You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
6.4 KiB
205 lines
6.4 KiB
6 months ago
|
from decimal import Decimal
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.compat.numpy import np_version_gte1p25
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameUnaryOperators:
|
||
|
# __pos__, __neg__, __invert__
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df,expected",
|
||
|
[
|
||
|
(pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})),
|
||
|
(pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})),
|
||
|
(
|
||
|
pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
|
||
|
pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_neg_numeric(self, df, expected):
|
||
|
tm.assert_frame_equal(-df, expected)
|
||
|
tm.assert_series_equal(-df["a"], expected["a"])
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df, expected",
|
||
|
[
|
||
|
(np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)),
|
||
|
([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]),
|
||
|
],
|
||
|
)
|
||
|
def test_neg_object(self, df, expected):
|
||
|
# GH#21380
|
||
|
df = pd.DataFrame({"a": df})
|
||
|
expected = pd.DataFrame({"a": expected})
|
||
|
tm.assert_frame_equal(-df, expected)
|
||
|
tm.assert_series_equal(-df["a"], expected["a"])
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df",
|
||
|
[
|
||
|
pd.DataFrame({"a": ["a", "b"]}),
|
||
|
pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])}),
|
||
|
],
|
||
|
)
|
||
|
def test_neg_raises(self, df, using_infer_string):
|
||
|
msg = (
|
||
|
"bad operand type for unary -: 'str'|"
|
||
|
r"bad operand type for unary -: 'DatetimeArray'"
|
||
|
)
|
||
|
if using_infer_string and df.dtypes.iloc[0] == "string":
|
||
|
import pyarrow as pa
|
||
|
|
||
|
msg = "has no kernel"
|
||
|
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
|
||
|
(-df)
|
||
|
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
|
||
|
(-df["a"])
|
||
|
|
||
|
else:
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
(-df)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
(-df["a"])
|
||
|
|
||
|
def test_invert(self, float_frame):
|
||
|
df = float_frame
|
||
|
|
||
|
tm.assert_frame_equal(-(df < 0), ~(df < 0))
|
||
|
|
||
|
def test_invert_mixed(self):
|
||
|
shape = (10, 5)
|
||
|
df = pd.concat(
|
||
|
[
|
||
|
pd.DataFrame(np.zeros(shape, dtype="bool")),
|
||
|
pd.DataFrame(np.zeros(shape, dtype=int)),
|
||
|
],
|
||
|
axis=1,
|
||
|
ignore_index=True,
|
||
|
)
|
||
|
result = ~df
|
||
|
expected = pd.concat(
|
||
|
[
|
||
|
pd.DataFrame(np.ones(shape, dtype="bool")),
|
||
|
pd.DataFrame(-np.ones(shape, dtype=int)),
|
||
|
],
|
||
|
axis=1,
|
||
|
ignore_index=True,
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_invert_empty_not_input(self):
|
||
|
# GH#51032
|
||
|
df = pd.DataFrame()
|
||
|
result = ~df
|
||
|
tm.assert_frame_equal(df, result)
|
||
|
assert df is not result
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df",
|
||
|
[
|
||
|
pd.DataFrame({"a": [-1, 1]}),
|
||
|
pd.DataFrame({"a": [False, True]}),
|
||
|
pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
|
||
|
],
|
||
|
)
|
||
|
def test_pos_numeric(self, df):
|
||
|
# GH#16073
|
||
|
tm.assert_frame_equal(+df, df)
|
||
|
tm.assert_series_equal(+df["a"], df["a"])
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df",
|
||
|
[
|
||
|
pd.DataFrame({"a": np.array([-1, 2], dtype=object)}),
|
||
|
pd.DataFrame({"a": [Decimal("-1.0"), Decimal("2.0")]}),
|
||
|
],
|
||
|
)
|
||
|
def test_pos_object(self, df):
|
||
|
# GH#21380
|
||
|
tm.assert_frame_equal(+df, df)
|
||
|
tm.assert_series_equal(+df["a"], df["a"])
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df",
|
||
|
[
|
||
|
pytest.param(
|
||
|
pd.DataFrame({"a": ["a", "b"]}),
|
||
|
# filterwarnings removable once min numpy version is 1.25
|
||
|
marks=[
|
||
|
pytest.mark.filterwarnings("ignore:Applying:DeprecationWarning")
|
||
|
],
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_pos_object_raises(self, df):
|
||
|
# GH#21380
|
||
|
if np_version_gte1p25:
|
||
|
with pytest.raises(
|
||
|
TypeError, match=r"^bad operand type for unary \+: \'str\'$"
|
||
|
):
|
||
|
tm.assert_frame_equal(+df, df)
|
||
|
else:
|
||
|
tm.assert_series_equal(+df["a"], df["a"])
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"df", [pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])})]
|
||
|
)
|
||
|
def test_pos_raises(self, df):
|
||
|
msg = r"bad operand type for unary \+: 'DatetimeArray'"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
(+df)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
(+df["a"])
|
||
|
|
||
|
def test_unary_nullable(self):
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"a": pd.array([1, -2, 3, pd.NA], dtype="Int64"),
|
||
|
"b": pd.array([4.0, -5.0, 6.0, pd.NA], dtype="Float32"),
|
||
|
"c": pd.array([True, False, False, pd.NA], dtype="boolean"),
|
||
|
# include numpy bool to make sure bool-vs-boolean behavior
|
||
|
# is consistent in non-NA locations
|
||
|
"d": np.array([True, False, False, True]),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
result = +df
|
||
|
res_ufunc = np.positive(df)
|
||
|
expected = df
|
||
|
# TODO: assert that we have copies?
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
tm.assert_frame_equal(res_ufunc, expected)
|
||
|
|
||
|
result = -df
|
||
|
res_ufunc = np.negative(df)
|
||
|
expected = pd.DataFrame(
|
||
|
{
|
||
|
"a": pd.array([-1, 2, -3, pd.NA], dtype="Int64"),
|
||
|
"b": pd.array([-4.0, 5.0, -6.0, pd.NA], dtype="Float32"),
|
||
|
"c": pd.array([False, True, True, pd.NA], dtype="boolean"),
|
||
|
"d": np.array([False, True, True, False]),
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
tm.assert_frame_equal(res_ufunc, expected)
|
||
|
|
||
|
result = abs(df)
|
||
|
res_ufunc = np.abs(df)
|
||
|
expected = pd.DataFrame(
|
||
|
{
|
||
|
"a": pd.array([1, 2, 3, pd.NA], dtype="Int64"),
|
||
|
"b": pd.array([4.0, 5.0, 6.0, pd.NA], dtype="Float32"),
|
||
|
"c": pd.array([True, False, False, pd.NA], dtype="boolean"),
|
||
|
"d": np.array([True, False, False, True]),
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
tm.assert_frame_equal(res_ufunc, expected)
|