You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
7.2 KiB
219 lines
7.2 KiB
6 months ago
|
import operator
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
CategoricalIndex,
|
||
|
DataFrame,
|
||
|
Interval,
|
||
|
Series,
|
||
|
isnull,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameLogicalOperators:
|
||
|
# &, |, ^
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"left, right, op, expected",
|
||
|
[
|
||
|
(
|
||
|
[True, False, np.nan],
|
||
|
[True, False, True],
|
||
|
operator.and_,
|
||
|
[True, False, False],
|
||
|
),
|
||
|
(
|
||
|
[True, False, True],
|
||
|
[True, False, np.nan],
|
||
|
operator.and_,
|
||
|
[True, False, False],
|
||
|
),
|
||
|
(
|
||
|
[True, False, np.nan],
|
||
|
[True, False, True],
|
||
|
operator.or_,
|
||
|
[True, False, False],
|
||
|
),
|
||
|
(
|
||
|
[True, False, True],
|
||
|
[True, False, np.nan],
|
||
|
operator.or_,
|
||
|
[True, False, True],
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_logical_operators_nans(self, left, right, op, expected, frame_or_series):
|
||
|
# GH#13896
|
||
|
result = op(frame_or_series(left), frame_or_series(right))
|
||
|
expected = frame_or_series(expected)
|
||
|
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_logical_ops_empty_frame(self):
|
||
|
# GH#5808
|
||
|
# empty frames, non-mixed dtype
|
||
|
df = DataFrame(index=[1])
|
||
|
|
||
|
result = df & df
|
||
|
tm.assert_frame_equal(result, df)
|
||
|
|
||
|
result = df | df
|
||
|
tm.assert_frame_equal(result, df)
|
||
|
|
||
|
df2 = DataFrame(index=[1, 2])
|
||
|
result = df & df2
|
||
|
tm.assert_frame_equal(result, df2)
|
||
|
|
||
|
dfa = DataFrame(index=[1], columns=["A"])
|
||
|
|
||
|
result = dfa & dfa
|
||
|
expected = DataFrame(False, index=[1], columns=["A"])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_logical_ops_bool_frame(self):
|
||
|
# GH#5808
|
||
|
df1a_bool = DataFrame(True, index=[1], columns=["A"])
|
||
|
|
||
|
result = df1a_bool & df1a_bool
|
||
|
tm.assert_frame_equal(result, df1a_bool)
|
||
|
|
||
|
result = df1a_bool | df1a_bool
|
||
|
tm.assert_frame_equal(result, df1a_bool)
|
||
|
|
||
|
def test_logical_ops_int_frame(self):
|
||
|
# GH#5808
|
||
|
df1a_int = DataFrame(1, index=[1], columns=["A"])
|
||
|
df1a_bool = DataFrame(True, index=[1], columns=["A"])
|
||
|
|
||
|
result = df1a_int | df1a_bool
|
||
|
tm.assert_frame_equal(result, df1a_bool)
|
||
|
|
||
|
# Check that this matches Series behavior
|
||
|
res_ser = df1a_int["A"] | df1a_bool["A"]
|
||
|
tm.assert_series_equal(res_ser, df1a_bool["A"])
|
||
|
|
||
|
def test_logical_ops_invalid(self, using_infer_string):
|
||
|
# GH#5808
|
||
|
|
||
|
df1 = DataFrame(1.0, index=[1], columns=["A"])
|
||
|
df2 = DataFrame(True, index=[1], columns=["A"])
|
||
|
msg = re.escape("unsupported operand type(s) for |: 'float' and 'bool'")
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df1 | df2
|
||
|
|
||
|
df1 = DataFrame("foo", index=[1], columns=["A"])
|
||
|
df2 = DataFrame(True, index=[1], columns=["A"])
|
||
|
msg = re.escape("unsupported operand type(s) for |: 'str' and 'bool'")
|
||
|
if using_infer_string:
|
||
|
import pyarrow as pa
|
||
|
|
||
|
with pytest.raises(pa.lib.ArrowNotImplementedError, match="|has no kernel"):
|
||
|
df1 | df2
|
||
|
else:
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df1 | df2
|
||
|
|
||
|
def test_logical_operators(self):
|
||
|
def _check_bin_op(op):
|
||
|
result = op(df1, df2)
|
||
|
expected = DataFrame(
|
||
|
op(df1.values, df2.values), index=df1.index, columns=df1.columns
|
||
|
)
|
||
|
assert result.values.dtype == np.bool_
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def _check_unary_op(op):
|
||
|
result = op(df1)
|
||
|
expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns)
|
||
|
assert result.values.dtype == np.bool_
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
df1 = {
|
||
|
"a": {"a": True, "b": False, "c": False, "d": True, "e": True},
|
||
|
"b": {"a": False, "b": True, "c": False, "d": False, "e": False},
|
||
|
"c": {"a": False, "b": False, "c": True, "d": False, "e": False},
|
||
|
"d": {"a": True, "b": False, "c": False, "d": True, "e": True},
|
||
|
"e": {"a": True, "b": False, "c": False, "d": True, "e": True},
|
||
|
}
|
||
|
|
||
|
df2 = {
|
||
|
"a": {"a": True, "b": False, "c": True, "d": False, "e": False},
|
||
|
"b": {"a": False, "b": True, "c": False, "d": False, "e": False},
|
||
|
"c": {"a": True, "b": False, "c": True, "d": False, "e": False},
|
||
|
"d": {"a": False, "b": False, "c": False, "d": True, "e": False},
|
||
|
"e": {"a": False, "b": False, "c": False, "d": False, "e": True},
|
||
|
}
|
||
|
|
||
|
df1 = DataFrame(df1)
|
||
|
df2 = DataFrame(df2)
|
||
|
|
||
|
_check_bin_op(operator.and_)
|
||
|
_check_bin_op(operator.or_)
|
||
|
_check_bin_op(operator.xor)
|
||
|
|
||
|
_check_unary_op(operator.inv) # TODO: belongs elsewhere
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
|
||
|
def test_logical_with_nas(self):
|
||
|
d = DataFrame({"a": [np.nan, False], "b": [True, True]})
|
||
|
|
||
|
# GH4947
|
||
|
# bool comparisons should return bool
|
||
|
result = d["a"] | d["b"]
|
||
|
expected = Series([False, True])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# GH4604, automatic casting here
|
||
|
result = d["a"].fillna(False) | d["b"]
|
||
|
expected = Series([True, True])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
msg = "The 'downcast' keyword in fillna is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = d["a"].fillna(False, downcast=False) | d["b"]
|
||
|
expected = Series([True, True])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_logical_ops_categorical_columns(self):
|
||
|
# GH#38367
|
||
|
intervals = [Interval(1, 2), Interval(3, 4)]
|
||
|
data = DataFrame(
|
||
|
[[1, np.nan], [2, np.nan]],
|
||
|
columns=CategoricalIndex(
|
||
|
intervals, categories=intervals + [Interval(5, 6)]
|
||
|
),
|
||
|
)
|
||
|
mask = DataFrame(
|
||
|
[[False, False], [False, False]], columns=data.columns, dtype=bool
|
||
|
)
|
||
|
result = mask | isnull(data)
|
||
|
expected = DataFrame(
|
||
|
[[False, True], [False, True]],
|
||
|
columns=CategoricalIndex(
|
||
|
intervals, categories=intervals + [Interval(5, 6)]
|
||
|
),
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_int_dtype_different_index_not_bool(self):
|
||
|
# GH 52500
|
||
|
df1 = DataFrame([1, 2, 3], index=[10, 11, 23], columns=["a"])
|
||
|
df2 = DataFrame([10, 20, 30], index=[11, 10, 23], columns=["a"])
|
||
|
result = np.bitwise_xor(df1, df2)
|
||
|
expected = DataFrame([21, 8, 29], index=[10, 11, 23], columns=["a"])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df1 ^ df2
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_different_dtypes_different_index_raises(self):
|
||
|
# GH 52538
|
||
|
df1 = DataFrame([1, 2], index=["a", "b"])
|
||
|
df2 = DataFrame([3, 4], index=["b", "c"])
|
||
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
||
|
df1 & df2
|