You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

312 lines
10 KiB

6 months ago
from functools import partial
import re
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_extension_array_dtype
dtypes = [
"int64",
"Int64",
{"A": "int64", "B": "Int64"},
]
@pytest.mark.parametrize("dtype", dtypes)
def test_unary_unary(dtype):
# unary input, unary output
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result = np.positive(df)
expected = pd.DataFrame(
np.positive(values), index=df.index, columns=df.columns
).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_unary_binary(request, dtype):
# unary input, binary output
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
request.applymarker(
pytest.mark.xfail(
reason="Extension / mixed with multiple outputs not implemented."
)
)
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result_pandas = np.modf(df)
assert isinstance(result_pandas, tuple)
assert len(result_pandas) == 2
expected_numpy = np.modf(values)
for result, b in zip(result_pandas, expected_numpy):
expected = pd.DataFrame(b, index=df.index, columns=df.columns)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_binary_input_dispatch_binop(dtype):
# binop ufuncs are dispatched to our dunder methods.
values = np.array([[-1, -1], [1, 1]], dtype="int64")
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
result = np.add(df, df)
expected = pd.DataFrame(
np.add(values, values), index=df.index, columns=df.columns
).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"func,arg,expected",
[
(np.add, 1, [2, 3, 4, 5]),
(
partial(np.add, where=[[False, True], [True, False]]),
np.array([[1, 1], [1, 1]]),
[0, 3, 4, 0],
),
(np.power, np.array([[1, 1], [2, 2]]), [1, 2, 9, 16]),
(np.subtract, 2, [-1, 0, 1, 2]),
(
partial(np.negative, where=np.array([[False, True], [True, False]])),
None,
[0, -2, -3, 0],
),
],
)
def test_ufunc_passes_args(func, arg, expected):
# GH#40662
arr = np.array([[1, 2], [3, 4]])
df = pd.DataFrame(arr)
result_inplace = np.zeros_like(arr)
# 1-argument ufunc
if arg is None:
result = func(df, out=result_inplace)
else:
result = func(df, arg, out=result_inplace)
expected = np.array(expected).reshape(2, 2)
tm.assert_numpy_array_equal(result_inplace, expected)
expected = pd.DataFrame(expected)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype_a", dtypes)
@pytest.mark.parametrize("dtype_b", dtypes)
def test_binary_input_aligns_columns(request, dtype_a, dtype_b):
if (
is_extension_array_dtype(dtype_a)
or isinstance(dtype_a, dict)
or is_extension_array_dtype(dtype_b)
or isinstance(dtype_b, dict)
):
request.applymarker(
pytest.mark.xfail(
reason="Extension / mixed with multiple inputs not implemented."
)
)
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a)
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict):
dtype_b = dtype_b.copy()
dtype_b["C"] = dtype_b.pop("B")
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b)
# As of 2.0, align first before applying the ufunc
result = np.heaviside(df1, df2)
expected = np.heaviside(
np.array([[1, 3, np.nan], [2, 4, np.nan]]),
np.array([[1, np.nan, 3], [2, np.nan, 4]]),
)
expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"])
tm.assert_frame_equal(result, expected)
result = np.heaviside(df1, df2.values)
expected = pd.DataFrame([[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", dtypes)
def test_binary_input_aligns_index(request, dtype):
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
request.applymarker(
pytest.mark.xfail(
reason="Extension / mixed with multiple inputs not implemented."
)
)
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype)
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype)
result = np.heaviside(df1, df2)
expected = np.heaviside(
np.array([[1, 3], [3, 4], [np.nan, np.nan]]),
np.array([[1, 3], [np.nan, np.nan], [3, 4]]),
)
# TODO(FloatArray): this will be Float64Dtype.
expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"])
tm.assert_frame_equal(result, expected)
result = np.heaviside(df1, df2.values)
expected = pd.DataFrame(
[[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"], index=["a", "b"]
)
tm.assert_frame_equal(result, expected)
def test_binary_frame_series_raises():
# We don't currently implement
df = pd.DataFrame({"A": [1, 2]})
with pytest.raises(NotImplementedError, match="logaddexp"):
np.logaddexp(df, df["A"])
with pytest.raises(NotImplementedError, match="logaddexp"):
np.logaddexp(df["A"], df)
def test_unary_accumulate_axis():
# https://github.com/pandas-dev/pandas/issues/39259
df = pd.DataFrame({"a": [1, 3, 2, 4]})
result = np.maximum.accumulate(df)
expected = pd.DataFrame({"a": [1, 3, 3, 4]})
tm.assert_frame_equal(result, expected)
df = pd.DataFrame({"a": [1, 3, 2, 4], "b": [0.1, 4.0, 3.0, 2.0]})
result = np.maximum.accumulate(df)
# in theory could preserve int dtype for default axis=0
expected = pd.DataFrame({"a": [1.0, 3.0, 3.0, 4.0], "b": [0.1, 4.0, 4.0, 4.0]})
tm.assert_frame_equal(result, expected)
result = np.maximum.accumulate(df, axis=0)
tm.assert_frame_equal(result, expected)
result = np.maximum.accumulate(df, axis=1)
expected = pd.DataFrame({"a": [1.0, 3.0, 2.0, 4.0], "b": [1.0, 4.0, 3.0, 4.0]})
tm.assert_frame_equal(result, expected)
def test_frame_outer_disallowed():
df = pd.DataFrame({"A": [1, 2]})
with pytest.raises(NotImplementedError, match=""):
# deprecation enforced in 2.0
np.subtract.outer(df, df)
def test_alignment_deprecation_enforced():
# Enforced in 2.0
# https://github.com/pandas-dev/pandas/issues/39184
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
s1 = pd.Series([1, 2], index=["a", "b"])
s2 = pd.Series([1, 2], index=["b", "c"])
# binary dataframe / dataframe
expected = pd.DataFrame({"a": [2, 4, 6], "b": [8, 10, 12]})
with tm.assert_produces_warning(None):
# aligned -> no warning!
result = np.add(df1, df1)
tm.assert_frame_equal(result, expected)
result = np.add(df1, df2.values)
tm.assert_frame_equal(result, expected)
result = np.add(df1, df2)
expected = pd.DataFrame({"a": [np.nan] * 3, "b": [5, 7, 9], "c": [np.nan] * 3})
tm.assert_frame_equal(result, expected)
result = np.add(df1.values, df2)
expected = pd.DataFrame({"b": [2, 4, 6], "c": [8, 10, 12]})
tm.assert_frame_equal(result, expected)
# binary dataframe / series
expected = pd.DataFrame({"a": [2, 3, 4], "b": [6, 7, 8]})
with tm.assert_produces_warning(None):
# aligned -> no warning!
result = np.add(df1, s1)
tm.assert_frame_equal(result, expected)
result = np.add(df1, s2.values)
tm.assert_frame_equal(result, expected)
expected = pd.DataFrame(
{"a": [np.nan] * 3, "b": [5.0, 6.0, 7.0], "c": [np.nan] * 3}
)
result = np.add(df1, s2)
tm.assert_frame_equal(result, expected)
msg = "Cannot apply ufunc <ufunc 'add'> to mixed DataFrame and Series inputs."
with pytest.raises(NotImplementedError, match=msg):
np.add(s2, df1)
def test_alignment_deprecation_many_inputs_enforced():
# Enforced in 2.0
# https://github.com/pandas-dev/pandas/issues/39184
# test that the deprecation also works with > 2 inputs -> using a numba
# written ufunc for this because numpy itself doesn't have such ufuncs
numba = pytest.importorskip("numba")
@numba.vectorize([numba.float64(numba.float64, numba.float64, numba.float64)])
def my_ufunc(x, y, z):
return x + y + z
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
df3 = pd.DataFrame({"a": [1, 2, 3], "c": [4, 5, 6]})
result = my_ufunc(df1, df2, df3)
expected = pd.DataFrame(np.full((3, 3), np.nan), columns=["a", "b", "c"])
tm.assert_frame_equal(result, expected)
# all aligned -> no warning
with tm.assert_produces_warning(None):
result = my_ufunc(df1, df1, df1)
expected = pd.DataFrame([[3.0, 12.0], [6.0, 15.0], [9.0, 18.0]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
# mixed frame / arrays
msg = (
r"operands could not be broadcast together with shapes \(3,3\) \(3,3\) \(3,2\)"
)
with pytest.raises(ValueError, match=msg):
my_ufunc(df1, df2, df3.values)
# single frame -> no warning
with tm.assert_produces_warning(None):
result = my_ufunc(df1, df2.values, df3.values)
tm.assert_frame_equal(result, expected)
# takes indices of first frame
msg = (
r"operands could not be broadcast together with shapes \(3,2\) \(3,3\) \(3,3\)"
)
with pytest.raises(ValueError, match=msg):
my_ufunc(df1.values, df2, df3)
def test_array_ufuncs_for_many_arguments():
# GH39853
def add3(x, y, z):
return x + y + z
ufunc = np.frompyfunc(add3, 3, 1)
df = pd.DataFrame([[1, 2], [3, 4]])
result = ufunc(df, df, 1)
expected = pd.DataFrame([[3, 5], [7, 9]], dtype=object)
tm.assert_frame_equal(result, expected)
ser = pd.Series([1, 2])
msg = (
"Cannot apply ufunc <ufunc 'add3 (vectorized)'> "
"to mixed DataFrame and Series inputs."
)
with pytest.raises(NotImplementedError, match=re.escape(msg)):
ufunc(df, df, ser)