You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

385 lines
12 KiB

8 months ago
import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core import ops
from pandas.core.arrays import FloatingArray
# Basic test for the arithmetic array ops
# -----------------------------------------------------------------------------
@pytest.mark.parametrize(
"opname, exp",
[("add", [1, 3, None, None, 9]), ("mul", [0, 2, None, None, 20])],
ids=["add", "mul"],
)
def test_add_mul(dtype, opname, exp):
a = pd.array([0, 1, None, 3, 4], dtype=dtype)
b = pd.array([1, 2, 3, None, 5], dtype=dtype)
# array / array
expected = pd.array(exp, dtype=dtype)
op = getattr(operator, opname)
result = op(a, b)
tm.assert_extension_array_equal(result, expected)
op = getattr(ops, "r" + opname)
result = op(a, b)
tm.assert_extension_array_equal(result, expected)
def test_sub(dtype):
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
result = a - b
expected = pd.array([1, 1, None, None, 1], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
def test_div(dtype):
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
result = a / b
expected = pd.array([np.inf, 2, None, None, 1.25], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
def test_divide_by_zero(zero, negative):
# https://github.com/pandas-dev/pandas/issues/27398, GH#22793
a = pd.array([0, 1, -1, None], dtype="Int64")
result = a / zero
expected = FloatingArray(
np.array([np.nan, np.inf, -np.inf, 1], dtype="float64"),
np.array([False, False, False, True]),
)
if negative:
expected *= -1
tm.assert_extension_array_equal(result, expected)
def test_floordiv(dtype):
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
result = a // b
# Series op sets 1//0 to np.inf, which IntegerArray does not do (yet)
expected = pd.array([0, 2, None, None, 1], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
def test_floordiv_by_int_zero_no_mask(any_int_ea_dtype):
# GH 48223: Aligns with non-masked floordiv
# but differs from numpy
# https://github.com/pandas-dev/pandas/issues/30188#issuecomment-564452740
ser = pd.Series([0, 1], dtype=any_int_ea_dtype)
result = 1 // ser
expected = pd.Series([np.inf, 1.0], dtype="Float64")
tm.assert_series_equal(result, expected)
ser_non_nullable = ser.astype(ser.dtype.numpy_dtype)
result = 1 // ser_non_nullable
expected = expected.astype(np.float64)
tm.assert_series_equal(result, expected)
def test_mod(dtype):
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
result = a % b
expected = pd.array([0, 0, None, None, 1], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
def test_pow_scalar():
a = pd.array([-1, 0, 1, None, 2], dtype="Int64")
result = a**0
expected = pd.array([1, 1, 1, 1, 1], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
result = a**1
expected = pd.array([-1, 0, 1, None, 2], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
result = a**pd.NA
expected = pd.array([None, None, 1, None, None], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
result = a**np.nan
expected = FloatingArray(
np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64"),
np.array([False, False, False, True, False]),
)
tm.assert_extension_array_equal(result, expected)
# reversed
a = a[1:] # Can't raise integers to negative powers.
result = 0**a
expected = pd.array([1, 0, None, 0], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
result = 1**a
expected = pd.array([1, 1, 1, 1], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
result = pd.NA**a
expected = pd.array([1, None, None, None], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
result = np.nan**a
expected = FloatingArray(
np.array([1, np.nan, np.nan, np.nan], dtype="float64"),
np.array([False, False, True, False]),
)
tm.assert_extension_array_equal(result, expected)
def test_pow_array():
a = pd.array([0, 0, 0, 1, 1, 1, None, None, None])
b = pd.array([0, 1, None, 0, 1, None, 0, 1, None])
result = a**b
expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None])
tm.assert_extension_array_equal(result, expected)
def test_rpow_one_to_na():
# https://github.com/pandas-dev/pandas/issues/22022
# https://github.com/pandas-dev/pandas/issues/29997
arr = pd.array([np.nan, np.nan], dtype="Int64")
result = np.array([1.0, 2.0]) ** arr
expected = pd.array([1.0, np.nan], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("other", [0, 0.5])
def test_numpy_zero_dim_ndarray(other):
arr = pd.array([1, None, 2])
result = arr + np.array(other)
expected = arr + other
tm.assert_equal(result, expected)
# Test generic characteristics / errors
# -----------------------------------------------------------------------------
def test_error_invalid_values(data, all_arithmetic_operators, using_infer_string):
op = all_arithmetic_operators
s = pd.Series(data)
ops = getattr(s, op)
if using_infer_string:
import pyarrow as pa
errs = (TypeError, pa.lib.ArrowNotImplementedError, NotImplementedError)
else:
errs = TypeError
# invalid scalars
msg = "|".join(
[
r"can only perform ops with numeric values",
r"IntegerArray cannot perform the operation mod",
r"unsupported operand type",
r"can only concatenate str \(not \"int\"\) to str",
"not all arguments converted during string",
"ufunc '.*' not supported for the input types, and the inputs could not",
"ufunc '.*' did not contain a loop with signature matching types",
"Addition/subtraction of integers and integer-arrays with Timestamp",
"has no kernel",
"not implemented",
]
)
with pytest.raises(errs, match=msg):
ops("foo")
with pytest.raises(errs, match=msg):
ops(pd.Timestamp("20180101"))
# invalid array-likes
str_ser = pd.Series("foo", index=s.index)
# with pytest.raises(TypeError, match=msg):
if (
all_arithmetic_operators
in [
"__mul__",
"__rmul__",
]
and not using_infer_string
): # (data[~data.isna()] >= 0).all():
res = ops(str_ser)
expected = pd.Series(["foo" * x for x in data], index=s.index)
expected = expected.fillna(np.nan)
# TODO: doing this fillna to keep tests passing as we make
# assert_almost_equal stricter, but the expected with pd.NA seems
# more-correct than np.nan here.
tm.assert_series_equal(res, expected)
else:
with pytest.raises(errs, match=msg):
ops(str_ser)
msg = "|".join(
[
"can only perform ops with numeric values",
"cannot perform .* with this index type: DatetimeArray",
"Addition/subtraction of integers and integer-arrays "
"with DatetimeArray is no longer supported. *",
"unsupported operand type",
r"can only concatenate str \(not \"int\"\) to str",
"not all arguments converted during string",
"cannot subtract DatetimeArray from ndarray",
"has no kernel",
"not implemented",
]
)
with pytest.raises(errs, match=msg):
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
# Various
# -----------------------------------------------------------------------------
# TODO test unsigned overflow
def test_arith_coerce_scalar(data, all_arithmetic_operators):
op = tm.get_op_from_name(all_arithmetic_operators)
s = pd.Series(data)
other = 0.01
result = op(s, other)
expected = op(s.astype(float), other)
expected = expected.astype("Float64")
# rmod results in NaN that wasn't NA in original nullable Series -> unmask it
if all_arithmetic_operators == "__rmod__":
mask = (s == 0).fillna(False).to_numpy(bool)
expected.array._mask[mask] = False
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("other", [1.0, np.array(1.0)])
def test_arithmetic_conversion(all_arithmetic_operators, other):
# if we have a float operand we should have a float result
# if that is equal to an integer
op = tm.get_op_from_name(all_arithmetic_operators)
s = pd.Series([1, 2, 3], dtype="Int64")
result = op(s, other)
assert result.dtype == "Float64"
def test_cross_type_arithmetic():
df = pd.DataFrame(
{
"A": pd.Series([1, 2, np.nan], dtype="Int64"),
"B": pd.Series([1, np.nan, 3], dtype="UInt8"),
"C": [1, 2, 3],
}
)
result = df.A + df.C
expected = pd.Series([2, 4, np.nan], dtype="Int64")
tm.assert_series_equal(result, expected)
result = (df.A + df.C) * 3 == 12
expected = pd.Series([False, True, None], dtype="boolean")
tm.assert_series_equal(result, expected)
result = df.A + df.B
expected = pd.Series([2, np.nan, np.nan], dtype="Int64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("op", ["mean"])
def test_reduce_to_float(op):
# some reduce ops always return float, even if the result
# is a rounded number
df = pd.DataFrame(
{
"A": ["a", "b", "b"],
"B": [1, None, 3],
"C": pd.array([1, None, 3], dtype="Int64"),
}
)
# op
result = getattr(df.C, op)()
assert isinstance(result, float)
# groupby
result = getattr(df.groupby("A"), op)()
expected = pd.DataFrame(
{"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Float64")},
index=pd.Index(["a", "b"], name="A"),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"source, neg_target, abs_target",
[
([1, 2, 3], [-1, -2, -3], [1, 2, 3]),
([1, 2, None], [-1, -2, None], [1, 2, None]),
([-1, 0, 1], [1, 0, -1], [1, 0, 1]),
],
)
def test_unary_int_operators(any_signed_int_ea_dtype, source, neg_target, abs_target):
dtype = any_signed_int_ea_dtype
arr = pd.array(source, dtype=dtype)
neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
neg_target = pd.array(neg_target, dtype=dtype)
abs_target = pd.array(abs_target, dtype=dtype)
tm.assert_extension_array_equal(neg_result, neg_target)
tm.assert_extension_array_equal(pos_result, arr)
assert not tm.shares_memory(pos_result, arr)
tm.assert_extension_array_equal(abs_result, abs_target)
def test_values_multiplying_large_series_by_NA():
# GH#33701
result = pd.NA * pd.Series(np.zeros(10001))
expected = pd.Series([pd.NA] * 10001)
tm.assert_series_equal(result, expected)
def test_bitwise(dtype):
left = pd.array([1, None, 3, 4], dtype=dtype)
right = pd.array([None, 3, 5, 4], dtype=dtype)
result = left | right
expected = pd.array([None, None, 3 | 5, 4 | 4], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = left & right
expected = pd.array([None, None, 3 & 5, 4 & 4], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
result = left ^ right
expected = pd.array([None, None, 3 ^ 5, 4 ^ 4], dtype=dtype)
tm.assert_extension_array_equal(result, expected)
# TODO: desired behavior when operating with boolean? defer?
floats = right.astype("Float64")
with pytest.raises(TypeError, match="unsupported operand type"):
left | floats
with pytest.raises(TypeError, match="unsupported operand type"):
left & floats
with pytest.raises(TypeError, match="unsupported operand type"):
left ^ floats