You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

765 lines
27 KiB

6 months ago
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
CategoricalIndex,
DataFrame,
Index,
NaT,
Series,
date_range,
offsets,
)
import pandas._testing as tm
class TestDataFrameShift:
def test_shift_axis1_with_valid_fill_value_one_array(self):
# Case with axis=1 that does not go through the "len(arrays)>1" path
# in DataFrame.shift
data = np.random.default_rng(2).standard_normal((5, 3))
df = DataFrame(data)
res = df.shift(axis=1, periods=1, fill_value=12345)
expected = df.T.shift(periods=1, fill_value=12345).T
tm.assert_frame_equal(res, expected)
# same but with an 1D ExtensionArray backing it
df2 = df[[0]].astype("Float64")
res2 = df2.shift(axis=1, periods=1, fill_value=12345)
expected2 = DataFrame([12345] * 5, dtype="Float64")
tm.assert_frame_equal(res2, expected2)
def test_shift_deprecate_freq_and_fill_value(self, frame_or_series):
# Can't pass both!
obj = frame_or_series(
np.random.default_rng(2).standard_normal(5),
index=date_range("1/1/2000", periods=5, freq="h"),
)
msg = (
"Passing a 'freq' together with a 'fill_value' silently ignores the "
"fill_value"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
obj.shift(1, fill_value=1, freq="h")
if frame_or_series is DataFrame:
obj.columns = date_range("1/1/2000", periods=1, freq="h")
with tm.assert_produces_warning(FutureWarning, match=msg):
obj.shift(1, axis=1, fill_value=1, freq="h")
@pytest.mark.parametrize(
"input_data, output_data",
[(np.empty(shape=(0,)), []), (np.ones(shape=(2,)), [np.nan, 1.0])],
)
def test_shift_non_writable_array(self, input_data, output_data, frame_or_series):
# GH21049 Verify whether non writable numpy array is shiftable
input_data.setflags(write=False)
result = frame_or_series(input_data).shift(1)
if frame_or_series is not Series:
# need to explicitly specify columns in the empty case
expected = frame_or_series(
output_data,
index=range(len(output_data)),
columns=range(1),
dtype="float64",
)
else:
expected = frame_or_series(output_data, dtype="float64")
tm.assert_equal(result, expected)
def test_shift_mismatched_freq(self, frame_or_series):
ts = frame_or_series(
np.random.default_rng(2).standard_normal(5),
index=date_range("1/1/2000", periods=5, freq="h"),
)
result = ts.shift(1, freq="5min")
exp_index = ts.index.shift(1, freq="5min")
tm.assert_index_equal(result.index, exp_index)
# GH#1063, multiple of same base
result = ts.shift(1, freq="4h")
exp_index = ts.index + offsets.Hour(4)
tm.assert_index_equal(result.index, exp_index)
@pytest.mark.parametrize(
"obj",
[
Series([np.arange(5)]),
date_range("1/1/2011", periods=24, freq="h"),
Series(range(5), index=date_range("2017", periods=5)),
],
)
@pytest.mark.parametrize("shift_size", [0, 1, 2])
def test_shift_always_copy(self, obj, shift_size, frame_or_series):
# GH#22397
if frame_or_series is not Series:
obj = obj.to_frame()
assert obj.shift(shift_size) is not obj
def test_shift_object_non_scalar_fill(self):
# shift requires scalar fill_value except for object dtype
ser = Series(range(3))
with pytest.raises(ValueError, match="fill_value must be a scalar"):
ser.shift(1, fill_value=[])
df = ser.to_frame()
with pytest.raises(ValueError, match="fill_value must be a scalar"):
df.shift(1, fill_value=np.arange(3))
obj_ser = ser.astype(object)
result = obj_ser.shift(1, fill_value={})
assert result[0] == {}
obj_df = obj_ser.to_frame()
result = obj_df.shift(1, fill_value={})
assert result.iloc[0, 0] == {}
def test_shift_int(self, datetime_frame, frame_or_series):
ts = tm.get_obj(datetime_frame, frame_or_series).astype(int)
shifted = ts.shift(1)
expected = ts.astype(float).shift(1)
tm.assert_equal(shifted, expected)
@pytest.mark.parametrize("dtype", ["int32", "int64"])
def test_shift_32bit_take(self, frame_or_series, dtype):
# 32-bit taking
# GH#8129
index = date_range("2000-01-01", periods=5)
arr = np.arange(5, dtype=dtype)
s1 = frame_or_series(arr, index=index)
p = arr[1]
result = s1.shift(periods=p)
expected = frame_or_series([np.nan, 0, 1, 2, 3], index=index)
tm.assert_equal(result, expected)
@pytest.mark.parametrize("periods", [1, 2, 3, 4])
def test_shift_preserve_freqstr(self, periods, frame_or_series):
# GH#21275
obj = frame_or_series(
range(periods),
index=date_range("2016-1-1 00:00:00", periods=periods, freq="h"),
)
result = obj.shift(1, "2h")
expected = frame_or_series(
range(periods),
index=date_range("2016-1-1 02:00:00", periods=periods, freq="h"),
)
tm.assert_equal(result, expected)
def test_shift_dst(self, frame_or_series):
# GH#13926
dates = date_range("2016-11-06", freq="h", periods=10, tz="US/Eastern")
obj = frame_or_series(dates)
res = obj.shift(0)
tm.assert_equal(res, obj)
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
res = obj.shift(1)
exp_vals = [NaT] + dates.astype(object).values.tolist()[:9]
exp = frame_or_series(exp_vals)
tm.assert_equal(res, exp)
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
res = obj.shift(-2)
exp_vals = dates.astype(object).values.tolist()[2:] + [NaT, NaT]
exp = frame_or_series(exp_vals)
tm.assert_equal(res, exp)
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
@pytest.mark.parametrize("ex", [10, -10, 20, -20])
def test_shift_dst_beyond(self, frame_or_series, ex):
# GH#13926
dates = date_range("2016-11-06", freq="h", periods=10, tz="US/Eastern")
obj = frame_or_series(dates)
res = obj.shift(ex)
exp = frame_or_series([NaT] * 10, dtype="datetime64[ns, US/Eastern]")
tm.assert_equal(res, exp)
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
def test_shift_by_zero(self, datetime_frame, frame_or_series):
# shift by 0
obj = tm.get_obj(datetime_frame, frame_or_series)
unshifted = obj.shift(0)
tm.assert_equal(unshifted, obj)
def test_shift(self, datetime_frame):
# naive shift
ser = datetime_frame["A"]
shifted = datetime_frame.shift(5)
tm.assert_index_equal(shifted.index, datetime_frame.index)
shifted_ser = ser.shift(5)
tm.assert_series_equal(shifted["A"], shifted_ser)
shifted = datetime_frame.shift(-5)
tm.assert_index_equal(shifted.index, datetime_frame.index)
shifted_ser = ser.shift(-5)
tm.assert_series_equal(shifted["A"], shifted_ser)
unshifted = datetime_frame.shift(5).shift(-5)
tm.assert_numpy_array_equal(
unshifted.dropna().values, datetime_frame.values[:-5]
)
unshifted_ser = ser.shift(5).shift(-5)
tm.assert_numpy_array_equal(unshifted_ser.dropna().values, ser.values[:-5])
def test_shift_by_offset(self, datetime_frame, frame_or_series):
# shift by DateOffset
obj = tm.get_obj(datetime_frame, frame_or_series)
offset = offsets.BDay()
shifted = obj.shift(5, freq=offset)
assert len(shifted) == len(obj)
unshifted = shifted.shift(-5, freq=offset)
tm.assert_equal(unshifted, obj)
shifted2 = obj.shift(5, freq="B")
tm.assert_equal(shifted, shifted2)
unshifted = obj.shift(0, freq=offset)
tm.assert_equal(unshifted, obj)
d = obj.index[0]
shifted_d = d + offset * 5
if frame_or_series is DataFrame:
tm.assert_series_equal(obj.xs(d), shifted.xs(shifted_d), check_names=False)
else:
tm.assert_almost_equal(obj.at[d], shifted.at[shifted_d])
def test_shift_with_periodindex(self, frame_or_series):
# Shifting with PeriodIndex
ps = DataFrame(
np.arange(4, dtype=float), index=pd.period_range("2020-01-01", periods=4)
)
ps = tm.get_obj(ps, frame_or_series)
shifted = ps.shift(1)
unshifted = shifted.shift(-1)
tm.assert_index_equal(shifted.index, ps.index)
tm.assert_index_equal(unshifted.index, ps.index)
if frame_or_series is DataFrame:
tm.assert_numpy_array_equal(
unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values
)
else:
tm.assert_numpy_array_equal(unshifted.dropna().values, ps.values[:-1])
shifted2 = ps.shift(1, "D")
shifted3 = ps.shift(1, offsets.Day())
tm.assert_equal(shifted2, shifted3)
tm.assert_equal(ps, shifted2.shift(-1, "D"))
msg = "does not match PeriodIndex freq"
with pytest.raises(ValueError, match=msg):
ps.shift(freq="W")
# legacy support
shifted4 = ps.shift(1, freq="D")
tm.assert_equal(shifted2, shifted4)
shifted5 = ps.shift(1, freq=offsets.Day())
tm.assert_equal(shifted5, shifted4)
def test_shift_other_axis(self):
# shift other axis
# GH#6371
df = DataFrame(np.random.default_rng(2).random((10, 5)))
expected = pd.concat(
[DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]],
ignore_index=True,
axis=1,
)
result = df.shift(1, axis=1)
tm.assert_frame_equal(result, expected)
def test_shift_named_axis(self):
# shift named axis
df = DataFrame(np.random.default_rng(2).random((10, 5)))
expected = pd.concat(
[DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]],
ignore_index=True,
axis=1,
)
result = df.shift(1, axis="columns")
tm.assert_frame_equal(result, expected)
def test_shift_other_axis_with_freq(self, datetime_frame):
obj = datetime_frame.T
offset = offsets.BDay()
# GH#47039
shifted = obj.shift(5, freq=offset, axis=1)
assert len(shifted) == len(obj)
unshifted = shifted.shift(-5, freq=offset, axis=1)
tm.assert_equal(unshifted, obj)
def test_shift_bool(self):
df = DataFrame({"high": [True, False], "low": [False, False]})
rs = df.shift(1)
xp = DataFrame(
np.array([[np.nan, np.nan], [True, False]], dtype=object),
columns=["high", "low"],
)
tm.assert_frame_equal(rs, xp)
def test_shift_categorical1(self, frame_or_series):
# GH#9416
obj = frame_or_series(["a", "b", "c", "d"], dtype="category")
rt = obj.shift(1).shift(-1)
tm.assert_equal(obj.iloc[:-1], rt.dropna())
def get_cat_values(ndframe):
# For Series we could just do ._values; for DataFrame
# we may be able to do this if we ever have 2D Categoricals
return ndframe._mgr.arrays[0]
cat = get_cat_values(obj)
sp1 = obj.shift(1)
tm.assert_index_equal(obj.index, sp1.index)
assert np.all(get_cat_values(sp1).codes[:1] == -1)
assert np.all(cat.codes[:-1] == get_cat_values(sp1).codes[1:])
sn2 = obj.shift(-2)
tm.assert_index_equal(obj.index, sn2.index)
assert np.all(get_cat_values(sn2).codes[-2:] == -1)
assert np.all(cat.codes[2:] == get_cat_values(sn2).codes[:-2])
tm.assert_index_equal(cat.categories, get_cat_values(sp1).categories)
tm.assert_index_equal(cat.categories, get_cat_values(sn2).categories)
def test_shift_categorical(self):
# GH#9416
s1 = Series(["a", "b", "c"], dtype="category")
s2 = Series(["A", "B", "C"], dtype="category")
df = DataFrame({"one": s1, "two": s2})
rs = df.shift(1)
xp = DataFrame({"one": s1.shift(1), "two": s2.shift(1)})
tm.assert_frame_equal(rs, xp)
def test_shift_categorical_fill_value(self, frame_or_series):
ts = frame_or_series(["a", "b", "c", "d"], dtype="category")
res = ts.shift(1, fill_value="a")
expected = frame_or_series(
pd.Categorical(
["a", "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False
)
)
tm.assert_equal(res, expected)
# check for incorrect fill_value
msg = r"Cannot setitem on a Categorical with a new category \(f\)"
with pytest.raises(TypeError, match=msg):
ts.shift(1, fill_value="f")
def test_shift_fill_value(self, frame_or_series):
# GH#24128
dti = date_range("1/1/2000", periods=5, freq="h")
ts = frame_or_series([1.0, 2.0, 3.0, 4.0, 5.0], index=dti)
exp = frame_or_series([0.0, 1.0, 2.0, 3.0, 4.0], index=dti)
# check that fill value works
result = ts.shift(1, fill_value=0.0)
tm.assert_equal(result, exp)
exp = frame_or_series([0.0, 0.0, 1.0, 2.0, 3.0], index=dti)
result = ts.shift(2, fill_value=0.0)
tm.assert_equal(result, exp)
ts = frame_or_series([1, 2, 3])
res = ts.shift(2, fill_value=0)
assert tm.get_dtype(res) == tm.get_dtype(ts)
# retain integer dtype
obj = frame_or_series([1, 2, 3, 4, 5], index=dti)
exp = frame_or_series([0, 1, 2, 3, 4], index=dti)
result = obj.shift(1, fill_value=0)
tm.assert_equal(result, exp)
exp = frame_or_series([0, 0, 1, 2, 3], index=dti)
result = obj.shift(2, fill_value=0)
tm.assert_equal(result, exp)
def test_shift_empty(self):
# Regression test for GH#8019
df = DataFrame({"foo": []})
rs = df.shift(-1)
tm.assert_frame_equal(df, rs)
def test_shift_duplicate_columns(self):
# GH#9092; verify that position-based shifting works
# in the presence of duplicate columns
column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]]
data = np.random.default_rng(2).standard_normal((20, 5))
shifted = []
for columns in column_lists:
df = DataFrame(data.copy(), columns=columns)
for s in range(5):
df.iloc[:, s] = df.iloc[:, s].shift(s + 1)
df.columns = range(5)
shifted.append(df)
# sanity check the base case
nulls = shifted[0].isna().sum()
tm.assert_series_equal(nulls, Series(range(1, 6), dtype="int64"))
# check all answers are the same
tm.assert_frame_equal(shifted[0], shifted[1])
tm.assert_frame_equal(shifted[0], shifted[2])
def test_shift_axis1_multiple_blocks(self, using_array_manager):
# GH#35488
df1 = DataFrame(np.random.default_rng(2).integers(1000, size=(5, 3)))
df2 = DataFrame(np.random.default_rng(2).integers(1000, size=(5, 2)))
df3 = pd.concat([df1, df2], axis=1)
if not using_array_manager:
assert len(df3._mgr.blocks) == 2
result = df3.shift(2, axis=1)
expected = df3.take([-1, -1, 0, 1, 2], axis=1)
# Explicit cast to float to avoid implicit cast when setting nan.
# Column names aren't unique, so directly calling `expected.astype` won't work.
expected = expected.pipe(
lambda df: df.set_axis(range(df.shape[1]), axis=1)
.astype({0: "float", 1: "float"})
.set_axis(df.columns, axis=1)
)
expected.iloc[:, :2] = np.nan
expected.columns = df3.columns
tm.assert_frame_equal(result, expected)
# Case with periods < 0
# rebuild df3 because `take` call above consolidated
df3 = pd.concat([df1, df2], axis=1)
if not using_array_manager:
assert len(df3._mgr.blocks) == 2
result = df3.shift(-2, axis=1)
expected = df3.take([2, 3, 4, -1, -1], axis=1)
# Explicit cast to float to avoid implicit cast when setting nan.
# Column names aren't unique, so directly calling `expected.astype` won't work.
expected = expected.pipe(
lambda df: df.set_axis(range(df.shape[1]), axis=1)
.astype({3: "float", 4: "float"})
.set_axis(df.columns, axis=1)
)
expected.iloc[:, -2:] = np.nan
expected.columns = df3.columns
tm.assert_frame_equal(result, expected)
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) axis=1 support
def test_shift_axis1_multiple_blocks_with_int_fill(self):
# GH#42719
rng = np.random.default_rng(2)
df1 = DataFrame(rng.integers(1000, size=(5, 3), dtype=int))
df2 = DataFrame(rng.integers(1000, size=(5, 2), dtype=int))
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
result = df3.shift(2, axis=1, fill_value=np.int_(0))
assert len(df3._mgr.blocks) == 2
expected = df3.take([-1, -1, 0, 1], axis=1)
expected.iloc[:, :2] = np.int_(0)
expected.columns = df3.columns
tm.assert_frame_equal(result, expected)
# Case with periods < 0
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
result = df3.shift(-2, axis=1, fill_value=np.int_(0))
assert len(df3._mgr.blocks) == 2
expected = df3.take([2, 3, -1, -1], axis=1)
expected.iloc[:, -2:] = np.int_(0)
expected.columns = df3.columns
tm.assert_frame_equal(result, expected)
def test_period_index_frame_shift_with_freq(self, frame_or_series):
ps = DataFrame(range(4), index=pd.period_range("2020-01-01", periods=4))
ps = tm.get_obj(ps, frame_or_series)
shifted = ps.shift(1, freq="infer")
unshifted = shifted.shift(-1, freq="infer")
tm.assert_equal(unshifted, ps)
shifted2 = ps.shift(freq="D")
tm.assert_equal(shifted, shifted2)
shifted3 = ps.shift(freq=offsets.Day())
tm.assert_equal(shifted, shifted3)
def test_datetime_frame_shift_with_freq(self, datetime_frame, frame_or_series):
dtobj = tm.get_obj(datetime_frame, frame_or_series)
shifted = dtobj.shift(1, freq="infer")
unshifted = shifted.shift(-1, freq="infer")
tm.assert_equal(dtobj, unshifted)
shifted2 = dtobj.shift(freq=dtobj.index.freq)
tm.assert_equal(shifted, shifted2)
inferred_ts = DataFrame(
datetime_frame.values,
Index(np.asarray(datetime_frame.index)),
columns=datetime_frame.columns,
)
inferred_ts = tm.get_obj(inferred_ts, frame_or_series)
shifted = inferred_ts.shift(1, freq="infer")
expected = dtobj.shift(1, freq="infer")
expected.index = expected.index._with_freq(None)
tm.assert_equal(shifted, expected)
unshifted = shifted.shift(-1, freq="infer")
tm.assert_equal(unshifted, inferred_ts)
def test_period_index_frame_shift_with_freq_error(self, frame_or_series):
ps = DataFrame(range(4), index=pd.period_range("2020-01-01", periods=4))
ps = tm.get_obj(ps, frame_or_series)
msg = "Given freq M does not match PeriodIndex freq D"
with pytest.raises(ValueError, match=msg):
ps.shift(freq="M")
def test_datetime_frame_shift_with_freq_error(
self, datetime_frame, frame_or_series
):
dtobj = tm.get_obj(datetime_frame, frame_or_series)
no_freq = dtobj.iloc[[0, 5, 7]]
msg = "Freq was not set in the index hence cannot be inferred"
with pytest.raises(ValueError, match=msg):
no_freq.shift(freq="infer")
def test_shift_dt64values_int_fill_deprecated(self):
# GH#31971
ser = Series([pd.Timestamp("2020-01-01"), pd.Timestamp("2020-01-02")])
with pytest.raises(TypeError, match="value should be a"):
ser.shift(1, fill_value=0)
df = ser.to_frame()
with pytest.raises(TypeError, match="value should be a"):
df.shift(1, fill_value=0)
# axis = 1
df2 = DataFrame({"A": ser, "B": ser})
df2._consolidate_inplace()
result = df2.shift(1, axis=1, fill_value=0)
expected = DataFrame({"A": [0, 0], "B": df2["A"]})
tm.assert_frame_equal(result, expected)
# same thing but not consolidated; pre-2.0 we got different behavior
df3 = DataFrame({"A": ser})
df3["B"] = ser
assert len(df3._mgr.arrays) == 2
result = df3.shift(1, axis=1, fill_value=0)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"as_cat",
[
pytest.param(
True,
marks=pytest.mark.xfail(
reason="_can_hold_element incorrectly always returns True"
),
),
False,
],
)
@pytest.mark.parametrize(
"vals",
[
date_range("2020-01-01", periods=2),
date_range("2020-01-01", periods=2, tz="US/Pacific"),
pd.period_range("2020-01-01", periods=2, freq="D"),
pd.timedelta_range("2020 Days", periods=2, freq="D"),
pd.interval_range(0, 3, periods=2),
pytest.param(
pd.array([1, 2], dtype="Int64"),
marks=pytest.mark.xfail(
reason="_can_hold_element incorrectly always returns True"
),
),
pytest.param(
pd.array([1, 2], dtype="Float32"),
marks=pytest.mark.xfail(
reason="_can_hold_element incorrectly always returns True"
),
),
],
ids=lambda x: str(x.dtype),
)
def test_shift_dt64values_axis1_invalid_fill(self, vals, as_cat):
# GH#44564
ser = Series(vals)
if as_cat:
ser = ser.astype("category")
df = DataFrame({"A": ser})
result = df.shift(-1, axis=1, fill_value="foo")
expected = DataFrame({"A": ["foo", "foo"]})
tm.assert_frame_equal(result, expected)
# same thing but multiple blocks
df2 = DataFrame({"A": ser, "B": ser})
df2._consolidate_inplace()
result = df2.shift(-1, axis=1, fill_value="foo")
expected = DataFrame({"A": df2["B"], "B": ["foo", "foo"]})
tm.assert_frame_equal(result, expected)
# same thing but not consolidated
df3 = DataFrame({"A": ser})
df3["B"] = ser
assert len(df3._mgr.arrays) == 2
result = df3.shift(-1, axis=1, fill_value="foo")
tm.assert_frame_equal(result, expected)
def test_shift_axis1_categorical_columns(self):
# GH#38434
ci = CategoricalIndex(["a", "b", "c"])
df = DataFrame(
{"a": [1, 3], "b": [2, 4], "c": [5, 6]}, index=ci[:-1], columns=ci
)
result = df.shift(axis=1)
expected = DataFrame(
{"a": [np.nan, np.nan], "b": [1, 3], "c": [2, 4]}, index=ci[:-1], columns=ci
)
tm.assert_frame_equal(result, expected)
# periods != 1
result = df.shift(2, axis=1)
expected = DataFrame(
{"a": [np.nan, np.nan], "b": [np.nan, np.nan], "c": [1, 3]},
index=ci[:-1],
columns=ci,
)
tm.assert_frame_equal(result, expected)
def test_shift_axis1_many_periods(self):
# GH#44978 periods > len(columns)
df = DataFrame(np.random.default_rng(2).random((5, 3)))
shifted = df.shift(6, axis=1, fill_value=None)
expected = df * np.nan
tm.assert_frame_equal(shifted, expected)
shifted2 = df.shift(-6, axis=1, fill_value=None)
tm.assert_frame_equal(shifted2, expected)
def test_shift_with_offsets_freq(self):
df = DataFrame({"x": [1, 2, 3]}, index=date_range("2000", periods=3))
shifted = df.shift(freq="1MS")
expected = DataFrame(
{"x": [1, 2, 3]},
index=date_range(start="02/01/2000", end="02/01/2000", periods=3),
)
tm.assert_frame_equal(shifted, expected)
def test_shift_with_iterable_basic_functionality(self):
# GH#44424
data = {"a": [1, 2, 3], "b": [4, 5, 6]}
shifts = [0, 1, 2]
df = DataFrame(data)
shifted = df.shift(shifts)
expected = DataFrame(
{
"a_0": [1, 2, 3],
"b_0": [4, 5, 6],
"a_1": [np.nan, 1.0, 2.0],
"b_1": [np.nan, 4.0, 5.0],
"a_2": [np.nan, np.nan, 1.0],
"b_2": [np.nan, np.nan, 4.0],
}
)
tm.assert_frame_equal(expected, shifted)
def test_shift_with_iterable_series(self):
# GH#44424
data = {"a": [1, 2, 3]}
shifts = [0, 1, 2]
df = DataFrame(data)
s = df["a"]
tm.assert_frame_equal(s.shift(shifts), df.shift(shifts))
def test_shift_with_iterable_freq_and_fill_value(self):
# GH#44424
df = DataFrame(
np.random.default_rng(2).standard_normal(5),
index=date_range("1/1/2000", periods=5, freq="h"),
)
tm.assert_frame_equal(
# rename because shift with an iterable leads to str column names
df.shift([1], fill_value=1).rename(columns=lambda x: int(x[0])),
df.shift(1, fill_value=1),
)
tm.assert_frame_equal(
df.shift([1], freq="h").rename(columns=lambda x: int(x[0])),
df.shift(1, freq="h"),
)
msg = (
"Passing a 'freq' together with a 'fill_value' silently ignores the "
"fill_value"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
df.shift([1, 2], fill_value=1, freq="h")
def test_shift_with_iterable_check_other_arguments(self):
# GH#44424
data = {"a": [1, 2], "b": [4, 5]}
shifts = [0, 1]
df = DataFrame(data)
# test suffix
shifted = df[["a"]].shift(shifts, suffix="_suffix")
expected = DataFrame({"a_suffix_0": [1, 2], "a_suffix_1": [np.nan, 1.0]})
tm.assert_frame_equal(shifted, expected)
# check bad inputs when doing multiple shifts
msg = "If `periods` contains multiple shifts, `axis` cannot be 1."
with pytest.raises(ValueError, match=msg):
df.shift(shifts, axis=1)
msg = "Periods must be integer, but s is <class 'str'>."
with pytest.raises(TypeError, match=msg):
df.shift(["s"])
msg = "If `periods` is an iterable, it cannot be empty."
with pytest.raises(ValueError, match=msg):
df.shift([])
msg = "Cannot specify `suffix` if `periods` is an int."
with pytest.raises(ValueError, match=msg):
df.shift(1, suffix="fails")
def test_shift_axis_one_empty(self):
# GH#57301
df = DataFrame()
result = df.shift(1, axis=1)
tm.assert_frame_equal(result, df)