You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.2 KiB
164 lines
5.2 KiB
6 months ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
date_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("func", ["ffill", "bfill"])
|
||
|
def test_groupby_column_index_name_lost_fill_funcs(func):
|
||
|
# GH: 29764 groupby loses index sometimes
|
||
|
df = DataFrame(
|
||
|
[[1, 1.0, -1.0], [1, np.nan, np.nan], [1, 2.0, -2.0]],
|
||
|
columns=Index(["type", "a", "b"], name="idx"),
|
||
|
)
|
||
|
df_grouped = df.groupby(["type"])[["a", "b"]]
|
||
|
result = getattr(df_grouped, func)().columns
|
||
|
expected = Index(["a", "b"], name="idx")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("func", ["ffill", "bfill"])
|
||
|
def test_groupby_fill_duplicate_column_names(func):
|
||
|
# GH: 25610 ValueError with duplicate column names
|
||
|
df1 = DataFrame({"field1": [1, 3, 4], "field2": [1, 3, 4]})
|
||
|
df2 = DataFrame({"field1": [1, np.nan, 4]})
|
||
|
df_grouped = pd.concat([df1, df2], axis=1).groupby(by=["field2"])
|
||
|
expected = DataFrame(
|
||
|
[[1, 1.0], [3, np.nan], [4, 4.0]], columns=["field1", "field1"]
|
||
|
)
|
||
|
result = getattr(df_grouped, func)()
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ffill_missing_arguments():
|
||
|
# GH 14955
|
||
|
df = DataFrame({"a": [1, 2], "b": [1, 1]})
|
||
|
msg = "DataFrameGroupBy.fillna is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
with pytest.raises(ValueError, match="Must specify a fill"):
|
||
|
df.groupby("b").fillna()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method, expected", [("ffill", [None, "a", "a"]), ("bfill", ["a", "a", None])]
|
||
|
)
|
||
|
def test_fillna_with_string_dtype(method, expected):
|
||
|
# GH 40250
|
||
|
df = DataFrame({"a": pd.array([None, "a", None], dtype="string"), "b": [0, 0, 0]})
|
||
|
grp = df.groupby("b")
|
||
|
msg = "DataFrameGroupBy.fillna is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = grp.fillna(method=method)
|
||
|
expected = DataFrame({"a": pd.array(expected, dtype="string")})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_fill_consistency():
|
||
|
# GH9221
|
||
|
# pass thru keyword arguments to the generated wrapper
|
||
|
# are set if the passed kw is None (only)
|
||
|
df = DataFrame(
|
||
|
index=pd.MultiIndex.from_product(
|
||
|
[["value1", "value2"], date_range("2014-01-01", "2014-01-06")]
|
||
|
),
|
||
|
columns=Index(["1", "2"], name="id"),
|
||
|
)
|
||
|
df["1"] = [
|
||
|
np.nan,
|
||
|
1,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
11,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
2,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
22,
|
||
|
np.nan,
|
||
|
]
|
||
|
df["2"] = [
|
||
|
np.nan,
|
||
|
3,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
33,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
4,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
44,
|
||
|
np.nan,
|
||
|
]
|
||
|
|
||
|
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
expected = df.groupby(level=0, axis=0).fillna(method="ffill")
|
||
|
|
||
|
msg = "DataFrame.groupby with axis=1 is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["ffill", "bfill"])
|
||
|
@pytest.mark.parametrize("dropna", [True, False])
|
||
|
@pytest.mark.parametrize("has_nan_group", [True, False])
|
||
|
def test_ffill_handles_nan_groups(dropna, method, has_nan_group):
|
||
|
# GH 34725
|
||
|
|
||
|
df_without_nan_rows = DataFrame([(1, 0.1), (2, 0.2)])
|
||
|
|
||
|
ridx = [-1, 0, -1, -1, 1, -1]
|
||
|
df = df_without_nan_rows.reindex(ridx).reset_index(drop=True)
|
||
|
|
||
|
group_b = np.nan if has_nan_group else "b"
|
||
|
df["group_col"] = pd.Series(["a"] * 3 + [group_b] * 3)
|
||
|
|
||
|
grouped = df.groupby(by="group_col", dropna=dropna)
|
||
|
result = getattr(grouped, method)(limit=None)
|
||
|
|
||
|
expected_rows = {
|
||
|
("ffill", True, True): [-1, 0, 0, -1, -1, -1],
|
||
|
("ffill", True, False): [-1, 0, 0, -1, 1, 1],
|
||
|
("ffill", False, True): [-1, 0, 0, -1, 1, 1],
|
||
|
("ffill", False, False): [-1, 0, 0, -1, 1, 1],
|
||
|
("bfill", True, True): [0, 0, -1, -1, -1, -1],
|
||
|
("bfill", True, False): [0, 0, -1, 1, 1, -1],
|
||
|
("bfill", False, True): [0, 0, -1, 1, 1, -1],
|
||
|
("bfill", False, False): [0, 0, -1, 1, 1, -1],
|
||
|
}
|
||
|
|
||
|
ridx = expected_rows.get((method, dropna, has_nan_group))
|
||
|
expected = df_without_nan_rows.reindex(ridx).reset_index(drop=True)
|
||
|
# columns are a 'take' on df.columns, which are object dtype
|
||
|
expected.columns = expected.columns.astype(object)
|
||
|
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("min_count, value", [(2, np.nan), (-1, 1.0)])
|
||
|
@pytest.mark.parametrize("func", ["first", "last", "max", "min"])
|
||
|
def test_min_count(func, min_count, value):
|
||
|
# GH#37821
|
||
|
df = DataFrame({"a": [1] * 3, "b": [1, np.nan, np.nan], "c": [np.nan] * 3})
|
||
|
result = getattr(df.groupby("a"), func)(min_count=min_count)
|
||
|
expected = DataFrame({"b": [value], "c": [np.nan]}, index=Index([1], name="a"))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_indices_with_missing():
|
||
|
# GH 9304
|
||
|
df = DataFrame({"a": [1, 1, np.nan], "b": [2, 3, 4], "c": [5, 6, 7]})
|
||
|
g = df.groupby(["a", "b"])
|
||
|
result = g.indices
|
||
|
expected = {(1.0, 2): np.array([0]), (1.0, 3): np.array([1])}
|
||
|
assert result == expected
|