You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

266 lines
8.3 KiB

6 months ago
"""
Tests of the groupby API, including internal consistency and with other pandas objects.
Tests in this file should only check the existence, names, and arguments of groupby
methods. It should not test the results of any groupby operation.
"""
import inspect
import pytest
from pandas import (
DataFrame,
Series,
)
from pandas.core.groupby.base import (
groupby_other_methods,
reduction_kernels,
transformation_kernels,
)
from pandas.core.groupby.generic import (
DataFrameGroupBy,
SeriesGroupBy,
)
def test_tab_completion(multiindex_dataframe_random_data):
grp = multiindex_dataframe_random_data.groupby(level="second")
results = {v for v in dir(grp) if not v.startswith("_")}
expected = {
"A",
"B",
"C",
"agg",
"aggregate",
"apply",
"boxplot",
"filter",
"first",
"get_group",
"groups",
"hist",
"indices",
"last",
"max",
"mean",
"median",
"min",
"ngroups",
"nth",
"ohlc",
"plot",
"prod",
"size",
"std",
"sum",
"transform",
"var",
"sem",
"count",
"nunique",
"head",
"describe",
"cummax",
"quantile",
"rank",
"cumprod",
"tail",
"resample",
"cummin",
"fillna",
"cumsum",
"cumcount",
"ngroup",
"all",
"shift",
"skew",
"take",
"pct_change",
"any",
"corr",
"corrwith",
"cov",
"dtypes",
"ndim",
"diff",
"idxmax",
"idxmin",
"ffill",
"bfill",
"rolling",
"expanding",
"pipe",
"sample",
"ewm",
"value_counts",
}
assert results == expected
def test_all_methods_categorized(multiindex_dataframe_random_data):
grp = multiindex_dataframe_random_data.groupby(
multiindex_dataframe_random_data.iloc[:, 0]
)
names = {_ for _ in dir(grp) if not _.startswith("_")} - set(
multiindex_dataframe_random_data.columns
)
new_names = set(names)
new_names -= reduction_kernels
new_names -= transformation_kernels
new_names -= groupby_other_methods
assert not reduction_kernels & transformation_kernels
assert not reduction_kernels & groupby_other_methods
assert not transformation_kernels & groupby_other_methods
# new public method?
if new_names:
msg = f"""
There are uncategorized methods defined on the Grouper class:
{new_names}.
Was a new method recently added?
Every public method On Grouper must appear in exactly one the
following three lists defined in pandas.core.groupby.base:
- `reduction_kernels`
- `transformation_kernels`
- `groupby_other_methods`
see the comments in pandas/core/groupby/base.py for guidance on
how to fix this test.
"""
raise AssertionError(msg)
# removed a public method?
all_categorized = reduction_kernels | transformation_kernels | groupby_other_methods
if names != all_categorized:
msg = f"""
Some methods which are supposed to be on the Grouper class
are missing:
{all_categorized - names}.
They're still defined in one of the lists that live in pandas/core/groupby/base.py.
If you removed a method, you should update them
"""
raise AssertionError(msg)
def test_frame_consistency(groupby_func):
# GH#48028
if groupby_func in ("first", "last"):
msg = "first and last are entirely different between frame and groupby"
pytest.skip(reason=msg)
if groupby_func in ("cumcount", "ngroup"):
assert not hasattr(DataFrame, groupby_func)
return
frame_method = getattr(DataFrame, groupby_func)
gb_method = getattr(DataFrameGroupBy, groupby_func)
result = set(inspect.signature(gb_method).parameters)
if groupby_func == "size":
# "size" is a method on GroupBy but property on DataFrame:
expected = {"self"}
else:
expected = set(inspect.signature(frame_method).parameters)
# Exclude certain arguments from result and expected depending on the operation
# Some of these may be purposeful inconsistencies between the APIs
exclude_expected, exclude_result = set(), set()
if groupby_func in ("any", "all"):
exclude_expected = {"kwargs", "bool_only", "axis"}
elif groupby_func in ("count",):
exclude_expected = {"numeric_only", "axis"}
elif groupby_func in ("nunique",):
exclude_expected = {"axis"}
elif groupby_func in ("max", "min"):
exclude_expected = {"axis", "kwargs", "skipna"}
exclude_result = {"min_count", "engine", "engine_kwargs"}
elif groupby_func in ("mean", "std", "sum", "var"):
exclude_expected = {"axis", "kwargs", "skipna"}
exclude_result = {"engine", "engine_kwargs"}
elif groupby_func in ("median", "prod", "sem"):
exclude_expected = {"axis", "kwargs", "skipna"}
elif groupby_func in ("backfill", "bfill", "ffill", "pad"):
exclude_expected = {"downcast", "inplace", "axis", "limit_area"}
elif groupby_func in ("cummax", "cummin"):
exclude_expected = {"skipna", "args"}
exclude_result = {"numeric_only"}
elif groupby_func in ("cumprod", "cumsum"):
exclude_expected = {"skipna"}
elif groupby_func in ("pct_change",):
exclude_expected = {"kwargs"}
exclude_result = {"axis"}
elif groupby_func in ("rank",):
exclude_expected = {"numeric_only"}
elif groupby_func in ("quantile",):
exclude_expected = {"method", "axis"}
# Ensure excluded arguments are actually in the signatures
assert result & exclude_result == exclude_result
assert expected & exclude_expected == exclude_expected
result -= exclude_result
expected -= exclude_expected
assert result == expected
def test_series_consistency(request, groupby_func):
# GH#48028
if groupby_func in ("first", "last"):
pytest.skip("first and last are entirely different between Series and groupby")
if groupby_func in ("cumcount", "corrwith", "ngroup"):
assert not hasattr(Series, groupby_func)
return
series_method = getattr(Series, groupby_func)
gb_method = getattr(SeriesGroupBy, groupby_func)
result = set(inspect.signature(gb_method).parameters)
if groupby_func == "size":
# "size" is a method on GroupBy but property on Series
expected = {"self"}
else:
expected = set(inspect.signature(series_method).parameters)
# Exclude certain arguments from result and expected depending on the operation
# Some of these may be purposeful inconsistencies between the APIs
exclude_expected, exclude_result = set(), set()
if groupby_func in ("any", "all"):
exclude_expected = {"kwargs", "bool_only", "axis"}
elif groupby_func in ("diff",):
exclude_result = {"axis"}
elif groupby_func in ("max", "min"):
exclude_expected = {"axis", "kwargs", "skipna"}
exclude_result = {"min_count", "engine", "engine_kwargs"}
elif groupby_func in ("mean", "std", "sum", "var"):
exclude_expected = {"axis", "kwargs", "skipna"}
exclude_result = {"engine", "engine_kwargs"}
elif groupby_func in ("median", "prod", "sem"):
exclude_expected = {"axis", "kwargs", "skipna"}
elif groupby_func in ("backfill", "bfill", "ffill", "pad"):
exclude_expected = {"downcast", "inplace", "axis", "limit_area"}
elif groupby_func in ("cummax", "cummin"):
exclude_expected = {"skipna", "args"}
exclude_result = {"numeric_only"}
elif groupby_func in ("cumprod", "cumsum"):
exclude_expected = {"skipna"}
elif groupby_func in ("pct_change",):
exclude_expected = {"kwargs"}
exclude_result = {"axis"}
elif groupby_func in ("rank",):
exclude_expected = {"numeric_only"}
elif groupby_func in ("idxmin", "idxmax"):
exclude_expected = {"args", "kwargs"}
elif groupby_func in ("quantile",):
exclude_result = {"numeric_only"}
# Ensure excluded arguments are actually in the signatures
assert result & exclude_result == exclude_result
assert expected & exclude_expected == exclude_expected
result -= exclude_result
expected -= exclude_expected
assert result == expected