You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
5.9 KiB
192 lines
5.9 KiB
7 months ago
|
import sys
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._config import using_pyarrow_string_dtype
|
||
|
|
||
|
from pandas.compat import PYPY
|
||
|
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_dtype_equal,
|
||
|
is_object_dtype,
|
||
|
)
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
Index,
|
||
|
Series,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
def test_isnull_notnull_docstrings():
|
||
|
# GH#41855 make sure its clear these are aliases
|
||
|
doc = pd.DataFrame.notnull.__doc__
|
||
|
assert doc.startswith("\nDataFrame.notnull is an alias for DataFrame.notna.\n")
|
||
|
doc = pd.DataFrame.isnull.__doc__
|
||
|
assert doc.startswith("\nDataFrame.isnull is an alias for DataFrame.isna.\n")
|
||
|
|
||
|
doc = Series.notnull.__doc__
|
||
|
assert doc.startswith("\nSeries.notnull is an alias for Series.notna.\n")
|
||
|
doc = Series.isnull.__doc__
|
||
|
assert doc.startswith("\nSeries.isnull is an alias for Series.isna.\n")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"op_name, op",
|
||
|
[
|
||
|
("add", "+"),
|
||
|
("sub", "-"),
|
||
|
("mul", "*"),
|
||
|
("mod", "%"),
|
||
|
("pow", "**"),
|
||
|
("truediv", "/"),
|
||
|
("floordiv", "//"),
|
||
|
],
|
||
|
)
|
||
|
def test_binary_ops_docstring(frame_or_series, op_name, op):
|
||
|
# not using the all_arithmetic_functions fixture with _get_opstr
|
||
|
# as _get_opstr is used internally in the dynamic implementation of the docstring
|
||
|
klass = frame_or_series
|
||
|
|
||
|
operand1 = klass.__name__.lower()
|
||
|
operand2 = "other"
|
||
|
expected_str = " ".join([operand1, op, operand2])
|
||
|
assert expected_str in getattr(klass, op_name).__doc__
|
||
|
|
||
|
# reverse version of the binary ops
|
||
|
expected_str = " ".join([operand2, op, operand1])
|
||
|
assert expected_str in getattr(klass, "r" + op_name).__doc__
|
||
|
|
||
|
|
||
|
def test_ndarray_compat_properties(index_or_series_obj):
|
||
|
obj = index_or_series_obj
|
||
|
|
||
|
# Check that we work.
|
||
|
for p in ["shape", "dtype", "T", "nbytes"]:
|
||
|
assert getattr(obj, p, None) is not None
|
||
|
|
||
|
# deprecated properties
|
||
|
for p in ["strides", "itemsize", "base", "data"]:
|
||
|
assert not hasattr(obj, p)
|
||
|
|
||
|
msg = "can only convert an array of size 1 to a Python scalar"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
obj.item() # len > 1
|
||
|
|
||
|
assert obj.ndim == 1
|
||
|
assert obj.size == len(obj)
|
||
|
|
||
|
assert Index([1]).item() == 1
|
||
|
assert Series([1]).item() == 1
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
PYPY or using_pyarrow_string_dtype(),
|
||
|
reason="not relevant for PyPy doesn't work properly for arrow strings",
|
||
|
)
|
||
|
def test_memory_usage(index_or_series_memory_obj):
|
||
|
obj = index_or_series_memory_obj
|
||
|
# Clear index caches so that len(obj) == 0 report 0 memory usage
|
||
|
if isinstance(obj, Series):
|
||
|
is_ser = True
|
||
|
obj.index._engine.clear_mapping()
|
||
|
else:
|
||
|
is_ser = False
|
||
|
obj._engine.clear_mapping()
|
||
|
|
||
|
res = obj.memory_usage()
|
||
|
res_deep = obj.memory_usage(deep=True)
|
||
|
|
||
|
is_object = is_object_dtype(obj) or (is_ser and is_object_dtype(obj.index))
|
||
|
is_categorical = isinstance(obj.dtype, pd.CategoricalDtype) or (
|
||
|
is_ser and isinstance(obj.index.dtype, pd.CategoricalDtype)
|
||
|
)
|
||
|
is_object_string = is_dtype_equal(obj, "string[python]") or (
|
||
|
is_ser and is_dtype_equal(obj.index.dtype, "string[python]")
|
||
|
)
|
||
|
|
||
|
if len(obj) == 0:
|
||
|
expected = 0
|
||
|
assert res_deep == res == expected
|
||
|
elif is_object or is_categorical or is_object_string:
|
||
|
# only deep will pick them up
|
||
|
assert res_deep > res
|
||
|
else:
|
||
|
assert res == res_deep
|
||
|
|
||
|
# sys.getsizeof will call the .memory_usage with
|
||
|
# deep=True, and add on some GC overhead
|
||
|
diff = res_deep - sys.getsizeof(obj)
|
||
|
assert abs(diff) < 100
|
||
|
|
||
|
|
||
|
def test_memory_usage_components_series(series_with_simple_index):
|
||
|
series = series_with_simple_index
|
||
|
total_usage = series.memory_usage(index=True)
|
||
|
non_index_usage = series.memory_usage(index=False)
|
||
|
index_usage = series.index.memory_usage()
|
||
|
assert total_usage == non_index_usage + index_usage
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", tm.NARROW_NP_DTYPES)
|
||
|
def test_memory_usage_components_narrow_series(dtype):
|
||
|
series = Series(range(5), dtype=dtype, index=[f"i-{i}" for i in range(5)], name="a")
|
||
|
total_usage = series.memory_usage(index=True)
|
||
|
non_index_usage = series.memory_usage(index=False)
|
||
|
index_usage = series.index.memory_usage()
|
||
|
assert total_usage == non_index_usage + index_usage
|
||
|
|
||
|
|
||
|
def test_searchsorted(request, index_or_series_obj):
|
||
|
# numpy.searchsorted calls obj.searchsorted under the hood.
|
||
|
# See gh-12238
|
||
|
obj = index_or_series_obj
|
||
|
|
||
|
if isinstance(obj, pd.MultiIndex):
|
||
|
# See gh-14833
|
||
|
request.applymarker(
|
||
|
pytest.mark.xfail(
|
||
|
reason="np.searchsorted doesn't work on pd.MultiIndex: GH 14833"
|
||
|
)
|
||
|
)
|
||
|
elif obj.dtype.kind == "c" and isinstance(obj, Index):
|
||
|
# TODO: Should Series cases also raise? Looks like they use numpy
|
||
|
# comparison semantics https://github.com/numpy/numpy/issues/15981
|
||
|
mark = pytest.mark.xfail(reason="complex objects are not comparable")
|
||
|
request.applymarker(mark)
|
||
|
|
||
|
max_obj = max(obj, default=0)
|
||
|
index = np.searchsorted(obj, max_obj)
|
||
|
assert 0 <= index <= len(obj)
|
||
|
|
||
|
index = np.searchsorted(obj, max_obj, sorter=range(len(obj)))
|
||
|
assert 0 <= index <= len(obj)
|
||
|
|
||
|
|
||
|
def test_access_by_position(index_flat):
|
||
|
index = index_flat
|
||
|
|
||
|
if len(index) == 0:
|
||
|
pytest.skip("Test doesn't make sense on empty data")
|
||
|
|
||
|
series = Series(index)
|
||
|
assert index[0] == series.iloc[0]
|
||
|
assert index[5] == series.iloc[5]
|
||
|
assert index[-1] == series.iloc[-1]
|
||
|
|
||
|
size = len(index)
|
||
|
assert index[-1] == index[size - 1]
|
||
|
|
||
|
msg = f"index {size} is out of bounds for axis 0 with size {size}"
|
||
|
if is_dtype_equal(index.dtype, "string[pyarrow]") or is_dtype_equal(
|
||
|
index.dtype, "string[pyarrow_numpy]"
|
||
|
):
|
||
|
msg = "index out of bounds"
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
index[size]
|
||
|
msg = "single positional indexer is out-of-bounds"
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
series.iloc[size]
|