You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3330 lines
120 KiB

6 months ago
import array
from collections import (
OrderedDict,
abc,
defaultdict,
namedtuple,
)
from collections.abc import Iterator
from dataclasses import make_dataclass
from datetime import (
date,
datetime,
timedelta,
)
import functools
import re
import numpy as np
from numpy import ma
from numpy.ma import mrecords
import pytest
import pytz
from pandas._config import using_pyarrow_string_dtype
from pandas._libs import lib
from pandas.errors import IntCastingNaNError
import pandas.util._test_decorators as td
from pandas.core.dtypes.common import is_integer_dtype
from pandas.core.dtypes.dtypes import (
DatetimeTZDtype,
IntervalDtype,
NumpyEADtype,
PeriodDtype,
)
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
DatetimeIndex,
Index,
Interval,
MultiIndex,
Period,
RangeIndex,
Series,
Timedelta,
Timestamp,
cut,
date_range,
isna,
)
import pandas._testing as tm
from pandas.arrays import (
DatetimeArray,
IntervalArray,
PeriodArray,
SparseArray,
TimedeltaArray,
)
MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"]
MIXED_INT_DTYPES = [
"uint8",
"uint16",
"uint32",
"uint64",
"int8",
"int16",
"int32",
"int64",
]
class TestDataFrameConstructors:
def test_constructor_from_ndarray_with_str_dtype(self):
# If we don't ravel/reshape around ensure_str_array, we end up
# with an array of strings each of which is e.g. "[0 1 2]"
arr = np.arange(12).reshape(4, 3)
df = DataFrame(arr, dtype=str)
expected = DataFrame(arr.astype(str), dtype=object)
tm.assert_frame_equal(df, expected)
def test_constructor_from_2d_datetimearray(self, using_array_manager):
dti = date_range("2016-01-01", periods=6, tz="US/Pacific")
dta = dti._data.reshape(3, 2)
df = DataFrame(dta)
expected = DataFrame({0: dta[:, 0], 1: dta[:, 1]})
tm.assert_frame_equal(df, expected)
if not using_array_manager:
# GH#44724 big performance hit if we de-consolidate
assert len(df._mgr.blocks) == 1
def test_constructor_dict_with_tzaware_scalar(self):
# GH#42505
dt = Timestamp("2019-11-03 01:00:00-0700").tz_convert("America/Los_Angeles")
dt = dt.as_unit("ns")
df = DataFrame({"dt": dt}, index=[0])
expected = DataFrame({"dt": [dt]})
tm.assert_frame_equal(df, expected)
# Non-homogeneous
df = DataFrame({"dt": dt, "value": [1]})
expected = DataFrame({"dt": [dt], "value": [1]})
tm.assert_frame_equal(df, expected)
def test_construct_ndarray_with_nas_and_int_dtype(self):
# GH#26919 match Series by not casting np.nan to meaningless int
arr = np.array([[1, np.nan], [2, 3]])
msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
with pytest.raises(IntCastingNaNError, match=msg):
DataFrame(arr, dtype="i8")
# check this matches Series behavior
with pytest.raises(IntCastingNaNError, match=msg):
Series(arr[0], dtype="i8", name=0)
def test_construct_from_list_of_datetimes(self):
df = DataFrame([datetime.now(), datetime.now()])
assert df[0].dtype == np.dtype("M8[ns]")
def test_constructor_from_tzaware_datetimeindex(self):
# don't cast a DatetimeIndex WITH a tz, leave as object
# GH#6032
naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
idx = naive.tz_localize("US/Pacific")
expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
assert expected.dtype == idx.dtype
# convert index to series
result = Series(idx)
tm.assert_series_equal(result, expected)
def test_columns_with_leading_underscore_work_with_to_dict(self):
col_underscore = "_b"
df = DataFrame({"a": [1, 2], col_underscore: [3, 4]})
d = df.to_dict(orient="records")
ref_d = [{"a": 1, col_underscore: 3}, {"a": 2, col_underscore: 4}]
assert ref_d == d
def test_columns_with_leading_number_and_underscore_work_with_to_dict(self):
col_with_num = "1_b"
df = DataFrame({"a": [1, 2], col_with_num: [3, 4]})
d = df.to_dict(orient="records")
ref_d = [{"a": 1, col_with_num: 3}, {"a": 2, col_with_num: 4}]
assert ref_d == d
def test_array_of_dt64_nat_with_td64dtype_raises(self, frame_or_series):
# GH#39462
nat = np.datetime64("NaT", "ns")
arr = np.array([nat], dtype=object)
if frame_or_series is DataFrame:
arr = arr.reshape(1, 1)
msg = "Invalid type for timedelta scalar: <class 'numpy.datetime64'>"
with pytest.raises(TypeError, match=msg):
frame_or_series(arr, dtype="m8[ns]")
@pytest.mark.parametrize("kind", ["m", "M"])
def test_datetimelike_values_with_object_dtype(self, kind, frame_or_series):
# with dtype=object, we should cast dt64 values to Timestamps, not pydatetimes
if kind == "M":
dtype = "M8[ns]"
scalar_type = Timestamp
else:
dtype = "m8[ns]"
scalar_type = Timedelta
arr = np.arange(6, dtype="i8").view(dtype).reshape(3, 2)
if frame_or_series is Series:
arr = arr[:, 0]
obj = frame_or_series(arr, dtype=object)
assert obj._mgr.arrays[0].dtype == object
assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
# go through a different path in internals.construction
obj = frame_or_series(frame_or_series(arr), dtype=object)
assert obj._mgr.arrays[0].dtype == object
assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
obj = frame_or_series(frame_or_series(arr), dtype=NumpyEADtype(object))
assert obj._mgr.arrays[0].dtype == object
assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
if frame_or_series is DataFrame:
# other paths through internals.construction
sers = [Series(x) for x in arr]
obj = frame_or_series(sers, dtype=object)
assert obj._mgr.arrays[0].dtype == object
assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type)
def test_series_with_name_not_matching_column(self):
# GH#9232
x = Series(range(5), name=1)
y = Series(range(5), name=0)
result = DataFrame(x, columns=[0])
expected = DataFrame([], columns=[0])
tm.assert_frame_equal(result, expected)
result = DataFrame(y, columns=[1])
expected = DataFrame([], columns=[1])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"constructor",
[
lambda: DataFrame(),
lambda: DataFrame(None),
lambda: DataFrame(()),
lambda: DataFrame([]),
lambda: DataFrame(_ for _ in []),
lambda: DataFrame(range(0)),
lambda: DataFrame(data=None),
lambda: DataFrame(data=()),
lambda: DataFrame(data=[]),
lambda: DataFrame(data=(_ for _ in [])),
lambda: DataFrame(data=range(0)),
],
)
def test_empty_constructor(self, constructor):
expected = DataFrame()
result = constructor()
assert len(result.index) == 0
assert len(result.columns) == 0
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"constructor",
[
lambda: DataFrame({}),
lambda: DataFrame(data={}),
],
)
def test_empty_constructor_object_index(self, constructor):
expected = DataFrame(index=RangeIndex(0), columns=RangeIndex(0))
result = constructor()
assert len(result.index) == 0
assert len(result.columns) == 0
tm.assert_frame_equal(result, expected, check_index_type=True)
@pytest.mark.parametrize(
"emptylike,expected_index,expected_columns",
[
([[]], RangeIndex(1), RangeIndex(0)),
([[], []], RangeIndex(2), RangeIndex(0)),
([(_ for _ in [])], RangeIndex(1), RangeIndex(0)),
],
)
def test_emptylike_constructor(self, emptylike, expected_index, expected_columns):
expected = DataFrame(index=expected_index, columns=expected_columns)
result = DataFrame(emptylike)
tm.assert_frame_equal(result, expected)
def test_constructor_mixed(self, float_string_frame, using_infer_string):
dtype = "string" if using_infer_string else np.object_
assert float_string_frame["foo"].dtype == dtype
def test_constructor_cast_failure(self):
# as of 2.0, we raise if we can't respect "dtype", previously we
# silently ignored
msg = "could not convert string to float"
with pytest.raises(ValueError, match=msg):
DataFrame({"a": ["a", "b", "c"]}, dtype=np.float64)
# GH 3010, constructing with odd arrays
df = DataFrame(np.ones((4, 2)))
# this is ok
df["foo"] = np.ones((4, 2)).tolist()
# this is not ok
msg = "Expected a 1D array, got an array with shape \\(4, 2\\)"
with pytest.raises(ValueError, match=msg):
df["test"] = np.ones((4, 2))
# this is ok
df["foo2"] = np.ones((4, 2)).tolist()
def test_constructor_dtype_copy(self):
orig_df = DataFrame({"col1": [1.0], "col2": [2.0], "col3": [3.0]})
new_df = DataFrame(orig_df, dtype=float, copy=True)
new_df["col1"] = 200.0
assert orig_df["col1"][0] == 1.0
def test_constructor_dtype_nocast_view_dataframe(
self, using_copy_on_write, warn_copy_on_write
):
df = DataFrame([[1, 2]])
should_be_view = DataFrame(df, dtype=df[0].dtype)
if using_copy_on_write:
should_be_view.iloc[0, 0] = 99
assert df.values[0, 0] == 1
else:
with tm.assert_cow_warning(warn_copy_on_write):
should_be_view.iloc[0, 0] = 99
assert df.values[0, 0] == 99
def test_constructor_dtype_nocast_view_2d_array(
self, using_array_manager, using_copy_on_write, warn_copy_on_write
):
df = DataFrame([[1, 2], [3, 4]], dtype="int64")
if not using_array_manager and not using_copy_on_write:
should_be_view = DataFrame(df.values, dtype=df[0].dtype)
# TODO(CoW-warn) this should warn
# with tm.assert_cow_warning(warn_copy_on_write):
should_be_view.iloc[0, 0] = 97
assert df.values[0, 0] == 97
else:
# INFO(ArrayManager) DataFrame(ndarray) doesn't necessarily preserve
# a view on the array to ensure contiguous 1D arrays
df2 = DataFrame(df.values, dtype=df[0].dtype)
assert df2._mgr.arrays[0].flags.c_contiguous
@td.skip_array_manager_invalid_test
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="conversion copies")
def test_1d_object_array_does_not_copy(self):
# https://github.com/pandas-dev/pandas/issues/39272
arr = np.array(["a", "b"], dtype="object")
df = DataFrame(arr, copy=False)
assert np.shares_memory(df.values, arr)
@td.skip_array_manager_invalid_test
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="conversion copies")
def test_2d_object_array_does_not_copy(self):
# https://github.com/pandas-dev/pandas/issues/39272
arr = np.array([["a", "b"], ["c", "d"]], dtype="object")
df = DataFrame(arr, copy=False)
assert np.shares_memory(df.values, arr)
def test_constructor_dtype_list_data(self):
df = DataFrame([[1, "2"], [None, "a"]], dtype=object)
assert df.loc[1, 0] is None
assert df.loc[0, 1] == "2"
def test_constructor_list_of_2d_raises(self):
# https://github.com/pandas-dev/pandas/issues/32289
a = DataFrame()
b = np.empty((0, 0))
with pytest.raises(ValueError, match=r"shape=\(1, 0, 0\)"):
DataFrame([a])
with pytest.raises(ValueError, match=r"shape=\(1, 0, 0\)"):
DataFrame([b])
a = DataFrame({"A": [1, 2]})
with pytest.raises(ValueError, match=r"shape=\(2, 2, 1\)"):
DataFrame([a, a])
@pytest.mark.parametrize(
"typ, ad",
[
# mixed floating and integer coexist in the same frame
["float", {}],
# add lots of types
["float", {"A": 1, "B": "foo", "C": "bar"}],
# GH 622
["int", {}],
],
)
def test_constructor_mixed_dtypes(self, typ, ad):
if typ == "int":
dtypes = MIXED_INT_DTYPES
arrays = [
np.array(np.random.default_rng(2).random(10), dtype=d) for d in dtypes
]
elif typ == "float":
dtypes = MIXED_FLOAT_DTYPES
arrays = [
np.array(np.random.default_rng(2).integers(10, size=10), dtype=d)
for d in dtypes
]
for d, a in zip(dtypes, arrays):
assert a.dtype == d
ad.update(dict(zip(dtypes, arrays)))
df = DataFrame(ad)
dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES
for d in dtypes:
if d in df:
assert df.dtypes[d] == d
def test_constructor_complex_dtypes(self):
# GH10952
a = np.random.default_rng(2).random(10).astype(np.complex64)
b = np.random.default_rng(2).random(10).astype(np.complex128)
df = DataFrame({"a": a, "b": b})
assert a.dtype == df.a.dtype
assert b.dtype == df.b.dtype
def test_constructor_dtype_str_na_values(self, string_dtype):
# https://github.com/pandas-dev/pandas/issues/21083
df = DataFrame({"A": ["x", None]}, dtype=string_dtype)
result = df.isna()
expected = DataFrame({"A": [False, True]})
tm.assert_frame_equal(result, expected)
assert df.iloc[1, 0] is None
df = DataFrame({"A": ["x", np.nan]}, dtype=string_dtype)
assert np.isnan(df.iloc[1, 0])
def test_constructor_rec(self, float_frame):
rec = float_frame.to_records(index=False)
rec.dtype.names = list(rec.dtype.names)[::-1]
index = float_frame.index
df = DataFrame(rec)
tm.assert_index_equal(df.columns, Index(rec.dtype.names))
df2 = DataFrame(rec, index=index)
tm.assert_index_equal(df2.columns, Index(rec.dtype.names))
tm.assert_index_equal(df2.index, index)
# case with columns != the ones we would infer from the data
rng = np.arange(len(rec))[::-1]
df3 = DataFrame(rec, index=rng, columns=["C", "B"])
expected = DataFrame(rec, index=rng).reindex(columns=["C", "B"])
tm.assert_frame_equal(df3, expected)
def test_constructor_bool(self):
df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)})
assert df.values.dtype == np.bool_
def test_constructor_overflow_int64(self):
# see gh-14881
values = np.array([2**64 - i for i in range(1, 10)], dtype=np.uint64)
result = DataFrame({"a": values})
assert result["a"].dtype == np.uint64
# see gh-2355
data_scores = [
(6311132704823138710, 273),
(2685045978526272070, 23),
(8921811264899370420, 45),
(17019687244989530680, 270),
(9930107427299601010, 273),
]
dtype = [("uid", "u8"), ("score", "u8")]
data = np.zeros((len(data_scores),), dtype=dtype)
data[:] = data_scores
df_crawls = DataFrame(data)
assert df_crawls["uid"].dtype == np.uint64
@pytest.mark.parametrize(
"values",
[
np.array([2**64], dtype=object),
np.array([2**65]),
[2**64 + 1],
np.array([-(2**63) - 4], dtype=object),
np.array([-(2**64) - 1]),
[-(2**65) - 2],
],
)
def test_constructor_int_overflow(self, values):
# see gh-18584
value = values[0]
result = DataFrame(values)
assert result[0].dtype == object
assert result[0][0] == value
@pytest.mark.parametrize(
"values",
[
np.array([1], dtype=np.uint16),
np.array([1], dtype=np.uint32),
np.array([1], dtype=np.uint64),
[np.uint16(1)],
[np.uint32(1)],
[np.uint64(1)],
],
)
def test_constructor_numpy_uints(self, values):
# GH#47294
value = values[0]
result = DataFrame(values)
assert result[0].dtype == value.dtype
assert result[0][0] == value
def test_constructor_ordereddict(self):
nitems = 100
nums = list(range(nitems))
np.random.default_rng(2).shuffle(nums)
expected = [f"A{i:d}" for i in nums]
df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems)))
assert expected == list(df.columns)
def test_constructor_dict(self):
datetime_series = Series(
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
)
# test expects index shifted by 5
datetime_series_short = datetime_series[5:]
frame = DataFrame({"col1": datetime_series, "col2": datetime_series_short})
# col2 is padded with NaN
assert len(datetime_series) == 30
assert len(datetime_series_short) == 25
tm.assert_series_equal(frame["col1"], datetime_series.rename("col1"))
exp = Series(
np.concatenate([[np.nan] * 5, datetime_series_short.values]),
index=datetime_series.index,
name="col2",
)
tm.assert_series_equal(exp, frame["col2"])
frame = DataFrame(
{"col1": datetime_series, "col2": datetime_series_short},
columns=["col2", "col3", "col4"],
)
assert len(frame) == len(datetime_series_short)
assert "col1" not in frame
assert isna(frame["col3"]).all()
# Corner cases
assert len(DataFrame()) == 0
# mix dict and array, wrong size - no spec for which error should raise
# first
msg = "Mixing dicts with non-Series may lead to ambiguous ordering."
with pytest.raises(ValueError, match=msg):
DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]})
def test_constructor_dict_length1(self):
# Length-one dict micro-optimization
frame = DataFrame({"A": {"1": 1, "2": 2}})
tm.assert_index_equal(frame.index, Index(["1", "2"]))
def test_constructor_dict_with_index(self):
# empty dict plus index
idx = Index([0, 1, 2])
frame = DataFrame({}, index=idx)
assert frame.index is idx
def test_constructor_dict_with_index_and_columns(self):
# empty dict with index and columns
idx = Index([0, 1, 2])
frame = DataFrame({}, index=idx, columns=idx)
assert frame.index is idx
assert frame.columns is idx
assert len(frame._series) == 3
def test_constructor_dict_of_empty_lists(self):
# with dict of empty list and Series
frame = DataFrame({"A": [], "B": []}, columns=["A", "B"])
tm.assert_index_equal(frame.index, RangeIndex(0), exact=True)
def test_constructor_dict_with_none(self):
# GH 14381
# Dict with None value
frame_none = DataFrame({"a": None}, index=[0])
frame_none_list = DataFrame({"a": [None]}, index=[0])
assert frame_none._get_value(0, "a") is None
assert frame_none_list._get_value(0, "a") is None
tm.assert_frame_equal(frame_none, frame_none_list)
def test_constructor_dict_errors(self):
# GH10856
# dict with scalar values should raise error, even if columns passed
msg = "If using all scalar values, you must pass an index"
with pytest.raises(ValueError, match=msg):
DataFrame({"a": 0.7})
with pytest.raises(ValueError, match=msg):
DataFrame({"a": 0.7}, columns=["a"])
@pytest.mark.parametrize("scalar", [2, np.nan, None, "D"])
def test_constructor_invalid_items_unused(self, scalar):
# No error if invalid (scalar) value is in fact not used:
result = DataFrame({"a": scalar}, columns=["b"])
expected = DataFrame(columns=["b"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("value", [2, np.nan, None, float("nan")])
def test_constructor_dict_nan_key(self, value):
# GH 18455
cols = [1, value, 3]
idx = ["a", value]
values = [[0, 3], [1, 4], [2, 5]]
data = {cols[c]: Series(values[c], index=idx) for c in range(3)}
result = DataFrame(data).sort_values(1).sort_values("a", axis=1)
expected = DataFrame(
np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols
)
tm.assert_frame_equal(result, expected)
result = DataFrame(data, index=idx).sort_values("a", axis=1)
tm.assert_frame_equal(result, expected)
result = DataFrame(data, index=idx, columns=cols)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("value", [np.nan, None, float("nan")])
def test_constructor_dict_nan_tuple_key(self, value):
# GH 18455
cols = Index([(11, 21), (value, 22), (13, value)])
idx = Index([("a", value), (value, 2)])
values = [[0, 3], [1, 4], [2, 5]]
data = {cols[c]: Series(values[c], index=idx) for c in range(3)}
result = DataFrame(data).sort_values((11, 21)).sort_values(("a", value), axis=1)
expected = DataFrame(
np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols
)
tm.assert_frame_equal(result, expected)
result = DataFrame(data, index=idx).sort_values(("a", value), axis=1)
tm.assert_frame_equal(result, expected)
result = DataFrame(data, index=idx, columns=cols)
tm.assert_frame_equal(result, expected)
def test_constructor_dict_order_insertion(self):
datetime_series = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
datetime_series_short = datetime_series[:5]
# GH19018
# initialization ordering: by insertion order if python>= 3.6
d = {"b": datetime_series_short, "a": datetime_series}
frame = DataFrame(data=d)
expected = DataFrame(data=d, columns=list("ba"))
tm.assert_frame_equal(frame, expected)
def test_constructor_dict_nan_key_and_columns(self):
# GH 16894
result = DataFrame({np.nan: [1, 2], 2: [2, 3]}, columns=[np.nan, 2])
expected = DataFrame([[1, 2], [2, 3]], columns=[np.nan, 2])
tm.assert_frame_equal(result, expected)
def test_constructor_multi_index(self):
# GH 4078
# construction error with mi and all-nan frame
tuples = [(2, 3), (3, 3), (3, 3)]
mi = MultiIndex.from_tuples(tuples)
df = DataFrame(index=mi, columns=mi)
assert isna(df).values.ravel().all()
tuples = [(3, 3), (2, 3), (3, 3)]
mi = MultiIndex.from_tuples(tuples)
df = DataFrame(index=mi, columns=mi)
assert isna(df).values.ravel().all()
def test_constructor_2d_index(self):
# GH 25416
# handling of 2d index in construction
df = DataFrame([[1]], columns=[[1]], index=[1, 2])
expected = DataFrame(
[1, 1],
index=Index([1, 2], dtype="int64"),
columns=MultiIndex(levels=[[1]], codes=[[0]]),
)
tm.assert_frame_equal(df, expected)
df = DataFrame([[1]], columns=[[1]], index=[[1, 2]])
expected = DataFrame(
[1, 1],
index=MultiIndex(levels=[[1, 2]], codes=[[0, 1]]),
columns=MultiIndex(levels=[[1]], codes=[[0]]),
)
tm.assert_frame_equal(df, expected)
def test_constructor_error_msgs(self):
msg = "Empty data passed with indices specified."
# passing an empty array with columns specified.
with pytest.raises(ValueError, match=msg):
DataFrame(np.empty(0), index=[1])
msg = "Mixing dicts with non-Series may lead to ambiguous ordering."
# mix dict and array, wrong size
with pytest.raises(ValueError, match=msg):
DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]})
# wrong size ndarray, GH 3105
msg = r"Shape of passed values is \(4, 3\), indices imply \(3, 3\)"
with pytest.raises(ValueError, match=msg):
DataFrame(
np.arange(12).reshape((4, 3)),
columns=["foo", "bar", "baz"],
index=date_range("2000-01-01", periods=3),
)
arr = np.array([[4, 5, 6]])
msg = r"Shape of passed values is \(1, 3\), indices imply \(1, 4\)"
with pytest.raises(ValueError, match=msg):
DataFrame(index=[0], columns=range(4), data=arr)
arr = np.array([4, 5, 6])
msg = r"Shape of passed values is \(3, 1\), indices imply \(1, 4\)"
with pytest.raises(ValueError, match=msg):
DataFrame(index=[0], columns=range(4), data=arr)
# higher dim raise exception
with pytest.raises(ValueError, match="Must pass 2-d input"):
DataFrame(np.zeros((3, 3, 3)), columns=["A", "B", "C"], index=[1])
# wrong size axis labels
msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)"
with pytest.raises(ValueError, match=msg):
DataFrame(
np.random.default_rng(2).random((2, 3)),
columns=["A", "B", "C"],
index=[1],
)
msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)"
with pytest.raises(ValueError, match=msg):
DataFrame(
np.random.default_rng(2).random((2, 3)),
columns=["A", "B"],
index=[1, 2],
)
# gh-26429
msg = "2 columns passed, passed data had 10 columns"
with pytest.raises(ValueError, match=msg):
DataFrame((range(10), range(10, 20)), columns=("ones", "twos"))
msg = "If using all scalar values, you must pass an index"
with pytest.raises(ValueError, match=msg):
DataFrame({"a": False, "b": True})
def test_constructor_subclass_dict(self, dict_subclass):
# Test for passing dict subclass to constructor
data = {
"col1": dict_subclass((x, 10.0 * x) for x in range(10)),
"col2": dict_subclass((x, 20.0 * x) for x in range(10)),
}
df = DataFrame(data)
refdf = DataFrame({col: dict(val.items()) for col, val in data.items()})
tm.assert_frame_equal(refdf, df)
data = dict_subclass(data.items())
df = DataFrame(data)
tm.assert_frame_equal(refdf, df)
def test_constructor_defaultdict(self, float_frame):
# try with defaultdict
data = {}
float_frame.loc[: float_frame.index[10], "B"] = np.nan
for k, v in float_frame.items():
dct = defaultdict(dict)
dct.update(v.to_dict())
data[k] = dct
frame = DataFrame(data)
expected = frame.reindex(index=float_frame.index)
tm.assert_frame_equal(float_frame, expected)
def test_constructor_dict_block(self):
expected = np.array([[4.0, 3.0, 2.0, 1.0]])
df = DataFrame(
{"d": [4.0], "c": [3.0], "b": [2.0], "a": [1.0]},
columns=["d", "c", "b", "a"],
)
tm.assert_numpy_array_equal(df.values, expected)
def test_constructor_dict_cast(self, using_infer_string):
# cast float tests
test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
frame = DataFrame(test_data, dtype=float)
assert len(frame) == 3
assert frame["B"].dtype == np.float64
assert frame["A"].dtype == np.float64
frame = DataFrame(test_data)
assert len(frame) == 3
assert frame["B"].dtype == np.object_ if not using_infer_string else "string"
assert frame["A"].dtype == np.float64
def test_constructor_dict_cast2(self):
# can't cast to float
test_data = {
"A": dict(zip(range(20), [f"word_{i}" for i in range(20)])),
"B": dict(zip(range(15), np.random.default_rng(2).standard_normal(15))),
}
with pytest.raises(ValueError, match="could not convert string"):
DataFrame(test_data, dtype=float)
def test_constructor_dict_dont_upcast(self):
d = {"Col1": {"Row1": "A String", "Row2": np.nan}}
df = DataFrame(d)
assert isinstance(df["Col1"]["Row2"], float)
def test_constructor_dict_dont_upcast2(self):
dm = DataFrame([[1, 2], ["a", "b"]], index=[1, 2], columns=[1, 2])
assert isinstance(dm[1][1], int)
def test_constructor_dict_of_tuples(self):
# GH #1491
data = {"a": (1, 2, 3), "b": (4, 5, 6)}
result = DataFrame(data)
expected = DataFrame({k: list(v) for k, v in data.items()})
tm.assert_frame_equal(result, expected, check_dtype=False)
def test_constructor_dict_of_ranges(self):
# GH 26356
data = {"a": range(3), "b": range(3, 6)}
result = DataFrame(data)
expected = DataFrame({"a": [0, 1, 2], "b": [3, 4, 5]})
tm.assert_frame_equal(result, expected)
def test_constructor_dict_of_iterators(self):
# GH 26349
data = {"a": iter(range(3)), "b": reversed(range(3))}
result = DataFrame(data)
expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]})
tm.assert_frame_equal(result, expected)
def test_constructor_dict_of_generators(self):
# GH 26349
data = {"a": (i for i in (range(3))), "b": (i for i in reversed(range(3)))}
result = DataFrame(data)
expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]})
tm.assert_frame_equal(result, expected)
def test_constructor_dict_multiindex(self):
d = {
("a", "a"): {("i", "i"): 0, ("i", "j"): 1, ("j", "i"): 2},
("b", "a"): {("i", "i"): 6, ("i", "j"): 5, ("j", "i"): 4},
("b", "c"): {("i", "i"): 7, ("i", "j"): 8, ("j", "i"): 9},
}
_d = sorted(d.items())
df = DataFrame(d)
expected = DataFrame(
[x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])
).T
expected.index = MultiIndex.from_tuples(expected.index)
tm.assert_frame_equal(
df,
expected,
)
d["z"] = {"y": 123.0, ("i", "i"): 111, ("i", "j"): 111, ("j", "i"): 111}
_d.insert(0, ("z", d["z"]))
expected = DataFrame(
[x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)
).T
expected.index = Index(expected.index, tupleize_cols=False)
df = DataFrame(d)
df = df.reindex(columns=expected.columns, index=expected.index)
tm.assert_frame_equal(df, expected)
def test_constructor_dict_datetime64_index(self):
# GH 10160
dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"]
def create_data(constructor):
return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)}
data_datetime64 = create_data(np.datetime64)
data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d"))
data_Timestamp = create_data(Timestamp)
expected = DataFrame(
[
{0: 0, 1: None, 2: None, 3: None},
{0: None, 1: 2, 2: None, 3: None},
{0: None, 1: None, 2: 4, 3: None},
{0: None, 1: None, 2: None, 3: 6},
],
index=[Timestamp(dt) for dt in dates_as_str],
)
result_datetime64 = DataFrame(data_datetime64)
result_datetime = DataFrame(data_datetime)
result_Timestamp = DataFrame(data_Timestamp)
tm.assert_frame_equal(result_datetime64, expected)
tm.assert_frame_equal(result_datetime, expected)
tm.assert_frame_equal(result_Timestamp, expected)
@pytest.mark.parametrize(
"klass,name",
[
(lambda x: np.timedelta64(x, "D"), "timedelta64"),
(lambda x: timedelta(days=x), "pytimedelta"),
(lambda x: Timedelta(x, "D"), "Timedelta[ns]"),
(lambda x: Timedelta(x, "D").as_unit("s"), "Timedelta[s]"),
],
)
def test_constructor_dict_timedelta64_index(self, klass, name):
# GH 10160
td_as_int = [1, 2, 3, 4]
data = {i: {klass(s): 2 * i} for i, s in enumerate(td_as_int)}
expected = DataFrame(
[
{0: 0, 1: None, 2: None, 3: None},
{0: None, 1: 2, 2: None, 3: None},
{0: None, 1: None, 2: 4, 3: None},
{0: None, 1: None, 2: None, 3: 6},
],
index=[Timedelta(td, "D") for td in td_as_int],
)
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
def test_constructor_period_dict(self):
# PeriodIndex
a = pd.PeriodIndex(["2012-01", "NaT", "2012-04"], freq="M")
b = pd.PeriodIndex(["2012-02-01", "2012-03-01", "NaT"], freq="D")
df = DataFrame({"a": a, "b": b})
assert df["a"].dtype == a.dtype
assert df["b"].dtype == b.dtype
# list of periods
df = DataFrame({"a": a.astype(object).tolist(), "b": b.astype(object).tolist()})
assert df["a"].dtype == a.dtype
assert df["b"].dtype == b.dtype
def test_constructor_dict_extension_scalar(self, ea_scalar_and_dtype):
ea_scalar, ea_dtype = ea_scalar_and_dtype
df = DataFrame({"a": ea_scalar}, index=[0])
assert df["a"].dtype == ea_dtype
expected = DataFrame(index=[0], columns=["a"], data=ea_scalar)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
"data,dtype",
[
(Period("2020-01"), PeriodDtype("M")),
(Interval(left=0, right=5), IntervalDtype("int64", "right")),
(
Timestamp("2011-01-01", tz="US/Eastern"),
DatetimeTZDtype(unit="s", tz="US/Eastern"),
),
],
)
def test_constructor_extension_scalar_data(self, data, dtype):
# GH 34832
df = DataFrame(index=[0, 1], columns=["a", "b"], data=data)
assert df["a"].dtype == dtype
assert df["b"].dtype == dtype
arr = pd.array([data] * 2, dtype=dtype)
expected = DataFrame({"a": arr, "b": arr})
tm.assert_frame_equal(df, expected)
def test_nested_dict_frame_constructor(self):
rng = pd.period_range("1/1/2000", periods=5)
df = DataFrame(np.random.default_rng(2).standard_normal((10, 5)), columns=rng)
data = {}
for col in df.columns:
for row in df.index:
data.setdefault(col, {})[row] = df._get_value(row, col)
result = DataFrame(data, columns=rng)
tm.assert_frame_equal(result, df)
data = {}
for col in df.columns:
for row in df.index:
data.setdefault(row, {})[col] = df._get_value(row, col)
result = DataFrame(data, index=rng).T
tm.assert_frame_equal(result, df)
def _check_basic_constructor(self, empty):
# mat: 2d matrix with shape (3, 2) to input. empty - makes sized
# objects
mat = empty((2, 3), dtype=float)
# 2-D input
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
assert len(frame.index) == 2
assert len(frame.columns) == 3
# 1-D input
frame = DataFrame(empty((3,)), columns=["A"], index=[1, 2, 3])
assert len(frame.index) == 3
assert len(frame.columns) == 1
if empty is not np.ones:
msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
with pytest.raises(IntCastingNaNError, match=msg):
DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64)
return
else:
frame = DataFrame(
mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64
)
assert frame.values.dtype == np.int64
# wrong size axis labels
msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)"
with pytest.raises(ValueError, match=msg):
DataFrame(mat, columns=["A", "B", "C"], index=[1])
msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)"
with pytest.raises(ValueError, match=msg):
DataFrame(mat, columns=["A", "B"], index=[1, 2])
# higher dim raise exception
with pytest.raises(ValueError, match="Must pass 2-d input"):
DataFrame(empty((3, 3, 3)), columns=["A", "B", "C"], index=[1])
# automatic labeling
frame = DataFrame(mat)
tm.assert_index_equal(frame.index, Index(range(2)), exact=True)
tm.assert_index_equal(frame.columns, Index(range(3)), exact=True)
frame = DataFrame(mat, index=[1, 2])
tm.assert_index_equal(frame.columns, Index(range(3)), exact=True)
frame = DataFrame(mat, columns=["A", "B", "C"])
tm.assert_index_equal(frame.index, Index(range(2)), exact=True)
# 0-length axis
frame = DataFrame(empty((0, 3)))
assert len(frame.index) == 0
frame = DataFrame(empty((3, 0)))
assert len(frame.columns) == 0
def test_constructor_ndarray(self):
self._check_basic_constructor(np.ones)
frame = DataFrame(["foo", "bar"], index=[0, 1], columns=["A"])
assert len(frame) == 2
def test_constructor_maskedarray(self):
self._check_basic_constructor(ma.masked_all)
# Check non-masked values
mat = ma.masked_all((2, 3), dtype=float)
mat[0, 0] = 1.0
mat[1, 2] = 2.0
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
assert 1.0 == frame["A"][1]
assert 2.0 == frame["C"][2]
# what is this even checking??
mat = ma.masked_all((2, 3), dtype=float)
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
assert np.all(~np.asarray(frame == frame))
@pytest.mark.filterwarnings(
"ignore:elementwise comparison failed:DeprecationWarning"
)
def test_constructor_maskedarray_nonfloat(self):
# masked int promoted to float
mat = ma.masked_all((2, 3), dtype=int)
# 2-D input
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
assert len(frame.index) == 2
assert len(frame.columns) == 3
assert np.all(~np.asarray(frame == frame))
# cast type
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.float64)
assert frame.values.dtype == np.float64
# Check non-masked values
mat2 = ma.copy(mat)
mat2[0, 0] = 1
mat2[1, 2] = 2
frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2])
assert 1 == frame["A"][1]
assert 2 == frame["C"][2]
# masked np.datetime64 stays (use NaT as null)
mat = ma.masked_all((2, 3), dtype="M8[ns]")
# 2-D input
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
assert len(frame.index) == 2
assert len(frame.columns) == 3
assert isna(frame).values.all()
# cast type
msg = r"datetime64\[ns\] values and dtype=int64 is not supported"
with pytest.raises(TypeError, match=msg):
DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64)
# Check non-masked values
mat2 = ma.copy(mat)
mat2[0, 0] = 1
mat2[1, 2] = 2
frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2])
assert 1 == frame["A"].astype("i8")[1]
assert 2 == frame["C"].astype("i8")[2]
# masked bool promoted to object
mat = ma.masked_all((2, 3), dtype=bool)
# 2-D input
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2])
assert len(frame.index) == 2
assert len(frame.columns) == 3
assert np.all(~np.asarray(frame == frame))
# cast type
frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=object)
assert frame.values.dtype == object
# Check non-masked values
mat2 = ma.copy(mat)
mat2[0, 0] = True
mat2[1, 2] = False
frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2])
assert frame["A"][1] is True
assert frame["C"][2] is False
def test_constructor_maskedarray_hardened(self):
# Check numpy masked arrays with hard masks -- from GH24574
mat_hard = ma.masked_all((2, 2), dtype=float).harden_mask()
result = DataFrame(mat_hard, columns=["A", "B"], index=[1, 2])
expected = DataFrame(
{"A": [np.nan, np.nan], "B": [np.nan, np.nan]},
columns=["A", "B"],
index=[1, 2],
dtype=float,
)
tm.assert_frame_equal(result, expected)
# Check case where mask is hard but no data are masked
mat_hard = ma.ones((2, 2), dtype=float).harden_mask()
result = DataFrame(mat_hard, columns=["A", "B"], index=[1, 2])
expected = DataFrame(
{"A": [1.0, 1.0], "B": [1.0, 1.0]},
columns=["A", "B"],
index=[1, 2],
dtype=float,
)
tm.assert_frame_equal(result, expected)
def test_constructor_maskedrecarray_dtype(self):
# Ensure constructor honors dtype
data = np.ma.array(
np.ma.zeros(5, dtype=[("date", "<f8"), ("price", "<f8")]), mask=[False] * 5
)
data = data.view(mrecords.mrecarray)
with pytest.raises(TypeError, match=r"Pass \{name: data\[name\]"):
# Support for MaskedRecords deprecated GH#40363
DataFrame(data, dtype=int)
def test_constructor_corner_shape(self):
df = DataFrame(index=[])
assert df.values.shape == (0, 0)
@pytest.mark.parametrize(
"data, index, columns, dtype, expected",
[
(None, list(range(10)), ["a", "b"], object, np.object_),
(None, None, ["a", "b"], "int64", np.dtype("int64")),
(None, list(range(10)), ["a", "b"], int, np.dtype("float64")),
({}, None, ["foo", "bar"], None, np.object_),
({"b": 1}, list(range(10)), list("abc"), int, np.dtype("float64")),
],
)
def test_constructor_dtype(self, data, index, columns, dtype, expected):
df = DataFrame(data, index, columns, dtype)
assert df.values.dtype == expected
@pytest.mark.parametrize(
"data,input_dtype,expected_dtype",
(
([True, False, None], "boolean", pd.BooleanDtype),
([1.0, 2.0, None], "Float64", pd.Float64Dtype),
([1, 2, None], "Int64", pd.Int64Dtype),
(["a", "b", "c"], "string", pd.StringDtype),
),
)
def test_constructor_dtype_nullable_extension_arrays(
self, data, input_dtype, expected_dtype
):
df = DataFrame({"a": data}, dtype=input_dtype)
assert df["a"].dtype == expected_dtype()
def test_constructor_scalar_inference(self, using_infer_string):
data = {"int": 1, "bool": True, "float": 3.0, "complex": 4j, "object": "foo"}
df = DataFrame(data, index=np.arange(10))
assert df["int"].dtype == np.int64
assert df["bool"].dtype == np.bool_
assert df["float"].dtype == np.float64
assert df["complex"].dtype == np.complex128
assert df["object"].dtype == np.object_ if not using_infer_string else "string"
def test_constructor_arrays_and_scalars(self):
df = DataFrame({"a": np.random.default_rng(2).standard_normal(10), "b": True})
exp = DataFrame({"a": df["a"].values, "b": [True] * 10})
tm.assert_frame_equal(df, exp)
with pytest.raises(ValueError, match="must pass an index"):
DataFrame({"a": False, "b": True})
def test_constructor_DataFrame(self, float_frame):
df = DataFrame(float_frame)
tm.assert_frame_equal(df, float_frame)
df_casted = DataFrame(float_frame, dtype=np.int64)
assert df_casted.values.dtype == np.int64
def test_constructor_empty_dataframe(self):
# GH 20624
actual = DataFrame(DataFrame(), dtype="object")
expected = DataFrame([], dtype="object")
tm.assert_frame_equal(actual, expected)
def test_constructor_more(self, float_frame):
# used to be in test_matrix.py
arr = np.random.default_rng(2).standard_normal(10)
dm = DataFrame(arr, columns=["A"], index=np.arange(10))
assert dm.values.ndim == 2
arr = np.random.default_rng(2).standard_normal(0)
dm = DataFrame(arr)
assert dm.values.ndim == 2
assert dm.values.ndim == 2
# no data specified
dm = DataFrame(columns=["A", "B"], index=np.arange(10))
assert dm.values.shape == (10, 2)
dm = DataFrame(columns=["A", "B"])
assert dm.values.shape == (0, 2)
dm = DataFrame(index=np.arange(10))
assert dm.values.shape == (10, 0)
# can't cast
mat = np.array(["foo", "bar"], dtype=object).reshape(2, 1)
msg = "could not convert string to float: 'foo'"
with pytest.raises(ValueError, match=msg):
DataFrame(mat, index=[0, 1], columns=[0], dtype=float)
dm = DataFrame(DataFrame(float_frame._series))
tm.assert_frame_equal(dm, float_frame)
# int cast
dm = DataFrame(
{"A": np.ones(10, dtype=int), "B": np.ones(10, dtype=np.float64)},
index=np.arange(10),
)
assert len(dm.columns) == 2
assert dm.values.dtype == np.float64
def test_constructor_empty_list(self):
df = DataFrame([], index=[])
expected = DataFrame(index=[])
tm.assert_frame_equal(df, expected)
# GH 9939
df = DataFrame([], columns=["A", "B"])
expected = DataFrame({}, columns=["A", "B"])
tm.assert_frame_equal(df, expected)
# Empty generator: list(empty_gen()) == []
def empty_gen():
yield from ()
df = DataFrame(empty_gen(), columns=["A", "B"])
tm.assert_frame_equal(df, expected)
def test_constructor_list_of_lists(self, using_infer_string):
# GH #484
df = DataFrame(data=[[1, "a"], [2, "b"]], columns=["num", "str"])
assert is_integer_dtype(df["num"])
assert df["str"].dtype == np.object_ if not using_infer_string else "string"
# GH 4851
# list of 0-dim ndarrays
expected = DataFrame({0: np.arange(10)})
data = [np.array(x) for x in range(10)]
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
def test_nested_pandasarray_matches_nested_ndarray(self):
# GH#43986
ser = Series([1, 2])
arr = np.array([None, None], dtype=object)
arr[0] = ser
arr[1] = ser * 2
df = DataFrame(arr)
expected = DataFrame(pd.array(arr))
tm.assert_frame_equal(df, expected)
assert df.shape == (2, 1)
tm.assert_numpy_array_equal(df[0].values, arr)
def test_constructor_list_like_data_nested_list_column(self):
# GH 32173
arrays = [list("abcd"), list("cdef")]
result = DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=arrays)
mi = MultiIndex.from_arrays(arrays)
expected = DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=mi)
tm.assert_frame_equal(result, expected)
def test_constructor_wrong_length_nested_list_column(self):
# GH 32173
arrays = [list("abc"), list("cde")]
msg = "3 columns passed, passed data had 4"
with pytest.raises(ValueError, match=msg):
DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=arrays)
def test_constructor_unequal_length_nested_list_column(self):
# GH 32173
arrays = [list("abcd"), list("cde")]
# exception raised inside MultiIndex constructor
msg = "all arrays must be same length"
with pytest.raises(ValueError, match=msg):
DataFrame([[1, 2, 3, 4], [4, 5, 6, 7]], columns=arrays)
@pytest.mark.parametrize(
"data",
[
[[Timestamp("2021-01-01")]],
[{"x": Timestamp("2021-01-01")}],
{"x": [Timestamp("2021-01-01")]},
{"x": Timestamp("2021-01-01").as_unit("ns")},
],
)
def test_constructor_one_element_data_list(self, data):
# GH#42810
result = DataFrame(data, index=[0, 1, 2], columns=["x"])
expected = DataFrame({"x": [Timestamp("2021-01-01")] * 3})
tm.assert_frame_equal(result, expected)
def test_constructor_sequence_like(self):
# GH 3783
# collections.Sequence like
class DummyContainer(abc.Sequence):
def __init__(self, lst) -> None:
self._lst = lst
def __getitem__(self, n):
return self._lst.__getitem__(n)
def __len__(self) -> int:
return self._lst.__len__()
lst_containers = [DummyContainer([1, "a"]), DummyContainer([2, "b"])]
columns = ["num", "str"]
result = DataFrame(lst_containers, columns=columns)
expected = DataFrame([[1, "a"], [2, "b"]], columns=columns)
tm.assert_frame_equal(result, expected, check_dtype=False)
def test_constructor_stdlib_array(self):
# GH 4297
# support Array
result = DataFrame({"A": array.array("i", range(10))})
expected = DataFrame({"A": list(range(10))})
tm.assert_frame_equal(result, expected, check_dtype=False)
expected = DataFrame([list(range(10)), list(range(10))])
result = DataFrame([array.array("i", range(10)), array.array("i", range(10))])
tm.assert_frame_equal(result, expected, check_dtype=False)
def test_constructor_range(self):
# GH26342
result = DataFrame(range(10))
expected = DataFrame(list(range(10)))
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_ranges(self):
result = DataFrame([range(10), range(10)])
expected = DataFrame([list(range(10)), list(range(10))])
tm.assert_frame_equal(result, expected)
def test_constructor_iterable(self):
# GH 21987
class Iter:
def __iter__(self) -> Iterator:
for i in range(10):
yield [1, 2, 3]
expected = DataFrame([[1, 2, 3]] * 10)
result = DataFrame(Iter())
tm.assert_frame_equal(result, expected)
def test_constructor_iterator(self):
result = DataFrame(iter(range(10)))
expected = DataFrame(list(range(10)))
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_iterators(self):
result = DataFrame([iter(range(10)), iter(range(10))])
expected = DataFrame([list(range(10)), list(range(10))])
tm.assert_frame_equal(result, expected)
def test_constructor_generator(self):
# related #2305
gen1 = (i for i in range(10))
gen2 = (i for i in range(10))
expected = DataFrame([list(range(10)), list(range(10))])
result = DataFrame([gen1, gen2])
tm.assert_frame_equal(result, expected)
gen = ([i, "a"] for i in range(10))
result = DataFrame(gen)
expected = DataFrame({0: range(10), 1: "a"})
tm.assert_frame_equal(result, expected, check_dtype=False)
def test_constructor_list_of_dicts(self):
result = DataFrame([{}])
expected = DataFrame(index=RangeIndex(1), columns=[])
tm.assert_frame_equal(result, expected)
def test_constructor_ordered_dict_nested_preserve_order(self):
# see gh-18166
nested1 = OrderedDict([("b", 1), ("a", 2)])
nested2 = OrderedDict([("b", 2), ("a", 5)])
data = OrderedDict([("col2", nested1), ("col1", nested2)])
result = DataFrame(data)
data = {"col2": [1, 2], "col1": [2, 5]}
expected = DataFrame(data=data, index=["b", "a"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dict_type", [dict, OrderedDict])
def test_constructor_ordered_dict_preserve_order(self, dict_type):
# see gh-13304
expected = DataFrame([[2, 1]], columns=["b", "a"])
data = dict_type()
data["b"] = [2]
data["a"] = [1]
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
data = dict_type()
data["b"] = 2
data["a"] = 1
result = DataFrame([data])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dict_type", [dict, OrderedDict])
def test_constructor_ordered_dict_conflicting_orders(self, dict_type):
# the first dict element sets the ordering for the DataFrame,
# even if there are conflicting orders from subsequent ones
row_one = dict_type()
row_one["b"] = 2
row_one["a"] = 1
row_two = dict_type()
row_two["a"] = 1
row_two["b"] = 2
row_three = {"b": 2, "a": 1}
expected = DataFrame([[2, 1], [2, 1]], columns=["b", "a"])
result = DataFrame([row_one, row_two])
tm.assert_frame_equal(result, expected)
expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=["b", "a"])
result = DataFrame([row_one, row_two, row_three])
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_series_aligned_index(self):
series = [Series(i, index=["b", "a", "c"], name=str(i)) for i in range(3)]
result = DataFrame(series)
expected = DataFrame(
{"b": [0, 1, 2], "a": [0, 1, 2], "c": [0, 1, 2]},
columns=["b", "a", "c"],
index=["0", "1", "2"],
)
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_derived_dicts(self):
class CustomDict(dict):
pass
d = {"a": 1.5, "b": 3}
data_custom = [CustomDict(d)]
data = [d]
result_custom = DataFrame(data_custom)
result = DataFrame(data)
tm.assert_frame_equal(result, result_custom)
def test_constructor_ragged(self):
data = {
"A": np.random.default_rng(2).standard_normal(10),
"B": np.random.default_rng(2).standard_normal(8),
}
with pytest.raises(ValueError, match="All arrays must be of the same length"):
DataFrame(data)
def test_constructor_scalar(self):
idx = Index(range(3))
df = DataFrame({"a": 0}, index=idx)
expected = DataFrame({"a": [0, 0, 0]}, index=idx)
tm.assert_frame_equal(df, expected, check_dtype=False)
def test_constructor_Series_copy_bug(self, float_frame):
df = DataFrame(float_frame["A"], index=float_frame.index, columns=["A"])
df.copy()
def test_constructor_mixed_dict_and_Series(self):
data = {}
data["A"] = {"foo": 1, "bar": 2, "baz": 3}
data["B"] = Series([4, 3, 2, 1], index=["bar", "qux", "baz", "foo"])
result = DataFrame(data)
assert result.index.is_monotonic_increasing
# ordering ambiguous, raise exception
with pytest.raises(ValueError, match="ambiguous ordering"):
DataFrame({"A": ["a", "b"], "B": {"a": "a", "b": "b"}})
# this is OK though
result = DataFrame({"A": ["a", "b"], "B": Series(["a", "b"], index=["a", "b"])})
expected = DataFrame({"A": ["a", "b"], "B": ["a", "b"]}, index=["a", "b"])
tm.assert_frame_equal(result, expected)
def test_constructor_mixed_type_rows(self):
# Issue 25075
data = [[1, 2], (3, 4)]
result = DataFrame(data)
expected = DataFrame([[1, 2], [3, 4]])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"tuples,lists",
[
((), []),
((()), []),
(((), ()), [(), ()]),
(((), ()), [[], []]),
(([], []), [[], []]),
(([1], [2]), [[1], [2]]), # GH 32776
(([1, 2, 3], [4, 5, 6]), [[1, 2, 3], [4, 5, 6]]),
],
)
def test_constructor_tuple(self, tuples, lists):
# GH 25691
result = DataFrame(tuples)
expected = DataFrame(lists)
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_tuples(self):
result = DataFrame({"A": [(1, 2), (3, 4)]})
expected = DataFrame({"A": Series([(1, 2), (3, 4)])})
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_namedtuples(self):
# GH11181
named_tuple = namedtuple("Pandas", list("ab"))
tuples = [named_tuple(1, 3), named_tuple(2, 4)]
expected = DataFrame({"a": [1, 2], "b": [3, 4]})
result = DataFrame(tuples)
tm.assert_frame_equal(result, expected)
# with columns
expected = DataFrame({"y": [1, 2], "z": [3, 4]})
result = DataFrame(tuples, columns=["y", "z"])
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_dataclasses(self):
# GH21910
Point = make_dataclass("Point", [("x", int), ("y", int)])
data = [Point(0, 3), Point(1, 3)]
expected = DataFrame({"x": [0, 1], "y": [3, 3]})
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_dataclasses_with_varying_types(self):
# GH21910
# varying types
Point = make_dataclass("Point", [("x", int), ("y", int)])
HLine = make_dataclass("HLine", [("x0", int), ("x1", int), ("y", int)])
data = [Point(0, 3), HLine(1, 3, 3)]
expected = DataFrame(
{"x": [0, np.nan], "y": [3, 3], "x0": [np.nan, 1], "x1": [np.nan, 3]}
)
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
def test_constructor_list_of_dataclasses_error_thrown(self):
# GH21910
Point = make_dataclass("Point", [("x", int), ("y", int)])
# expect TypeError
msg = "asdict() should be called on dataclass instances"
with pytest.raises(TypeError, match=re.escape(msg)):
DataFrame([Point(0, 0), {"x": 1, "y": 0}])
def test_constructor_list_of_dict_order(self):
# GH10056
data = [
{"First": 1, "Second": 4, "Third": 7, "Fourth": 10},
{"Second": 5, "First": 2, "Fourth": 11, "Third": 8},
{"Second": 6, "First": 3, "Fourth": 12, "Third": 9, "YYY": 14, "XXX": 13},
]
expected = DataFrame(
{
"First": [1, 2, 3],
"Second": [4, 5, 6],
"Third": [7, 8, 9],
"Fourth": [10, 11, 12],
"YYY": [None, None, 14],
"XXX": [None, None, 13],
}
)
result = DataFrame(data)
tm.assert_frame_equal(result, expected)
def test_constructor_Series_named(self):
a = Series([1, 2, 3], index=["a", "b", "c"], name="x")
df = DataFrame(a)
assert df.columns[0] == "x"
tm.assert_index_equal(df.index, a.index)
# ndarray like
arr = np.random.default_rng(2).standard_normal(10)
s = Series(arr, name="x")
df = DataFrame(s)
expected = DataFrame({"x": s})
tm.assert_frame_equal(df, expected)
s = Series(arr, index=range(3, 13))
df = DataFrame(s)
expected = DataFrame({0: s})
tm.assert_frame_equal(df, expected)
msg = r"Shape of passed values is \(10, 1\), indices imply \(10, 2\)"
with pytest.raises(ValueError, match=msg):
DataFrame(s, columns=[1, 2])
# #2234
a = Series([], name="x", dtype=object)
df = DataFrame(a)
assert df.columns[0] == "x"
# series with name and w/o
s1 = Series(arr, name="x")
df = DataFrame([s1, arr]).T
expected = DataFrame({"x": s1, "Unnamed 0": arr}, columns=["x", "Unnamed 0"])
tm.assert_frame_equal(df, expected)
# this is a bit non-intuitive here; the series collapse down to arrays
df = DataFrame([arr, s1]).T
expected = DataFrame({1: s1, 0: arr}, columns=[0, 1])
tm.assert_frame_equal(df, expected)
def test_constructor_Series_named_and_columns(self):
# GH 9232 validation
s0 = Series(range(5), name=0)
s1 = Series(range(5), name=1)
# matching name and column gives standard frame
tm.assert_frame_equal(DataFrame(s0, columns=[0]), s0.to_frame())
tm.assert_frame_equal(DataFrame(s1, columns=[1]), s1.to_frame())
# non-matching produces empty frame
assert DataFrame(s0, columns=[1]).empty
assert DataFrame(s1, columns=[0]).empty
def test_constructor_Series_differently_indexed(self):
# name
s1 = Series([1, 2, 3], index=["a", "b", "c"], name="x")
# no name
s2 = Series([1, 2, 3], index=["a", "b", "c"])
other_index = Index(["a", "b"])
df1 = DataFrame(s1, index=other_index)
exp1 = DataFrame(s1.reindex(other_index))
assert df1.columns[0] == "x"
tm.assert_frame_equal(df1, exp1)
df2 = DataFrame(s2, index=other_index)
exp2 = DataFrame(s2.reindex(other_index))
assert df2.columns[0] == 0
tm.assert_index_equal(df2.index, other_index)
tm.assert_frame_equal(df2, exp2)
@pytest.mark.parametrize(
"name_in1,name_in2,name_in3,name_out",
[
("idx", "idx", "idx", "idx"),
("idx", "idx", None, None),
("idx", None, None, None),
("idx1", "idx2", None, None),
("idx1", "idx1", "idx2", None),
("idx1", "idx2", "idx3", None),
(None, None, None, None),
],
)
def test_constructor_index_names(self, name_in1, name_in2, name_in3, name_out):
# GH13475
indices = [
Index(["a", "b", "c"], name=name_in1),
Index(["b", "c", "d"], name=name_in2),
Index(["c", "d", "e"], name=name_in3),
]
series = {
c: Series([0, 1, 2], index=i) for i, c in zip(indices, ["x", "y", "z"])
}
result = DataFrame(series)
exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out)
expected = DataFrame(
{
"x": [0, 1, 2, np.nan, np.nan],
"y": [np.nan, 0, 1, 2, np.nan],
"z": [np.nan, np.nan, 0, 1, 2],
},
index=exp_ind,
)
tm.assert_frame_equal(result, expected)
def test_constructor_manager_resize(self, float_frame):
index = list(float_frame.index[:5])
columns = list(float_frame.columns[:3])
msg = "Passing a BlockManager to DataFrame"
with tm.assert_produces_warning(
DeprecationWarning, match=msg, check_stacklevel=False
):
result = DataFrame(float_frame._mgr, index=index, columns=columns)
tm.assert_index_equal(result.index, Index(index))
tm.assert_index_equal(result.columns, Index(columns))
def test_constructor_mix_series_nonseries(self, float_frame):
df = DataFrame(
{"A": float_frame["A"], "B": list(float_frame["B"])}, columns=["A", "B"]
)
tm.assert_frame_equal(df, float_frame.loc[:, ["A", "B"]])
msg = "does not match index length"
with pytest.raises(ValueError, match=msg):
DataFrame({"A": float_frame["A"], "B": list(float_frame["B"])[:-2]})
def test_constructor_miscast_na_int_dtype(self):
msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
with pytest.raises(IntCastingNaNError, match=msg):
DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64)
def test_constructor_column_duplicates(self):
# it works! #2079
df = DataFrame([[8, 5]], columns=["a", "a"])
edf = DataFrame([[8, 5]])
edf.columns = ["a", "a"]
tm.assert_frame_equal(df, edf)
idf = DataFrame.from_records([(8, 5)], columns=["a", "a"])
tm.assert_frame_equal(idf, edf)
def test_constructor_empty_with_string_dtype(self):
# GH 9428
expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object)
df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str)
tm.assert_frame_equal(df, expected)
df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_)
tm.assert_frame_equal(df, expected)
df = DataFrame(index=[0, 1], columns=[0, 1], dtype="U5")
tm.assert_frame_equal(df, expected)
def test_constructor_empty_with_string_extension(self, nullable_string_dtype):
# GH 34915
expected = DataFrame(columns=["c1"], dtype=nullable_string_dtype)
df = DataFrame(columns=["c1"], dtype=nullable_string_dtype)
tm.assert_frame_equal(df, expected)
def test_constructor_single_value(self):
# expecting single value upcasting here
df = DataFrame(0.0, index=[1, 2, 3], columns=["a", "b", "c"])
tm.assert_frame_equal(
df, DataFrame(np.zeros(df.shape).astype("float64"), df.index, df.columns)
)
df = DataFrame(0, index=[1, 2, 3], columns=["a", "b", "c"])
tm.assert_frame_equal(
df, DataFrame(np.zeros(df.shape).astype("int64"), df.index, df.columns)
)
df = DataFrame("a", index=[1, 2], columns=["a", "c"])
tm.assert_frame_equal(
df,
DataFrame(
np.array([["a", "a"], ["a", "a"]], dtype=object),
index=[1, 2],
columns=["a", "c"],
),
)
msg = "DataFrame constructor not properly called!"
with pytest.raises(ValueError, match=msg):
DataFrame("a", [1, 2])
with pytest.raises(ValueError, match=msg):
DataFrame("a", columns=["a", "c"])
msg = "incompatible data and dtype"
with pytest.raises(TypeError, match=msg):
DataFrame("a", [1, 2], ["a", "c"], float)
def test_constructor_with_datetimes(self, using_infer_string):
intname = np.dtype(int).name
floatname = np.dtype(np.float64).name
objectname = np.dtype(np.object_).name
# single item
df = DataFrame(
{
"A": 1,
"B": "foo",
"C": "bar",
"D": Timestamp("20010101"),
"E": datetime(2001, 1, 2, 0, 0),
},
index=np.arange(10),
)
result = df.dtypes
expected = Series(
[np.dtype("int64")]
+ [np.dtype(objectname) if not using_infer_string else "string"] * 2
+ [np.dtype("M8[s]"), np.dtype("M8[us]")],
index=list("ABCDE"),
)
tm.assert_series_equal(result, expected)
# check with ndarray construction ndim==0 (e.g. we are passing a ndim 0
# ndarray with a dtype specified)
df = DataFrame(
{
"a": 1.0,
"b": 2,
"c": "foo",
floatname: np.array(1.0, dtype=floatname),
intname: np.array(1, dtype=intname),
},
index=np.arange(10),
)
result = df.dtypes
expected = Series(
[np.dtype("float64")]
+ [np.dtype("int64")]
+ [np.dtype("object") if not using_infer_string else "string"]
+ [np.dtype("float64")]
+ [np.dtype(intname)],
index=["a", "b", "c", floatname, intname],
)
tm.assert_series_equal(result, expected)
# check with ndarray construction ndim>0
df = DataFrame(
{
"a": 1.0,
"b": 2,
"c": "foo",
floatname: np.array([1.0] * 10, dtype=floatname),
intname: np.array([1] * 10, dtype=intname),
},
index=np.arange(10),
)
result = df.dtypes
expected = Series(
[np.dtype("float64")]
+ [np.dtype("int64")]
+ [np.dtype("object") if not using_infer_string else "string"]
+ [np.dtype("float64")]
+ [np.dtype(intname)],
index=["a", "b", "c", floatname, intname],
)
tm.assert_series_equal(result, expected)
def test_constructor_with_datetimes1(self):
# GH 2809
ind = date_range(start="2000-01-01", freq="D", periods=10)
datetimes = [ts.to_pydatetime() for ts in ind]
datetime_s = Series(datetimes)
assert datetime_s.dtype == "M8[ns]"
def test_constructor_with_datetimes2(self):
# GH 2810
ind = date_range(start="2000-01-01", freq="D", periods=10)
datetimes = [ts.to_pydatetime() for ts in ind]
dates = [ts.date() for ts in ind]
df = DataFrame(datetimes, columns=["datetimes"])
df["dates"] = dates
result = df.dtypes
expected = Series(
[np.dtype("datetime64[ns]"), np.dtype("object")],
index=["datetimes", "dates"],
)
tm.assert_series_equal(result, expected)
def test_constructor_with_datetimes3(self):
# GH 7594
# don't coerce tz-aware
tz = pytz.timezone("US/Eastern")
dt = tz.localize(datetime(2012, 1, 1))
df = DataFrame({"End Date": dt}, index=[0])
assert df.iat[0, 0] == dt
tm.assert_series_equal(
df.dtypes, Series({"End Date": "datetime64[us, US/Eastern]"}, dtype=object)
)
df = DataFrame([{"End Date": dt}])
assert df.iat[0, 0] == dt
tm.assert_series_equal(
df.dtypes, Series({"End Date": "datetime64[ns, US/Eastern]"}, dtype=object)
)
def test_constructor_with_datetimes4(self):
# tz-aware (UTC and other tz's)
# GH 8411
dr = date_range("20130101", periods=3)
df = DataFrame({"value": dr})
assert df.iat[0, 0].tz is None
dr = date_range("20130101", periods=3, tz="UTC")
df = DataFrame({"value": dr})
assert str(df.iat[0, 0].tz) == "UTC"
dr = date_range("20130101", periods=3, tz="US/Eastern")
df = DataFrame({"value": dr})
assert str(df.iat[0, 0].tz) == "US/Eastern"
def test_constructor_with_datetimes5(self):
# GH 7822
# preserver an index with a tz on dict construction
i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern")
expected = DataFrame({"a": i.to_series().reset_index(drop=True)})
df = DataFrame()
df["a"] = i
tm.assert_frame_equal(df, expected)
df = DataFrame({"a": i})
tm.assert_frame_equal(df, expected)
def test_constructor_with_datetimes6(self):
# multiples
i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern")
i_no_tz = date_range("1/1/2011", periods=5, freq="10s")
df = DataFrame({"a": i, "b": i_no_tz})
expected = DataFrame({"a": i.to_series().reset_index(drop=True), "b": i_no_tz})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
"arr",
[
np.array([None, None, None, None, datetime.now(), None]),
np.array([None, None, datetime.now(), None]),
[[np.datetime64("NaT")], [None]],
[[np.datetime64("NaT")], [pd.NaT]],
[[None], [np.datetime64("NaT")]],
[[None], [pd.NaT]],
[[pd.NaT], [np.datetime64("NaT")]],
[[pd.NaT], [None]],
],
)
def test_constructor_datetimes_with_nulls(self, arr):
# gh-15869, GH#11220
result = DataFrame(arr).dtypes
expected = Series([np.dtype("datetime64[ns]")])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("order", ["K", "A", "C", "F"])
@pytest.mark.parametrize(
"unit",
["M", "D", "h", "m", "s", "ms", "us", "ns"],
)
def test_constructor_datetimes_non_ns(self, order, unit):
dtype = f"datetime64[{unit}]"
na = np.array(
[
["2015-01-01", "2015-01-02", "2015-01-03"],
["2017-01-01", "2017-01-02", "2017-02-03"],
],
dtype=dtype,
order=order,
)
df = DataFrame(na)
expected = DataFrame(na.astype("M8[ns]"))
if unit in ["M", "D", "h", "m"]:
with pytest.raises(TypeError, match="Cannot cast"):
expected.astype(dtype)
# instead the constructor casts to the closest supported reso, i.e. "s"
expected = expected.astype("datetime64[s]")
else:
expected = expected.astype(dtype=dtype)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("order", ["K", "A", "C", "F"])
@pytest.mark.parametrize(
"unit",
[
"D",
"h",
"m",
"s",
"ms",
"us",
"ns",
],
)
def test_constructor_timedelta_non_ns(self, order, unit):
dtype = f"timedelta64[{unit}]"
na = np.array(
[
[np.timedelta64(1, "D"), np.timedelta64(2, "D")],
[np.timedelta64(4, "D"), np.timedelta64(5, "D")],
],
dtype=dtype,
order=order,
)
df = DataFrame(na)
if unit in ["D", "h", "m"]:
# we get the nearest supported unit, i.e. "s"
exp_unit = "s"
else:
exp_unit = unit
exp_dtype = np.dtype(f"m8[{exp_unit}]")
expected = DataFrame(
[
[Timedelta(1, "D"), Timedelta(2, "D")],
[Timedelta(4, "D"), Timedelta(5, "D")],
],
dtype=exp_dtype,
)
# TODO(2.0): ideally we should get the same 'expected' without passing
# dtype=exp_dtype.
tm.assert_frame_equal(df, expected)
def test_constructor_for_list_with_dtypes(self, using_infer_string):
# test list of lists/ndarrays
df = DataFrame([np.arange(5) for x in range(5)])
result = df.dtypes
expected = Series([np.dtype("int")] * 5)
tm.assert_series_equal(result, expected)
df = DataFrame([np.array(np.arange(5), dtype="int32") for x in range(5)])
result = df.dtypes
expected = Series([np.dtype("int32")] * 5)
tm.assert_series_equal(result, expected)
# overflow issue? (we always expected int64 upcasting here)
df = DataFrame({"a": [2**31, 2**31 + 1]})
assert df.dtypes.iloc[0] == np.dtype("int64")
# GH #2751 (construction with no index specified), make sure we cast to
# platform values
df = DataFrame([1, 2])
assert df.dtypes.iloc[0] == np.dtype("int64")
df = DataFrame([1.0, 2.0])
assert df.dtypes.iloc[0] == np.dtype("float64")
df = DataFrame({"a": [1, 2]})
assert df.dtypes.iloc[0] == np.dtype("int64")
df = DataFrame({"a": [1.0, 2.0]})
assert df.dtypes.iloc[0] == np.dtype("float64")
df = DataFrame({"a": 1}, index=range(3))
assert df.dtypes.iloc[0] == np.dtype("int64")
df = DataFrame({"a": 1.0}, index=range(3))
assert df.dtypes.iloc[0] == np.dtype("float64")
# with object list
df = DataFrame(
{
"a": [1, 2, 4, 7],
"b": [1.2, 2.3, 5.1, 6.3],
"c": list("abcd"),
"d": [datetime(2000, 1, 1) for i in range(4)],
"e": [1.0, 2, 4.0, 7],
}
)
result = df.dtypes
expected = Series(
[
np.dtype("int64"),
np.dtype("float64"),
np.dtype("object") if not using_infer_string else "string",
np.dtype("datetime64[ns]"),
np.dtype("float64"),
],
index=list("abcde"),
)
tm.assert_series_equal(result, expected)
def test_constructor_frame_copy(self, float_frame):
cop = DataFrame(float_frame, copy=True)
cop["A"] = 5
assert (cop["A"] == 5).all()
assert not (float_frame["A"] == 5).all()
def test_constructor_frame_shallow_copy(self, float_frame):
# constructing a DataFrame from DataFrame with copy=False should still
# give a "shallow" copy (share data, not attributes)
# https://github.com/pandas-dev/pandas/issues/49523
orig = float_frame.copy()
cop = DataFrame(float_frame)
assert cop._mgr is not float_frame._mgr
# Overwriting index of copy doesn't change original
cop.index = np.arange(len(cop))
tm.assert_frame_equal(float_frame, orig)
def test_constructor_ndarray_copy(
self, float_frame, using_array_manager, using_copy_on_write
):
if not using_array_manager:
arr = float_frame.values.copy()
df = DataFrame(arr)
arr[5] = 5
if using_copy_on_write:
assert not (df.values[5] == 5).all()
else:
assert (df.values[5] == 5).all()
df = DataFrame(arr, copy=True)
arr[6] = 6
assert not (df.values[6] == 6).all()
else:
arr = float_frame.values.copy()
# default: copy to ensure contiguous arrays
df = DataFrame(arr)
assert df._mgr.arrays[0].flags.c_contiguous
arr[0, 0] = 100
assert df.iloc[0, 0] != 100
# manually specify copy=False
df = DataFrame(arr, copy=False)
assert not df._mgr.arrays[0].flags.c_contiguous
arr[0, 0] = 1000
assert df.iloc[0, 0] == 1000
def test_constructor_series_copy(self, float_frame):
series = float_frame._series
df = DataFrame({"A": series["A"]}, copy=True)
# TODO can be replaced with `df.loc[:, "A"] = 5` after deprecation about
# inplace mutation is enforced
df.loc[df.index[0] : df.index[-1], "A"] = 5
assert not (series["A"] == 5).all()
@pytest.mark.parametrize(
"df",
[
DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]),
DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]),
DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]),
DataFrame(
[[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]
),
DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]),
],
)
def test_constructor_with_nas(self, df):
# GH 5016
# na's in indices
# GH 21428 (non-unique columns)
for i in range(len(df.columns)):
df.iloc[:, i]
indexer = np.arange(len(df.columns))[isna(df.columns)]
# No NaN found -> error
if len(indexer) == 0:
with pytest.raises(KeyError, match="^nan$"):
df.loc[:, np.nan]
# single nan should result in Series
elif len(indexer) == 1:
tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan])
# multiple nans should result in DataFrame
else:
tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan])
def test_constructor_lists_to_object_dtype(self):
# from #1074
d = DataFrame({"a": [np.nan, False]})
assert d["a"].dtype == np.object_
assert not d["a"][1]
def test_constructor_ndarray_categorical_dtype(self):
cat = Categorical(["A", "B", "C"])
arr = np.array(cat).reshape(-1, 1)
arr = np.broadcast_to(arr, (3, 4))
result = DataFrame(arr, dtype=cat.dtype)
expected = DataFrame({0: cat, 1: cat, 2: cat, 3: cat})
tm.assert_frame_equal(result, expected)
def test_constructor_categorical(self):
# GH8626
# dict creation
df = DataFrame({"A": list("abc")}, dtype="category")
expected = Series(list("abc"), dtype="category", name="A")
tm.assert_series_equal(df["A"], expected)
# to_frame
s = Series(list("abc"), dtype="category")
result = s.to_frame()
expected = Series(list("abc"), dtype="category", name=0)
tm.assert_series_equal(result[0], expected)
result = s.to_frame(name="foo")
expected = Series(list("abc"), dtype="category", name="foo")
tm.assert_series_equal(result["foo"], expected)
# list-like creation
df = DataFrame(list("abc"), dtype="category")
expected = Series(list("abc"), dtype="category", name=0)
tm.assert_series_equal(df[0], expected)
def test_construct_from_1item_list_of_categorical(self):
# pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove
# Categorical special case
# ndim != 1
cat = Categorical(list("abc"))
df = DataFrame([cat])
expected = DataFrame([cat.astype(object)])
tm.assert_frame_equal(df, expected)
def test_construct_from_list_of_categoricals(self):
# pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove
# Categorical special case
df = DataFrame([Categorical(list("abc")), Categorical(list("abd"))])
expected = DataFrame([["a", "b", "c"], ["a", "b", "d"]])
tm.assert_frame_equal(df, expected)
def test_from_nested_listlike_mixed_types(self):
# pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove
# Categorical special case
# mixed
df = DataFrame([Categorical(list("abc")), list("def")])
expected = DataFrame([["a", "b", "c"], ["d", "e", "f"]])
tm.assert_frame_equal(df, expected)
def test_construct_from_listlikes_mismatched_lengths(self):
df = DataFrame([Categorical(list("abc")), Categorical(list("abdefg"))])
expected = DataFrame([list("abc"), list("abdefg")])
tm.assert_frame_equal(df, expected)
def test_constructor_categorical_series(self):
items = [1, 2, 3, 1]
exp = Series(items).astype("category")
res = Series(items, dtype="category")
tm.assert_series_equal(res, exp)
items = ["a", "b", "c", "a"]
exp = Series(items).astype("category")
res = Series(items, dtype="category")
tm.assert_series_equal(res, exp)
# insert into frame with different index
# GH 8076
index = date_range("20000101", periods=3)
expected = Series(
Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"])
)
expected.index = index
expected = DataFrame({"x": expected})
df = DataFrame({"x": Series(["a", "b", "c"], dtype="category")}, index=index)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
"dtype",
tm.ALL_NUMERIC_DTYPES
+ tm.DATETIME64_DTYPES
+ tm.TIMEDELTA64_DTYPES
+ tm.BOOL_DTYPES,
)
def test_check_dtype_empty_numeric_column(self, dtype):
# GH24386: Ensure dtypes are set correctly for an empty DataFrame.
# Empty DataFrame is generated via dictionary data with non-overlapping columns.
data = DataFrame({"a": [1, 2]}, columns=["b"], dtype=dtype)
assert data.b.dtype == dtype
@pytest.mark.parametrize(
"dtype", tm.STRING_DTYPES + tm.BYTES_DTYPES + tm.OBJECT_DTYPES
)
def test_check_dtype_empty_string_column(self, request, dtype, using_array_manager):
# GH24386: Ensure dtypes are set correctly for an empty DataFrame.
# Empty DataFrame is generated via dictionary data with non-overlapping columns.
data = DataFrame({"a": [1, 2]}, columns=["b"], dtype=dtype)
if using_array_manager and dtype in tm.BYTES_DTYPES:
# TODO(ArrayManager) astype to bytes dtypes does not yet give object dtype
td.mark_array_manager_not_yet_implemented(request)
assert data.b.dtype.name == "object"
def test_to_frame_with_falsey_names(self):
# GH 16114
result = Series(name=0, dtype=object).to_frame().dtypes
expected = Series({0: object})
tm.assert_series_equal(result, expected)
result = DataFrame(Series(name=0, dtype=object)).dtypes
tm.assert_series_equal(result, expected)
@pytest.mark.arm_slow
@pytest.mark.parametrize("dtype", [None, "uint8", "category"])
def test_constructor_range_dtype(self, dtype):
expected = DataFrame({"A": [0, 1, 2, 3, 4]}, dtype=dtype or "int64")
# GH 26342
result = DataFrame(range(5), columns=["A"], dtype=dtype)
tm.assert_frame_equal(result, expected)
# GH 16804
result = DataFrame({"A": range(5)}, dtype=dtype)
tm.assert_frame_equal(result, expected)
def test_frame_from_list_subclass(self):
# GH21226
class List(list):
pass
expected = DataFrame([[1, 2, 3], [4, 5, 6]])
result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])]))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"extension_arr",
[
Categorical(list("aabbc")),
SparseArray([1, np.nan, np.nan, np.nan]),
IntervalArray([Interval(0, 1), Interval(1, 5)]),
PeriodArray(pd.period_range(start="1/1/2017", end="1/1/2018", freq="M")),
],
)
def test_constructor_with_extension_array(self, extension_arr):
# GH11363
expected = DataFrame(Series(extension_arr))
result = DataFrame(extension_arr)
tm.assert_frame_equal(result, expected)
def test_datetime_date_tuple_columns_from_dict(self):
# GH 10863
v = date.today()
tup = v, v
result = DataFrame({tup: Series(range(3), index=range(3))}, columns=[tup])
expected = DataFrame([0, 1, 2], columns=Index(Series([tup])))
tm.assert_frame_equal(result, expected)
def test_construct_with_two_categoricalindex_series(self):
# GH 14600
s1 = Series([39, 6, 4], index=CategoricalIndex(["female", "male", "unknown"]))
s2 = Series(
[2, 152, 2, 242, 150],
index=CategoricalIndex(["f", "female", "m", "male", "unknown"]),
)
result = DataFrame([s1, s2])
expected = DataFrame(
np.array([[39, 6, 4, np.nan, np.nan], [152.0, 242.0, 150.0, 2.0, 2.0]]),
columns=["female", "male", "unknown", "f", "m"],
)
tm.assert_frame_equal(result, expected)
def test_constructor_series_nonexact_categoricalindex(self):
# GH 42424
ser = Series(range(100))
ser1 = cut(ser, 10).value_counts().head(5)
ser2 = cut(ser, 10).value_counts().tail(5)
result = DataFrame({"1": ser1, "2": ser2})
index = CategoricalIndex(
[
Interval(-0.099, 9.9, closed="right"),
Interval(9.9, 19.8, closed="right"),
Interval(19.8, 29.7, closed="right"),
Interval(29.7, 39.6, closed="right"),
Interval(39.6, 49.5, closed="right"),
Interval(49.5, 59.4, closed="right"),
Interval(59.4, 69.3, closed="right"),
Interval(69.3, 79.2, closed="right"),
Interval(79.2, 89.1, closed="right"),
Interval(89.1, 99, closed="right"),
],
ordered=True,
)
expected = DataFrame(
{"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index
)
tm.assert_frame_equal(expected, result)
def test_from_M8_structured(self):
dates = [(datetime(2012, 9, 9, 0, 0), datetime(2012, 9, 8, 15, 10))]
arr = np.array(dates, dtype=[("Date", "M8[us]"), ("Forecasting", "M8[us]")])
df = DataFrame(arr)
assert df["Date"][0] == dates[0][0]
assert df["Forecasting"][0] == dates[0][1]
s = Series(arr["Date"])
assert isinstance(s[0], Timestamp)
assert s[0] == dates[0][0]
def test_from_datetime_subclass(self):
# GH21142 Verify whether Datetime subclasses are also of dtype datetime
class DatetimeSubclass(datetime):
pass
data = DataFrame({"datetime": [DatetimeSubclass(2020, 1, 1, 1, 1)]})
assert data.datetime.dtype == "datetime64[ns]"
def test_with_mismatched_index_length_raises(self):
# GH#33437
dti = date_range("2016-01-01", periods=3, tz="US/Pacific")
msg = "Shape of passed values|Passed arrays should have the same length"
with pytest.raises(ValueError, match=msg):
DataFrame(dti, index=range(4))
def test_frame_ctor_datetime64_column(self):
rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s")
dates = np.asarray(rng)
df = DataFrame(
{"A": np.random.default_rng(2).standard_normal(len(rng)), "B": dates}
)
assert np.issubdtype(df["B"].dtype, np.dtype("M8[ns]"))
def test_dataframe_constructor_infer_multiindex(self):
index_lists = [["a", "a", "b", "b"], ["x", "y", "x", "y"]]
multi = DataFrame(
np.random.default_rng(2).standard_normal((4, 4)),
index=[np.array(x) for x in index_lists],
)
assert isinstance(multi.index, MultiIndex)
assert not isinstance(multi.columns, MultiIndex)
multi = DataFrame(
np.random.default_rng(2).standard_normal((4, 4)), columns=index_lists
)
assert isinstance(multi.columns, MultiIndex)
@pytest.mark.parametrize(
"input_vals",
[
([1, 2]),
(["1", "2"]),
(list(date_range("1/1/2011", periods=2, freq="h"))),
(list(date_range("1/1/2011", periods=2, freq="h", tz="US/Eastern"))),
([Interval(left=0, right=5)]),
],
)
def test_constructor_list_str(self, input_vals, string_dtype):
# GH#16605
# Ensure that data elements are converted to strings when
# dtype is str, 'str', or 'U'
result = DataFrame({"A": input_vals}, dtype=string_dtype)
expected = DataFrame({"A": input_vals}).astype({"A": string_dtype})
tm.assert_frame_equal(result, expected)
def test_constructor_list_str_na(self, string_dtype):
result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype)
expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("copy", [False, True])
def test_dict_nocopy(
self,
request,
copy,
any_numeric_ea_dtype,
any_numpy_dtype,
using_array_manager,
using_copy_on_write,
):
if (
using_array_manager
and not copy
and any_numpy_dtype not in tm.STRING_DTYPES + tm.BYTES_DTYPES
):
# TODO(ArrayManager) properly honor copy keyword for dict input
td.mark_array_manager_not_yet_implemented(request)
a = np.array([1, 2], dtype=any_numpy_dtype)
b = np.array([3, 4], dtype=any_numpy_dtype)
if b.dtype.kind in ["S", "U"]:
# These get cast, making the checks below more cumbersome
pytest.skip(f"{b.dtype} get cast, making the checks below more cumbersome")
c = pd.array([1, 2], dtype=any_numeric_ea_dtype)
c_orig = c.copy()
df = DataFrame({"a": a, "b": b, "c": c}, copy=copy)
def get_base(obj):
if isinstance(obj, np.ndarray):
return obj.base
elif isinstance(obj.dtype, np.dtype):
# i.e. DatetimeArray, TimedeltaArray
return obj._ndarray.base
else:
raise TypeError
def check_views(c_only: bool = False):
# written to work for either BlockManager or ArrayManager
# Check that the underlying data behind df["c"] is still `c`
# after setting with iloc. Since we don't know which entry in
# df._mgr.arrays corresponds to df["c"], we just check that exactly
# one of these arrays is `c`. GH#38939
assert sum(x is c for x in df._mgr.arrays) == 1
if c_only:
# If we ever stop consolidating in setitem_with_indexer,
# this will become unnecessary.
return
assert (
sum(
get_base(x) is a
for x in df._mgr.arrays
if isinstance(x.dtype, np.dtype)
)
== 1
)
assert (
sum(
get_base(x) is b
for x in df._mgr.arrays
if isinstance(x.dtype, np.dtype)
)
== 1
)
if not copy:
# constructor preserves views
check_views()
# TODO: most of the rest of this test belongs in indexing tests
if lib.is_np_dtype(df.dtypes.iloc[0], "fciuO"):
warn = None
else:
warn = FutureWarning
with tm.assert_produces_warning(warn, match="incompatible dtype"):
df.iloc[0, 0] = 0
df.iloc[0, 1] = 0
if not copy:
check_views(True)
# FIXME(GH#35417): until GH#35417, iloc.setitem into EA values does not preserve
# view, so we have to check in the other direction
df.iloc[:, 2] = pd.array([45, 46], dtype=c.dtype)
assert df.dtypes.iloc[2] == c.dtype
if not copy and not using_copy_on_write:
check_views(True)
if copy:
if a.dtype.kind == "M":
assert a[0] == a.dtype.type(1, "ns")
assert b[0] == b.dtype.type(3, "ns")
else:
assert a[0] == a.dtype.type(1)
assert b[0] == b.dtype.type(3)
# FIXME(GH#35417): enable after GH#35417
assert c[0] == c_orig[0] # i.e. df.iloc[0, 2]=45 did *not* update c
elif not using_copy_on_write:
# TODO: we can call check_views if we stop consolidating
# in setitem_with_indexer
assert c[0] == 45 # i.e. df.iloc[0, 2]=45 *did* update c
# TODO: we can check b[0] == 0 if we stop consolidating in
# setitem_with_indexer (except for datetimelike?)
def test_construct_from_dict_ea_series(self):
# GH#53744 - default of copy=True should also apply for Series with
# extension dtype
ser = Series([1, 2, 3], dtype="Int64")
df = DataFrame({"a": ser})
assert not np.shares_memory(ser.values._data, df["a"].values._data)
def test_from_series_with_name_with_columns(self):
# GH 7893
result = DataFrame(Series(1, name="foo"), columns=["bar"])
expected = DataFrame(columns=["bar"])
tm.assert_frame_equal(result, expected)
def test_nested_list_columns(self):
# GH 14467
result = DataFrame(
[[1, 2, 3], [4, 5, 6]], columns=[["A", "A", "A"], ["a", "b", "c"]]
)
expected = DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("A", "c")]),
)
tm.assert_frame_equal(result, expected)
def test_from_2d_object_array_of_periods_or_intervals(self):
# Period analogue to GH#26825
pi = pd.period_range("2016-04-05", periods=3)
data = pi._data.astype(object).reshape(1, -1)
df = DataFrame(data)
assert df.shape == (1, 3)
assert (df.dtypes == pi.dtype).all()
assert (df == pi).all().all()
ii = pd.IntervalIndex.from_breaks([3, 4, 5, 6])
data2 = ii._data.astype(object).reshape(1, -1)
df2 = DataFrame(data2)
assert df2.shape == (1, 3)
assert (df2.dtypes == ii.dtype).all()
assert (df2 == ii).all().all()
# mixed
data3 = np.r_[data, data2, data, data2].T
df3 = DataFrame(data3)
expected = DataFrame({0: pi, 1: ii, 2: pi, 3: ii})
tm.assert_frame_equal(df3, expected)
@pytest.mark.parametrize(
"col_a, col_b",
[
([[1], [2]], np.array([[1], [2]])),
(np.array([[1], [2]]), [[1], [2]]),
(np.array([[1], [2]]), np.array([[1], [2]])),
],
)
def test_error_from_2darray(self, col_a, col_b):
msg = "Per-column arrays must each be 1-dimensional"
with pytest.raises(ValueError, match=msg):
DataFrame({"a": col_a, "b": col_b})
def test_from_dict_with_missing_copy_false(self):
# GH#45369 filled columns should not be views of one another
df = DataFrame(index=[1, 2, 3], columns=["a", "b", "c"], copy=False)
assert not np.shares_memory(df["a"]._values, df["b"]._values)
df.iloc[0, 0] = 0
expected = DataFrame(
{
"a": [0, np.nan, np.nan],
"b": [np.nan, np.nan, np.nan],
"c": [np.nan, np.nan, np.nan],
},
index=[1, 2, 3],
dtype=object,
)
tm.assert_frame_equal(df, expected)
def test_construction_empty_array_multi_column_raises(self):
# GH#46822
msg = r"Shape of passed values is \(0, 1\), indices imply \(0, 2\)"
with pytest.raises(ValueError, match=msg):
DataFrame(data=np.array([]), columns=["a", "b"])
def test_construct_with_strings_and_none(self):
# GH#32218
df = DataFrame(["1", "2", None], columns=["a"], dtype="str")
expected = DataFrame({"a": ["1", "2", None]}, dtype="str")
tm.assert_frame_equal(df, expected)
def test_frame_string_inference(self):
# GH#54430
pytest.importorskip("pyarrow")
dtype = "string[pyarrow_numpy]"
expected = DataFrame(
{"a": ["a", "b"]}, dtype=dtype, columns=Index(["a"], dtype=dtype)
)
with pd.option_context("future.infer_string", True):
df = DataFrame({"a": ["a", "b"]})
tm.assert_frame_equal(df, expected)
expected = DataFrame(
{"a": ["a", "b"]},
dtype=dtype,
columns=Index(["a"], dtype=dtype),
index=Index(["x", "y"], dtype=dtype),
)
with pd.option_context("future.infer_string", True):
df = DataFrame({"a": ["a", "b"]}, index=["x", "y"])
tm.assert_frame_equal(df, expected)
expected = DataFrame(
{"a": ["a", 1]}, dtype="object", columns=Index(["a"], dtype=dtype)
)
with pd.option_context("future.infer_string", True):
df = DataFrame({"a": ["a", 1]})
tm.assert_frame_equal(df, expected)
expected = DataFrame(
{"a": ["a", "b"]}, dtype="object", columns=Index(["a"], dtype=dtype)
)
with pd.option_context("future.infer_string", True):
df = DataFrame({"a": ["a", "b"]}, dtype="object")
tm.assert_frame_equal(df, expected)
def test_frame_string_inference_array_string_dtype(self):
# GH#54496
pytest.importorskip("pyarrow")
dtype = "string[pyarrow_numpy]"
expected = DataFrame(
{"a": ["a", "b"]}, dtype=dtype, columns=Index(["a"], dtype=dtype)
)
with pd.option_context("future.infer_string", True):
df = DataFrame({"a": np.array(["a", "b"])})
tm.assert_frame_equal(df, expected)
expected = DataFrame({0: ["a", "b"], 1: ["c", "d"]}, dtype=dtype)
with pd.option_context("future.infer_string", True):
df = DataFrame(np.array([["a", "c"], ["b", "d"]]))
tm.assert_frame_equal(df, expected)
expected = DataFrame(
{"a": ["a", "b"], "b": ["c", "d"]},
dtype=dtype,
columns=Index(["a", "b"], dtype=dtype),
)
with pd.option_context("future.infer_string", True):
df = DataFrame(np.array([["a", "c"], ["b", "d"]]), columns=["a", "b"])
tm.assert_frame_equal(df, expected)
def test_frame_string_inference_block_dim(self):
# GH#55363
pytest.importorskip("pyarrow")
with pd.option_context("future.infer_string", True):
df = DataFrame(np.array([["hello", "goodbye"], ["hello", "Hello"]]))
assert df._mgr.blocks[0].ndim == 2
def test_inference_on_pandas_objects(self):
# GH#56012
idx = Index([Timestamp("2019-12-31")], dtype=object)
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
result = DataFrame(idx, columns=["a"])
assert result.dtypes.iloc[0] != np.object_
result = DataFrame({"a": idx})
assert result.dtypes.iloc[0] == np.object_
ser = Series([Timestamp("2019-12-31")], dtype=object)
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
result = DataFrame(ser, columns=["a"])
assert result.dtypes.iloc[0] != np.object_
result = DataFrame({"a": ser})
assert result.dtypes.iloc[0] == np.object_
class TestDataFrameConstructorIndexInference:
def test_frame_from_dict_of_series_overlapping_monthly_period_indexes(self):
rng1 = pd.period_range("1/1/1999", "1/1/2012", freq="M")
s1 = Series(np.random.default_rng(2).standard_normal(len(rng1)), rng1)
rng2 = pd.period_range("1/1/1980", "12/1/2001", freq="M")
s2 = Series(np.random.default_rng(2).standard_normal(len(rng2)), rng2)
df = DataFrame({"s1": s1, "s2": s2})
exp = pd.period_range("1/1/1980", "1/1/2012", freq="M")
tm.assert_index_equal(df.index, exp)
def test_frame_from_dict_with_mixed_tzaware_indexes(self):
# GH#44091
dti = date_range("2016-01-01", periods=3)
ser1 = Series(range(3), index=dti)
ser2 = Series(range(3), index=dti.tz_localize("UTC"))
ser3 = Series(range(3), index=dti.tz_localize("US/Central"))
ser4 = Series(range(3))
# no tz-naive, but we do have mixed tzs and a non-DTI
df1 = DataFrame({"A": ser2, "B": ser3, "C": ser4})
exp_index = Index(
list(ser2.index) + list(ser3.index) + list(ser4.index), dtype=object
)
tm.assert_index_equal(df1.index, exp_index)
df2 = DataFrame({"A": ser2, "C": ser4, "B": ser3})
exp_index3 = Index(
list(ser2.index) + list(ser4.index) + list(ser3.index), dtype=object
)
tm.assert_index_equal(df2.index, exp_index3)
df3 = DataFrame({"B": ser3, "A": ser2, "C": ser4})
exp_index3 = Index(
list(ser3.index) + list(ser2.index) + list(ser4.index), dtype=object
)
tm.assert_index_equal(df3.index, exp_index3)
df4 = DataFrame({"C": ser4, "B": ser3, "A": ser2})
exp_index4 = Index(
list(ser4.index) + list(ser3.index) + list(ser2.index), dtype=object
)
tm.assert_index_equal(df4.index, exp_index4)
# TODO: not clear if these raising is desired (no extant tests),
# but this is de facto behavior 2021-12-22
msg = "Cannot join tz-naive with tz-aware DatetimeIndex"
with pytest.raises(TypeError, match=msg):
DataFrame({"A": ser2, "B": ser3, "C": ser4, "D": ser1})
with pytest.raises(TypeError, match=msg):
DataFrame({"A": ser2, "B": ser3, "D": ser1})
with pytest.raises(TypeError, match=msg):
DataFrame({"D": ser1, "A": ser2, "B": ser3})
@pytest.mark.parametrize(
"key_val, col_vals, col_type",
[
["3", ["3", "4"], "utf8"],
[3, [3, 4], "int8"],
],
)
def test_dict_data_arrow_column_expansion(self, key_val, col_vals, col_type):
# GH 53617
pa = pytest.importorskip("pyarrow")
cols = pd.arrays.ArrowExtensionArray(
pa.array(col_vals, type=pa.dictionary(pa.int8(), getattr(pa, col_type)()))
)
result = DataFrame({key_val: [1, 2]}, columns=cols)
expected = DataFrame([[1, np.nan], [2, np.nan]], columns=cols)
expected.isetitem(1, expected.iloc[:, 1].astype(object))
tm.assert_frame_equal(result, expected)
class TestDataFrameConstructorWithDtypeCoercion:
def test_floating_values_integer_dtype(self):
# GH#40110 make DataFrame behavior with arraylike floating data and
# inty dtype match Series behavior
arr = np.random.default_rng(2).standard_normal((10, 5))
# GH#49599 in 2.0 we raise instead of either
# a) silently ignoring dtype and returningfloat (the old Series behavior) or
# b) rounding (the old DataFrame behavior)
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
DataFrame(arr, dtype="i8")
df = DataFrame(arr.round(), dtype="i8")
assert (df.dtypes == "i8").all()
# with NaNs, we go through a different path with a different warning
arr[0, 0] = np.nan
msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
with pytest.raises(IntCastingNaNError, match=msg):
DataFrame(arr, dtype="i8")
with pytest.raises(IntCastingNaNError, match=msg):
Series(arr[0], dtype="i8")
# The future (raising) behavior matches what we would get via astype:
msg = r"Cannot convert non-finite values \(NA or inf\) to integer"
with pytest.raises(IntCastingNaNError, match=msg):
DataFrame(arr).astype("i8")
with pytest.raises(IntCastingNaNError, match=msg):
Series(arr[0]).astype("i8")
class TestDataFrameConstructorWithDatetimeTZ:
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_construction_preserves_tzaware_dtypes(self, tz):
# after GH#7822
# these retain the timezones on dict construction
dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
dr_tz = dr.tz_localize(tz)
df = DataFrame({"A": "foo", "B": dr_tz}, index=dr)
tz_expected = DatetimeTZDtype("ns", dr_tz.tzinfo)
assert df["B"].dtype == tz_expected
# GH#2810 (with timezones)
datetimes_naive = [ts.to_pydatetime() for ts in dr]
datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz]
df = DataFrame({"dr": dr})
df["dr_tz"] = dr_tz
df["datetimes_naive"] = datetimes_naive
df["datetimes_with_tz"] = datetimes_with_tz
result = df.dtypes
expected = Series(
[
np.dtype("datetime64[ns]"),
DatetimeTZDtype(tz=tz),
np.dtype("datetime64[ns]"),
DatetimeTZDtype(tz=tz),
],
index=["dr", "dr_tz", "datetimes_naive", "datetimes_with_tz"],
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("pydt", [True, False])
def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture, pydt):
# GH#25843, GH#41555, GH#33401
tz = tz_aware_fixture
ts = Timestamp("2019", tz=tz)
if pydt:
ts = ts.to_pydatetime()
msg = (
"Cannot convert timezone-aware data to timezone-naive dtype. "
r"Use pd.Series\(values\).dt.tz_localize\(None\) instead."
)
with pytest.raises(ValueError, match=msg):
DataFrame({0: [ts]}, dtype="datetime64[ns]")
msg2 = "Cannot unbox tzaware Timestamp to tznaive dtype"
with pytest.raises(TypeError, match=msg2):
DataFrame({0: ts}, index=[0], dtype="datetime64[ns]")
with pytest.raises(ValueError, match=msg):
DataFrame([ts], dtype="datetime64[ns]")
with pytest.raises(ValueError, match=msg):
DataFrame(np.array([ts], dtype=object), dtype="datetime64[ns]")
with pytest.raises(TypeError, match=msg2):
DataFrame(ts, index=[0], columns=[0], dtype="datetime64[ns]")
with pytest.raises(ValueError, match=msg):
DataFrame([Series([ts])], dtype="datetime64[ns]")
with pytest.raises(ValueError, match=msg):
DataFrame([[ts]], columns=[0], dtype="datetime64[ns]")
def test_from_dict(self):
# 8260
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
dr = date_range("20130110", periods=3)
# construction
df = DataFrame({"A": idx, "B": dr})
assert df["A"].dtype, "M8[ns, US/Eastern"
assert df["A"].name == "A"
tm.assert_series_equal(df["A"], Series(idx, name="A"))
tm.assert_series_equal(df["B"], Series(dr, name="B"))
def test_from_index(self):
# from index
idx2 = date_range("20130101", periods=3, tz="US/Eastern", name="foo")
df2 = DataFrame(idx2)
tm.assert_series_equal(df2["foo"], Series(idx2, name="foo"))
df2 = DataFrame(Series(idx2))
tm.assert_series_equal(df2["foo"], Series(idx2, name="foo"))
idx2 = date_range("20130101", periods=3, tz="US/Eastern")
df2 = DataFrame(idx2)
tm.assert_series_equal(df2[0], Series(idx2, name=0))
df2 = DataFrame(Series(idx2))
tm.assert_series_equal(df2[0], Series(idx2, name=0))
def test_frame_dict_constructor_datetime64_1680(self):
dr = date_range("1/1/2012", periods=10)
s = Series(dr, index=dr)
# it works!
DataFrame({"a": "foo", "b": s}, index=dr)
DataFrame({"a": "foo", "b": s.values}, index=dr)
def test_frame_datetime64_mixed_index_ctor_1681(self):
dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
ts = Series(dr)
# it works!
d = DataFrame({"A": "foo", "B": ts}, index=dr)
assert d["B"].isna().all()
def test_frame_timeseries_column(self):
# GH19157
dr = date_range(
start="20130101T10:00:00", periods=3, freq="min", tz="US/Eastern"
)
result = DataFrame(dr, columns=["timestamps"])
expected = DataFrame(
{
"timestamps": [
Timestamp("20130101T10:00:00", tz="US/Eastern"),
Timestamp("20130101T10:01:00", tz="US/Eastern"),
Timestamp("20130101T10:02:00", tz="US/Eastern"),
]
}
)
tm.assert_frame_equal(result, expected)
def test_nested_dict_construction(self):
# GH22227
columns = ["Nevada", "Ohio"]
pop = {
"Nevada": {2001: 2.4, 2002: 2.9},
"Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6},
}
result = DataFrame(pop, index=[2001, 2002, 2003], columns=columns)
expected = DataFrame(
[(2.4, 1.7), (2.9, 3.6), (np.nan, np.nan)],
columns=columns,
index=Index([2001, 2002, 2003]),
)
tm.assert_frame_equal(result, expected)
def test_from_tzaware_object_array(self):
# GH#26825 2D object array of tzaware timestamps should not raise
dti = date_range("2016-04-05 04:30", periods=3, tz="UTC")
data = dti._data.astype(object).reshape(1, -1)
df = DataFrame(data)
assert df.shape == (1, 3)
assert (df.dtypes == dti.dtype).all()
assert (df == dti).all().all()
def test_from_tzaware_mixed_object_array(self):
# GH#26825
arr = np.array(
[
[
Timestamp("2013-01-01 00:00:00"),
Timestamp("2013-01-02 00:00:00"),
Timestamp("2013-01-03 00:00:00"),
],
[
Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"),
pd.NaT,
Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"),
],
[
Timestamp("2013-01-01 00:00:00+0100", tz="CET"),
pd.NaT,
Timestamp("2013-01-03 00:00:00+0100", tz="CET"),
],
],
dtype=object,
).T
res = DataFrame(arr, columns=["A", "B", "C"])
expected_dtypes = [
"datetime64[ns]",
"datetime64[ns, US/Eastern]",
"datetime64[ns, CET]",
]
assert (res.dtypes == expected_dtypes).all()
def test_from_2d_ndarray_with_dtype(self):
# GH#12513
array_dim2 = np.arange(10).reshape((5, 2))
df = DataFrame(array_dim2, dtype="datetime64[ns, UTC]")
expected = DataFrame(array_dim2).astype("datetime64[ns, UTC]")
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("typ", [set, frozenset])
def test_construction_from_set_raises(self, typ):
# https://github.com/pandas-dev/pandas/issues/32582
values = typ({1, 2, 3})
msg = f"'{typ.__name__}' type is unordered"
with pytest.raises(TypeError, match=msg):
DataFrame({"a": values})
with pytest.raises(TypeError, match=msg):
Series(values)
def test_construction_from_ndarray_datetimelike(self):
# ensure the underlying arrays are properly wrapped as EA when
# constructed from 2D ndarray
arr = np.arange(0, 12, dtype="datetime64[ns]").reshape(4, 3)
df = DataFrame(arr)
assert all(isinstance(arr, DatetimeArray) for arr in df._mgr.arrays)
def test_construction_from_ndarray_with_eadtype_mismatched_columns(self):
arr = np.random.default_rng(2).standard_normal((10, 2))
dtype = pd.array([2.0]).dtype
msg = r"len\(arrays\) must match len\(columns\)"
with pytest.raises(ValueError, match=msg):
DataFrame(arr, columns=["foo"], dtype=dtype)
arr2 = pd.array([2.0, 3.0, 4.0])
with pytest.raises(ValueError, match=msg):
DataFrame(arr2, columns=["foo", "bar"])
def test_columns_indexes_raise_on_sets(self):
# GH 47215
data = [[1, 2, 3], [4, 5, 6]]
with pytest.raises(ValueError, match="index cannot be a set"):
DataFrame(data, index={"a", "b"})
with pytest.raises(ValueError, match="columns cannot be a set"):
DataFrame(data, columns={"a", "b", "c"})
def get1(obj): # TODO: make a helper in tm?
if isinstance(obj, Series):
return obj.iloc[0]
else:
return obj.iloc[0, 0]
class TestFromScalar:
@pytest.fixture(params=[list, dict, None])
def box(self, request):
return request.param
@pytest.fixture
def constructor(self, frame_or_series, box):
extra = {"index": range(2)}
if frame_or_series is DataFrame:
extra["columns"] = ["A"]
if box is None:
return functools.partial(frame_or_series, **extra)
elif box is dict:
if frame_or_series is Series:
return lambda x, **kwargs: frame_or_series(
{0: x, 1: x}, **extra, **kwargs
)
else:
return lambda x, **kwargs: frame_or_series({"A": x}, **extra, **kwargs)
elif frame_or_series is Series:
return lambda x, **kwargs: frame_or_series([x, x], **extra, **kwargs)
else:
return lambda x, **kwargs: frame_or_series({"A": [x, x]}, **extra, **kwargs)
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
def test_from_nat_scalar(self, dtype, constructor):
obj = constructor(pd.NaT, dtype=dtype)
assert np.all(obj.dtypes == dtype)
assert np.all(obj.isna())
def test_from_timedelta_scalar_preserves_nanos(self, constructor):
td = Timedelta(1)
obj = constructor(td, dtype="m8[ns]")
assert get1(obj) == td
def test_from_timestamp_scalar_preserves_nanos(self, constructor, fixed_now_ts):
ts = fixed_now_ts + Timedelta(1)
obj = constructor(ts, dtype="M8[ns]")
assert get1(obj) == ts
def test_from_timedelta64_scalar_object(self, constructor):
td = Timedelta(1)
td64 = td.to_timedelta64()
obj = constructor(td64, dtype=object)
assert isinstance(get1(obj), np.timedelta64)
@pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64])
def test_from_scalar_datetimelike_mismatched(self, constructor, cls):
scalar = cls("NaT", "ns")
dtype = {np.datetime64: "m8[ns]", np.timedelta64: "M8[ns]"}[cls]
if cls is np.datetime64:
msg1 = "Invalid type for timedelta scalar: <class 'numpy.datetime64'>"
else:
msg1 = "<class 'numpy.timedelta64'> is not convertible to datetime"
msg = "|".join(["Cannot cast", msg1])
with pytest.raises(TypeError, match=msg):
constructor(scalar, dtype=dtype)
scalar = cls(4, "ns")
with pytest.raises(TypeError, match=msg):
constructor(scalar, dtype=dtype)
@pytest.mark.parametrize("cls", [datetime, np.datetime64])
def test_from_out_of_bounds_ns_datetime(
self, constructor, cls, request, box, frame_or_series
):
# scalar that won't fit in nanosecond dt64, but will fit in microsecond
if box is list or (frame_or_series is Series and box is dict):
mark = pytest.mark.xfail(
reason="Timestamp constructor has been updated to cast dt64 to "
"non-nano, but DatetimeArray._from_sequence has not",
strict=True,
)
request.applymarker(mark)
scalar = datetime(9999, 1, 1)
exp_dtype = "M8[us]" # pydatetime objects default to this reso
if cls is np.datetime64:
scalar = np.datetime64(scalar, "D")
exp_dtype = "M8[s]" # closest reso to input
result = constructor(scalar)
item = get1(result)
dtype = tm.get_dtype(result)
assert type(item) is Timestamp
assert item.asm8.dtype == exp_dtype
assert dtype == exp_dtype
@pytest.mark.skip_ubsan
def test_out_of_s_bounds_datetime64(self, constructor):
scalar = np.datetime64(np.iinfo(np.int64).max, "D")
result = constructor(scalar)
item = get1(result)
assert type(item) is np.datetime64
dtype = tm.get_dtype(result)
assert dtype == object
@pytest.mark.parametrize("cls", [timedelta, np.timedelta64])
def test_from_out_of_bounds_ns_timedelta(
self, constructor, cls, request, box, frame_or_series
):
# scalar that won't fit in nanosecond td64, but will fit in microsecond
if box is list or (frame_or_series is Series and box is dict):
mark = pytest.mark.xfail(
reason="TimedeltaArray constructor has been updated to cast td64 "
"to non-nano, but TimedeltaArray._from_sequence has not",
strict=True,
)
request.applymarker(mark)
scalar = datetime(9999, 1, 1) - datetime(1970, 1, 1)
exp_dtype = "m8[us]" # smallest reso that fits
if cls is np.timedelta64:
scalar = np.timedelta64(scalar, "D")
exp_dtype = "m8[s]" # closest reso to input
result = constructor(scalar)
item = get1(result)
dtype = tm.get_dtype(result)
assert type(item) is Timedelta
assert item.asm8.dtype == exp_dtype
assert dtype == exp_dtype
@pytest.mark.skip_ubsan
@pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64])
def test_out_of_s_bounds_timedelta64(self, constructor, cls):
scalar = cls(np.iinfo(np.int64).max, "D")
result = constructor(scalar)
item = get1(result)
assert type(item) is cls
dtype = tm.get_dtype(result)
assert dtype == object
def test_tzaware_data_tznaive_dtype(self, constructor, box, frame_or_series):
tz = "US/Eastern"
ts = Timestamp("2019", tz=tz)
if box is None or (frame_or_series is DataFrame and box is dict):
msg = "Cannot unbox tzaware Timestamp to tznaive dtype"
err = TypeError
else:
msg = (
"Cannot convert timezone-aware data to timezone-naive dtype. "
r"Use pd.Series\(values\).dt.tz_localize\(None\) instead."
)
err = ValueError
with pytest.raises(err, match=msg):
constructor(ts, dtype="M8[ns]")
# TODO: better location for this test?
class TestAllowNonNano:
# Until 2.0, we do not preserve non-nano dt64/td64 when passed as ndarray,
# but do preserve it when passed as DTA/TDA
@pytest.fixture(params=[True, False])
def as_td(self, request):
return request.param
@pytest.fixture
def arr(self, as_td):
values = np.arange(5).astype(np.int64).view("M8[s]")
if as_td:
values = values - values[0]
return TimedeltaArray._simple_new(values, dtype=values.dtype)
else:
return DatetimeArray._simple_new(values, dtype=values.dtype)
def test_index_allow_non_nano(self, arr):
idx = Index(arr)
assert idx.dtype == arr.dtype
def test_dti_tdi_allow_non_nano(self, arr, as_td):
if as_td:
idx = pd.TimedeltaIndex(arr)
else:
idx = DatetimeIndex(arr)
assert idx.dtype == arr.dtype
def test_series_allow_non_nano(self, arr):
ser = Series(arr)
assert ser.dtype == arr.dtype
def test_frame_allow_non_nano(self, arr):
df = DataFrame(arr)
assert df.dtypes[0] == arr.dtype
def test_frame_from_dict_allow_non_nano(self, arr):
df = DataFrame({0: arr})
assert df.dtypes[0] == arr.dtype