "fillna" else None
|
||
|
op_msg = "DataFrameGroupBy.fillna is deprecated"
|
||
|
with tm.assert_produces_warning(warn, match=op_msg):
|
||
|
expected2 = gb2.transform(op, *args)
|
||
|
result2 = float_frame.transform(op, axis, *args)
|
||
|
tm.assert_frame_equal(result2, expected2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["abs", "shift", "pct_change", "cumsum", "rank"])
|
||
|
def test_transform_method_name(method):
|
||
|
# GH 19760
|
||
|
df = DataFrame({"A": [-1, 2]})
|
||
|
result = df.transform(method)
|
||
|
expected = operator.methodcaller(method)(df)
|
||
|
tm.assert_frame_equal(result, expected)
|