You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
5.8 KiB
189 lines
5.8 KiB
7 months ago
|
from __future__ import annotations
|
||
|
|
||
|
import datetime as dt
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
cast,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.dtypes import register_extension_dtype
|
||
|
|
||
|
from pandas.api.extensions import (
|
||
|
ExtensionArray,
|
||
|
ExtensionDtype,
|
||
|
)
|
||
|
from pandas.api.types import pandas_dtype
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from collections.abc import Sequence
|
||
|
|
||
|
from pandas._typing import (
|
||
|
Dtype,
|
||
|
PositionalIndexer,
|
||
|
)
|
||
|
|
||
|
|
||
|
@register_extension_dtype
|
||
|
class DateDtype(ExtensionDtype):
|
||
|
@property
|
||
|
def type(self):
|
||
|
return dt.date
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return "DateDtype"
|
||
|
|
||
|
@classmethod
|
||
|
def construct_from_string(cls, string: str):
|
||
|
if not isinstance(string, str):
|
||
|
raise TypeError(
|
||
|
f"'construct_from_string' expects a string, got {type(string)}"
|
||
|
)
|
||
|
|
||
|
if string == cls.__name__:
|
||
|
return cls()
|
||
|
else:
|
||
|
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
|
||
|
|
||
|
@classmethod
|
||
|
def construct_array_type(cls):
|
||
|
return DateArray
|
||
|
|
||
|
@property
|
||
|
def na_value(self):
|
||
|
return dt.date.min
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
return self.name
|
||
|
|
||
|
|
||
|
class DateArray(ExtensionArray):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dates: (
|
||
|
dt.date
|
||
|
| Sequence[dt.date]
|
||
|
| tuple[np.ndarray, np.ndarray, np.ndarray]
|
||
|
| np.ndarray
|
||
|
),
|
||
|
) -> None:
|
||
|
if isinstance(dates, dt.date):
|
||
|
self._year = np.array([dates.year])
|
||
|
self._month = np.array([dates.month])
|
||
|
self._day = np.array([dates.year])
|
||
|
return
|
||
|
|
||
|
ldates = len(dates)
|
||
|
if isinstance(dates, list):
|
||
|
# pre-allocate the arrays since we know the size before hand
|
||
|
self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999)
|
||
|
self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31)
|
||
|
self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12)
|
||
|
# populate them
|
||
|
for i, (y, m, d) in enumerate(
|
||
|
(date.year, date.month, date.day) for date in dates
|
||
|
):
|
||
|
self._year[i] = y
|
||
|
self._month[i] = m
|
||
|
self._day[i] = d
|
||
|
|
||
|
elif isinstance(dates, tuple):
|
||
|
# only support triples
|
||
|
if ldates != 3:
|
||
|
raise ValueError("only triples are valid")
|
||
|
# check if all elements have the same type
|
||
|
if any(not isinstance(x, np.ndarray) for x in dates):
|
||
|
raise TypeError("invalid type")
|
||
|
ly, lm, ld = (len(cast(np.ndarray, d)) for d in dates)
|
||
|
if not ly == lm == ld:
|
||
|
raise ValueError(
|
||
|
f"tuple members must have the same length: {(ly, lm, ld)}"
|
||
|
)
|
||
|
self._year = dates[0].astype(np.uint16)
|
||
|
self._month = dates[1].astype(np.uint8)
|
||
|
self._day = dates[2].astype(np.uint8)
|
||
|
|
||
|
elif isinstance(dates, np.ndarray) and dates.dtype == "U10":
|
||
|
self._year = np.zeros(ldates, dtype=np.uint16) # 65535 (0, 9999)
|
||
|
self._month = np.zeros(ldates, dtype=np.uint8) # 255 (1, 31)
|
||
|
self._day = np.zeros(ldates, dtype=np.uint8) # 255 (1, 12)
|
||
|
|
||
|
# error: "object_" object is not iterable
|
||
|
obj = np.char.split(dates, sep="-")
|
||
|
for (i,), (y, m, d) in np.ndenumerate(obj): # type: ignore[misc]
|
||
|
self._year[i] = int(y)
|
||
|
self._month[i] = int(m)
|
||
|
self._day[i] = int(d)
|
||
|
|
||
|
else:
|
||
|
raise TypeError(f"{type(dates)} is not supported")
|
||
|
|
||
|
@property
|
||
|
def dtype(self) -> ExtensionDtype:
|
||
|
return DateDtype()
|
||
|
|
||
|
def astype(self, dtype, copy=True):
|
||
|
dtype = pandas_dtype(dtype)
|
||
|
|
||
|
if isinstance(dtype, DateDtype):
|
||
|
data = self.copy() if copy else self
|
||
|
else:
|
||
|
data = self.to_numpy(dtype=dtype, copy=copy, na_value=dt.date.min)
|
||
|
|
||
|
return data
|
||
|
|
||
|
@property
|
||
|
def nbytes(self) -> int:
|
||
|
return self._year.nbytes + self._month.nbytes + self._day.nbytes
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self._year) # all 3 arrays are enforced to have the same length
|
||
|
|
||
|
def __getitem__(self, item: PositionalIndexer):
|
||
|
if isinstance(item, int):
|
||
|
return dt.date(self._year[item], self._month[item], self._day[item])
|
||
|
else:
|
||
|
raise NotImplementedError("only ints are supported as indexes")
|
||
|
|
||
|
def __setitem__(self, key: int | slice | np.ndarray, value: Any) -> None:
|
||
|
if not isinstance(key, int):
|
||
|
raise NotImplementedError("only ints are supported as indexes")
|
||
|
|
||
|
if not isinstance(value, dt.date):
|
||
|
raise TypeError("you can only set datetime.date types")
|
||
|
|
||
|
self._year[key] = value.year
|
||
|
self._month[key] = value.month
|
||
|
self._day[key] = value.day
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
return f"DateArray{list(zip(self._year, self._month, self._day))}"
|
||
|
|
||
|
def copy(self) -> DateArray:
|
||
|
return DateArray((self._year.copy(), self._month.copy(), self._day.copy()))
|
||
|
|
||
|
def isna(self) -> np.ndarray:
|
||
|
return np.logical_and(
|
||
|
np.logical_and(
|
||
|
self._year == dt.date.min.year, self._month == dt.date.min.month
|
||
|
),
|
||
|
self._day == dt.date.min.day,
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy=False):
|
||
|
if isinstance(scalars, dt.date):
|
||
|
raise TypeError
|
||
|
elif isinstance(scalars, DateArray):
|
||
|
if dtype is not None:
|
||
|
return scalars.astype(dtype, copy=copy)
|
||
|
if copy:
|
||
|
return scalars.copy()
|
||
|
return scalars[:]
|
||
|
elif isinstance(scalars, np.ndarray):
|
||
|
scalars = scalars.astype("U10") # 10 chars for yyyy-mm-dd
|
||
|
return DateArray(scalars)
|