You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
5.9 KiB

7 months ago
import sys
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas.compat import PYPY
from pandas.core.dtypes.common import (
is_dtype_equal,
is_object_dtype,
)
import pandas as pd
from pandas import (
Index,
Series,
)
import pandas._testing as tm
def test_isnull_notnull_docstrings():
# GH#41855 make sure its clear these are aliases
doc = pd.DataFrame.notnull.__doc__
assert doc.startswith("\nDataFrame.notnull is an alias for DataFrame.notna.\n")
doc = pd.DataFrame.isnull.__doc__
assert doc.startswith("\nDataFrame.isnull is an alias for DataFrame.isna.\n")
doc = Series.notnull.__doc__
assert doc.startswith("\nSeries.notnull is an alias for Series.notna.\n")
doc = Series.isnull.__doc__
assert doc.startswith("\nSeries.isnull is an alias for Series.isna.\n")
@pytest.mark.parametrize(
"op_name, op",
[
("add", "+"),
("sub", "-"),
("mul", "*"),
("mod", "%"),
("pow", "**"),
("truediv", "/"),
("floordiv", "//"),
],
)
def test_binary_ops_docstring(frame_or_series, op_name, op):
# not using the all_arithmetic_functions fixture with _get_opstr
# as _get_opstr is used internally in the dynamic implementation of the docstring
klass = frame_or_series
operand1 = klass.__name__.lower()
operand2 = "other"
expected_str = " ".join([operand1, op, operand2])
assert expected_str in getattr(klass, op_name).__doc__
# reverse version of the binary ops
expected_str = " ".join([operand2, op, operand1])
assert expected_str in getattr(klass, "r" + op_name).__doc__
def test_ndarray_compat_properties(index_or_series_obj):
obj = index_or_series_obj
# Check that we work.
for p in ["shape", "dtype", "T", "nbytes"]:
assert getattr(obj, p, None) is not None
# deprecated properties
for p in ["strides", "itemsize", "base", "data"]:
assert not hasattr(obj, p)
msg = "can only convert an array of size 1 to a Python scalar"
with pytest.raises(ValueError, match=msg):
obj.item() # len > 1
assert obj.ndim == 1
assert obj.size == len(obj)
assert Index([1]).item() == 1
assert Series([1]).item() == 1
@pytest.mark.skipif(
PYPY or using_pyarrow_string_dtype(),
reason="not relevant for PyPy doesn't work properly for arrow strings",
)
def test_memory_usage(index_or_series_memory_obj):
obj = index_or_series_memory_obj
# Clear index caches so that len(obj) == 0 report 0 memory usage
if isinstance(obj, Series):
is_ser = True
obj.index._engine.clear_mapping()
else:
is_ser = False
obj._engine.clear_mapping()
res = obj.memory_usage()
res_deep = obj.memory_usage(deep=True)
is_object = is_object_dtype(obj) or (is_ser and is_object_dtype(obj.index))
is_categorical = isinstance(obj.dtype, pd.CategoricalDtype) or (
is_ser and isinstance(obj.index.dtype, pd.CategoricalDtype)
)
is_object_string = is_dtype_equal(obj, "string[python]") or (
is_ser and is_dtype_equal(obj.index.dtype, "string[python]")
)
if len(obj) == 0:
expected = 0
assert res_deep == res == expected
elif is_object or is_categorical or is_object_string:
# only deep will pick them up
assert res_deep > res
else:
assert res == res_deep
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = res_deep - sys.getsizeof(obj)
assert abs(diff) < 100
def test_memory_usage_components_series(series_with_simple_index):
series = series_with_simple_index
total_usage = series.memory_usage(index=True)
non_index_usage = series.memory_usage(index=False)
index_usage = series.index.memory_usage()
assert total_usage == non_index_usage + index_usage
@pytest.mark.parametrize("dtype", tm.NARROW_NP_DTYPES)
def test_memory_usage_components_narrow_series(dtype):
series = Series(range(5), dtype=dtype, index=[f"i-{i}" for i in range(5)], name="a")
total_usage = series.memory_usage(index=True)
non_index_usage = series.memory_usage(index=False)
index_usage = series.index.memory_usage()
assert total_usage == non_index_usage + index_usage
def test_searchsorted(request, index_or_series_obj):
# numpy.searchsorted calls obj.searchsorted under the hood.
# See gh-12238
obj = index_or_series_obj
if isinstance(obj, pd.MultiIndex):
# See gh-14833
request.applymarker(
pytest.mark.xfail(
reason="np.searchsorted doesn't work on pd.MultiIndex: GH 14833"
)
)
elif obj.dtype.kind == "c" and isinstance(obj, Index):
# TODO: Should Series cases also raise? Looks like they use numpy
# comparison semantics https://github.com/numpy/numpy/issues/15981
mark = pytest.mark.xfail(reason="complex objects are not comparable")
request.applymarker(mark)
max_obj = max(obj, default=0)
index = np.searchsorted(obj, max_obj)
assert 0 <= index <= len(obj)
index = np.searchsorted(obj, max_obj, sorter=range(len(obj)))
assert 0 <= index <= len(obj)
def test_access_by_position(index_flat):
index = index_flat
if len(index) == 0:
pytest.skip("Test doesn't make sense on empty data")
series = Series(index)
assert index[0] == series.iloc[0]
assert index[5] == series.iloc[5]
assert index[-1] == series.iloc[-1]
size = len(index)
assert index[-1] == index[size - 1]
msg = f"index {size} is out of bounds for axis 0 with size {size}"
if is_dtype_equal(index.dtype, "string[pyarrow]") or is_dtype_equal(
index.dtype, "string[pyarrow_numpy]"
):
msg = "index out of bounds"
with pytest.raises(IndexError, match=msg):
index[size]
msg = "single positional indexer is out-of-bounds"
with pytest.raises(IndexError, match=msg):
series.iloc[size]