You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
623 lines
20 KiB
623 lines
20 KiB
7 months ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.core.dtypes.common import ensure_platform_int
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
Index,
|
||
|
RangeIndex,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestRangeIndex:
|
||
|
@pytest.fixture
|
||
|
def simple_index(self):
|
||
|
return RangeIndex(start=0, stop=20, step=2)
|
||
|
|
||
|
def test_constructor_unwraps_index(self):
|
||
|
result = RangeIndex(1, 3)
|
||
|
expected = np.array([1, 2], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result._data, expected)
|
||
|
|
||
|
def test_can_hold_identifiers(self, simple_index):
|
||
|
idx = simple_index
|
||
|
key = idx[0]
|
||
|
assert idx._can_hold_identifiers_and_holds_name(key) is False
|
||
|
|
||
|
def test_too_many_names(self, simple_index):
|
||
|
index = simple_index
|
||
|
with pytest.raises(ValueError, match="^Length"):
|
||
|
index.names = ["roger", "harold"]
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"index, start, stop, step",
|
||
|
[
|
||
|
(RangeIndex(5), 0, 5, 1),
|
||
|
(RangeIndex(0, 5), 0, 5, 1),
|
||
|
(RangeIndex(5, step=2), 0, 5, 2),
|
||
|
(RangeIndex(1, 5, 2), 1, 5, 2),
|
||
|
],
|
||
|
)
|
||
|
def test_start_stop_step_attrs(self, index, start, stop, step):
|
||
|
# GH 25710
|
||
|
assert index.start == start
|
||
|
assert index.stop == stop
|
||
|
assert index.step == step
|
||
|
|
||
|
def test_copy(self):
|
||
|
i = RangeIndex(5, name="Foo")
|
||
|
i_copy = i.copy()
|
||
|
assert i_copy is not i
|
||
|
assert i_copy.identical(i)
|
||
|
assert i_copy._range == range(0, 5, 1)
|
||
|
assert i_copy.name == "Foo"
|
||
|
|
||
|
def test_repr(self):
|
||
|
i = RangeIndex(5, name="Foo")
|
||
|
result = repr(i)
|
||
|
expected = "RangeIndex(start=0, stop=5, step=1, name='Foo')"
|
||
|
assert result == expected
|
||
|
|
||
|
result = eval(result)
|
||
|
tm.assert_index_equal(result, i, exact=True)
|
||
|
|
||
|
i = RangeIndex(5, 0, -1)
|
||
|
result = repr(i)
|
||
|
expected = "RangeIndex(start=5, stop=0, step=-1)"
|
||
|
assert result == expected
|
||
|
|
||
|
result = eval(result)
|
||
|
tm.assert_index_equal(result, i, exact=True)
|
||
|
|
||
|
def test_insert(self):
|
||
|
idx = RangeIndex(5, name="Foo")
|
||
|
result = idx[1:4]
|
||
|
|
||
|
# test 0th element
|
||
|
tm.assert_index_equal(idx[0:4], result.insert(0, idx[0]), exact="equiv")
|
||
|
|
||
|
# GH 18295 (test missing)
|
||
|
expected = Index([0, np.nan, 1, 2, 3, 4], dtype=np.float64)
|
||
|
for na in [np.nan, None, pd.NA]:
|
||
|
result = RangeIndex(5).insert(1, na)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = RangeIndex(5).insert(1, pd.NaT)
|
||
|
expected = Index([0, pd.NaT, 1, 2, 3, 4], dtype=object)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_insert_edges_preserves_rangeindex(self):
|
||
|
idx = Index(range(4, 9, 2))
|
||
|
|
||
|
result = idx.insert(0, 2)
|
||
|
expected = Index(range(2, 9, 2))
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.insert(3, 10)
|
||
|
expected = Index(range(4, 11, 2))
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_insert_middle_preserves_rangeindex(self):
|
||
|
# insert in the middle
|
||
|
idx = Index(range(0, 3, 2))
|
||
|
result = idx.insert(1, 1)
|
||
|
expected = Index(range(3))
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
idx = idx * 2
|
||
|
result = idx.insert(1, 2)
|
||
|
expected = expected * 2
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_delete(self):
|
||
|
idx = RangeIndex(5, name="Foo")
|
||
|
expected = idx[1:]
|
||
|
result = idx.delete(0)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
assert result.name == expected.name
|
||
|
|
||
|
expected = idx[:-1]
|
||
|
result = idx.delete(-1)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
assert result.name == expected.name
|
||
|
|
||
|
msg = "index 5 is out of bounds for axis 0 with size 5"
|
||
|
with pytest.raises((IndexError, ValueError), match=msg):
|
||
|
# either depending on numpy version
|
||
|
result = idx.delete(len(idx))
|
||
|
|
||
|
def test_delete_preserves_rangeindex(self):
|
||
|
idx = Index(range(2), name="foo")
|
||
|
|
||
|
result = idx.delete([1])
|
||
|
expected = Index(range(1), name="foo")
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.delete(1)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_delete_preserves_rangeindex_middle(self):
|
||
|
idx = Index(range(3), name="foo")
|
||
|
result = idx.delete(1)
|
||
|
expected = idx[::2]
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.delete(-2)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_delete_preserves_rangeindex_list_at_end(self):
|
||
|
idx = RangeIndex(0, 6, 1)
|
||
|
|
||
|
loc = [2, 3, 4, 5]
|
||
|
result = idx.delete(loc)
|
||
|
expected = idx[:2]
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.delete(loc[::-1])
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_delete_preserves_rangeindex_list_middle(self):
|
||
|
idx = RangeIndex(0, 6, 1)
|
||
|
|
||
|
loc = [1, 2, 3, 4]
|
||
|
result = idx.delete(loc)
|
||
|
expected = RangeIndex(0, 6, 5)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.delete(loc[::-1])
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_delete_all_preserves_rangeindex(self):
|
||
|
idx = RangeIndex(0, 6, 1)
|
||
|
|
||
|
loc = [0, 1, 2, 3, 4, 5]
|
||
|
result = idx.delete(loc)
|
||
|
expected = idx[:0]
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.delete(loc[::-1])
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_delete_not_preserving_rangeindex(self):
|
||
|
idx = RangeIndex(0, 6, 1)
|
||
|
|
||
|
loc = [0, 3, 5]
|
||
|
result = idx.delete(loc)
|
||
|
expected = Index([1, 2, 4])
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx.delete(loc[::-1])
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
def test_view(self):
|
||
|
i = RangeIndex(0, name="Foo")
|
||
|
i_view = i.view()
|
||
|
assert i_view.name == "Foo"
|
||
|
|
||
|
i_view = i.view("i8")
|
||
|
tm.assert_numpy_array_equal(i.values, i_view)
|
||
|
|
||
|
msg = "Passing a type in RangeIndex.view is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
i_view = i.view(RangeIndex)
|
||
|
tm.assert_index_equal(i, i_view)
|
||
|
|
||
|
def test_dtype(self, simple_index):
|
||
|
index = simple_index
|
||
|
assert index.dtype == np.int64
|
||
|
|
||
|
def test_cache(self):
|
||
|
# GH 26565, GH26617, GH35432, GH53387
|
||
|
# This test checks whether _cache has been set.
|
||
|
# Calling RangeIndex._cache["_data"] creates an int64 array of the same length
|
||
|
# as the RangeIndex and stores it in _cache.
|
||
|
idx = RangeIndex(0, 100, 10)
|
||
|
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
repr(idx)
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
str(idx)
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
idx.get_loc(20)
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
90 in idx # True
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
91 in idx # False
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
idx.all()
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
idx.any()
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
for _ in idx:
|
||
|
pass
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
msg = "RangeIndex.format is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
idx.format()
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
df = pd.DataFrame({"a": range(10)}, index=idx)
|
||
|
|
||
|
# df.__repr__ should not populate index cache
|
||
|
str(df)
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
df.loc[50]
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
with pytest.raises(KeyError, match="51"):
|
||
|
df.loc[51]
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
df.loc[10:50]
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
df.iloc[5:10]
|
||
|
assert idx._cache == {}
|
||
|
|
||
|
# after calling take, _cache may contain other keys, but not "_data"
|
||
|
idx.take([3, 0, 1])
|
||
|
assert "_data" not in idx._cache
|
||
|
|
||
|
df.loc[[50]]
|
||
|
assert "_data" not in idx._cache
|
||
|
|
||
|
df.iloc[[5, 6, 7, 8, 9]]
|
||
|
assert "_data" not in idx._cache
|
||
|
|
||
|
# idx._cache should contain a _data entry after call to idx._data
|
||
|
idx._data
|
||
|
assert isinstance(idx._data, np.ndarray)
|
||
|
assert idx._data is idx._data # check cached value is reused
|
||
|
assert "_data" in idx._cache
|
||
|
expected = np.arange(0, 100, 10, dtype="int64")
|
||
|
tm.assert_numpy_array_equal(idx._cache["_data"], expected)
|
||
|
|
||
|
def test_is_monotonic(self):
|
||
|
index = RangeIndex(0, 20, 2)
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_decreasing is False
|
||
|
assert index._is_strictly_monotonic_increasing is True
|
||
|
assert index._is_strictly_monotonic_decreasing is False
|
||
|
|
||
|
index = RangeIndex(4, 0, -1)
|
||
|
assert index.is_monotonic_increasing is False
|
||
|
assert index._is_strictly_monotonic_increasing is False
|
||
|
assert index.is_monotonic_decreasing is True
|
||
|
assert index._is_strictly_monotonic_decreasing is True
|
||
|
|
||
|
index = RangeIndex(1, 2)
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_decreasing is True
|
||
|
assert index._is_strictly_monotonic_increasing is True
|
||
|
assert index._is_strictly_monotonic_decreasing is True
|
||
|
|
||
|
index = RangeIndex(2, 1)
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_decreasing is True
|
||
|
assert index._is_strictly_monotonic_increasing is True
|
||
|
assert index._is_strictly_monotonic_decreasing is True
|
||
|
|
||
|
index = RangeIndex(1, 1)
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_increasing is True
|
||
|
assert index.is_monotonic_decreasing is True
|
||
|
assert index._is_strictly_monotonic_increasing is True
|
||
|
assert index._is_strictly_monotonic_decreasing is True
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"left,right",
|
||
|
[
|
||
|
(RangeIndex(0, 9, 2), RangeIndex(0, 10, 2)),
|
||
|
(RangeIndex(0), RangeIndex(1, -1, 3)),
|
||
|
(RangeIndex(1, 2, 3), RangeIndex(1, 3, 4)),
|
||
|
(RangeIndex(0, -9, -2), RangeIndex(0, -10, -2)),
|
||
|
],
|
||
|
)
|
||
|
def test_equals_range(self, left, right):
|
||
|
assert left.equals(right)
|
||
|
assert right.equals(left)
|
||
|
|
||
|
def test_logical_compat(self, simple_index):
|
||
|
idx = simple_index
|
||
|
assert idx.all() == idx.values.all()
|
||
|
assert idx.any() == idx.values.any()
|
||
|
|
||
|
def test_identical(self, simple_index):
|
||
|
index = simple_index
|
||
|
i = Index(index.copy())
|
||
|
assert i.identical(index)
|
||
|
|
||
|
# we don't allow object dtype for RangeIndex
|
||
|
if isinstance(index, RangeIndex):
|
||
|
return
|
||
|
|
||
|
same_values_different_type = Index(i, dtype=object)
|
||
|
assert not i.identical(same_values_different_type)
|
||
|
|
||
|
i = index.copy(dtype=object)
|
||
|
i = i.rename("foo")
|
||
|
same_values = Index(i, dtype=object)
|
||
|
assert same_values.identical(index.copy(dtype=object))
|
||
|
|
||
|
assert not i.identical(index)
|
||
|
assert Index(same_values, name="foo", dtype=object).identical(i)
|
||
|
|
||
|
assert not index.copy(dtype=object).identical(index.copy(dtype="int64"))
|
||
|
|
||
|
def test_nbytes(self):
|
||
|
# memory savings vs int index
|
||
|
idx = RangeIndex(0, 1000)
|
||
|
assert idx.nbytes < Index(idx._values).nbytes / 10
|
||
|
|
||
|
# constant memory usage
|
||
|
i2 = RangeIndex(0, 10)
|
||
|
assert idx.nbytes == i2.nbytes
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"start,stop,step",
|
||
|
[
|
||
|
# can't
|
||
|
("foo", "bar", "baz"),
|
||
|
# shouldn't
|
||
|
("0", "1", "2"),
|
||
|
],
|
||
|
)
|
||
|
def test_cant_or_shouldnt_cast(self, start, stop, step):
|
||
|
msg = f"Wrong type {type(start)} for value {start}"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
RangeIndex(start, stop, step)
|
||
|
|
||
|
def test_view_index(self, simple_index):
|
||
|
index = simple_index
|
||
|
msg = "Passing a type in RangeIndex.view is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
index.view(Index)
|
||
|
|
||
|
def test_prevent_casting(self, simple_index):
|
||
|
index = simple_index
|
||
|
result = index.astype("O")
|
||
|
assert result.dtype == np.object_
|
||
|
|
||
|
def test_repr_roundtrip(self, simple_index):
|
||
|
index = simple_index
|
||
|
tm.assert_index_equal(eval(repr(index)), index)
|
||
|
|
||
|
def test_slice_keep_name(self):
|
||
|
idx = RangeIndex(1, 2, name="asdf")
|
||
|
assert idx.name == idx[1:].name
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"index",
|
||
|
[
|
||
|
RangeIndex(start=0, stop=20, step=2, name="foo"),
|
||
|
RangeIndex(start=18, stop=-1, step=-2, name="bar"),
|
||
|
],
|
||
|
ids=["index_inc", "index_dec"],
|
||
|
)
|
||
|
def test_has_duplicates(self, index):
|
||
|
assert index.is_unique
|
||
|
assert not index.has_duplicates
|
||
|
|
||
|
def test_extended_gcd(self, simple_index):
|
||
|
index = simple_index
|
||
|
result = index._extended_gcd(6, 10)
|
||
|
assert result[0] == result[1] * 6 + result[2] * 10
|
||
|
assert 2 == result[0]
|
||
|
|
||
|
result = index._extended_gcd(10, 6)
|
||
|
assert 2 == result[1] * 10 + result[2] * 6
|
||
|
assert 2 == result[0]
|
||
|
|
||
|
def test_min_fitting_element(self):
|
||
|
result = RangeIndex(0, 20, 2)._min_fitting_element(1)
|
||
|
assert 2 == result
|
||
|
|
||
|
result = RangeIndex(1, 6)._min_fitting_element(1)
|
||
|
assert 1 == result
|
||
|
|
||
|
result = RangeIndex(18, -2, -2)._min_fitting_element(1)
|
||
|
assert 2 == result
|
||
|
|
||
|
result = RangeIndex(5, 0, -1)._min_fitting_element(1)
|
||
|
assert 1 == result
|
||
|
|
||
|
big_num = 500000000000000000000000
|
||
|
|
||
|
result = RangeIndex(5, big_num * 2, 1)._min_fitting_element(big_num)
|
||
|
assert big_num == result
|
||
|
|
||
|
def test_slice_specialised(self, simple_index):
|
||
|
index = simple_index
|
||
|
index.name = "foo"
|
||
|
|
||
|
# scalar indexing
|
||
|
res = index[1]
|
||
|
expected = 2
|
||
|
assert res == expected
|
||
|
|
||
|
res = index[-1]
|
||
|
expected = 18
|
||
|
assert res == expected
|
||
|
|
||
|
# slicing
|
||
|
# slice value completion
|
||
|
index_slice = index[:]
|
||
|
expected = index
|
||
|
tm.assert_index_equal(index_slice, expected)
|
||
|
|
||
|
# positive slice values
|
||
|
index_slice = index[7:10:2]
|
||
|
expected = Index([14, 18], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
# negative slice values
|
||
|
index_slice = index[-1:-5:-2]
|
||
|
expected = Index([18, 14], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
# stop overshoot
|
||
|
index_slice = index[2:100:4]
|
||
|
expected = Index([4, 12], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
# reverse
|
||
|
index_slice = index[::-1]
|
||
|
expected = Index(index.values[::-1], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
index_slice = index[-8::-1]
|
||
|
expected = Index([4, 2, 0], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
index_slice = index[-40::-1]
|
||
|
expected = Index(np.array([], dtype=np.int64), name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
index_slice = index[40::-1]
|
||
|
expected = Index(index.values[40::-1], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
index_slice = index[10::-1]
|
||
|
expected = Index(index.values[::-1], name="foo")
|
||
|
tm.assert_index_equal(index_slice, expected, exact="equiv")
|
||
|
|
||
|
@pytest.mark.parametrize("step", set(range(-5, 6)) - {0})
|
||
|
def test_len_specialised(self, step):
|
||
|
# make sure that our len is the same as np.arange calc
|
||
|
start, stop = (0, 5) if step > 0 else (5, 0)
|
||
|
|
||
|
arr = np.arange(start, stop, step)
|
||
|
index = RangeIndex(start, stop, step)
|
||
|
assert len(index) == len(arr)
|
||
|
|
||
|
index = RangeIndex(stop, start, step)
|
||
|
assert len(index) == 0
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"indices, expected",
|
||
|
[
|
||
|
([RangeIndex(1, 12, 5)], RangeIndex(1, 12, 5)),
|
||
|
([RangeIndex(0, 6, 4)], RangeIndex(0, 6, 4)),
|
||
|
([RangeIndex(1, 3), RangeIndex(3, 7)], RangeIndex(1, 7)),
|
||
|
([RangeIndex(1, 5, 2), RangeIndex(5, 6)], RangeIndex(1, 6, 2)),
|
||
|
([RangeIndex(1, 3, 2), RangeIndex(4, 7, 3)], RangeIndex(1, 7, 3)),
|
||
|
([RangeIndex(-4, 3, 2), RangeIndex(4, 7, 2)], RangeIndex(-4, 7, 2)),
|
||
|
([RangeIndex(-4, -8), RangeIndex(-8, -12)], RangeIndex(0, 0)),
|
||
|
([RangeIndex(-4, -8), RangeIndex(3, -4)], RangeIndex(0, 0)),
|
||
|
([RangeIndex(-4, -8), RangeIndex(3, 5)], RangeIndex(3, 5)),
|
||
|
([RangeIndex(-4, -2), RangeIndex(3, 5)], Index([-4, -3, 3, 4])),
|
||
|
([RangeIndex(-2), RangeIndex(3, 5)], RangeIndex(3, 5)),
|
||
|
([RangeIndex(2), RangeIndex(2)], Index([0, 1, 0, 1])),
|
||
|
([RangeIndex(2), RangeIndex(2, 5), RangeIndex(5, 8, 4)], RangeIndex(0, 6)),
|
||
|
(
|
||
|
[RangeIndex(2), RangeIndex(3, 5), RangeIndex(5, 8, 4)],
|
||
|
Index([0, 1, 3, 4, 5]),
|
||
|
),
|
||
|
(
|
||
|
[RangeIndex(-2, 2), RangeIndex(2, 5), RangeIndex(5, 8, 4)],
|
||
|
RangeIndex(-2, 6),
|
||
|
),
|
||
|
([RangeIndex(3), Index([-1, 3, 15])], Index([0, 1, 2, -1, 3, 15])),
|
||
|
([RangeIndex(3), Index([-1, 3.1, 15.0])], Index([0, 1, 2, -1, 3.1, 15.0])),
|
||
|
([RangeIndex(3), Index(["a", None, 14])], Index([0, 1, 2, "a", None, 14])),
|
||
|
([RangeIndex(3, 1), Index(["a", None, 14])], Index(["a", None, 14])),
|
||
|
],
|
||
|
)
|
||
|
def test_append(self, indices, expected):
|
||
|
# GH16212
|
||
|
result = indices[0].append(indices[1:])
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
if len(indices) == 2:
|
||
|
# Append single item rather than list
|
||
|
result2 = indices[0].append(indices[1])
|
||
|
tm.assert_index_equal(result2, expected, exact=True)
|
||
|
|
||
|
def test_engineless_lookup(self):
|
||
|
# GH 16685
|
||
|
# Standard lookup on RangeIndex should not require the engine to be
|
||
|
# created
|
||
|
idx = RangeIndex(2, 10, 3)
|
||
|
|
||
|
assert idx.get_loc(5) == 1
|
||
|
tm.assert_numpy_array_equal(
|
||
|
idx.get_indexer([2, 8]), ensure_platform_int(np.array([0, 2]))
|
||
|
)
|
||
|
with pytest.raises(KeyError, match="3"):
|
||
|
idx.get_loc(3)
|
||
|
|
||
|
assert "_engine" not in idx._cache
|
||
|
|
||
|
# Different types of scalars can be excluded immediately, no need to
|
||
|
# use the _engine
|
||
|
with pytest.raises(KeyError, match="'a'"):
|
||
|
idx.get_loc("a")
|
||
|
|
||
|
assert "_engine" not in idx._cache
|
||
|
|
||
|
def test_format_empty(self):
|
||
|
# GH35712
|
||
|
empty_idx = RangeIndex(0)
|
||
|
msg = r"RangeIndex\.format is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
assert empty_idx.format() == []
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
assert empty_idx.format(name=True) == [""]
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ri",
|
||
|
[
|
||
|
RangeIndex(0, -1, -1),
|
||
|
RangeIndex(0, 1, 1),
|
||
|
RangeIndex(1, 3, 2),
|
||
|
RangeIndex(0, -1, -2),
|
||
|
RangeIndex(-3, -5, -2),
|
||
|
],
|
||
|
)
|
||
|
def test_append_len_one(self, ri):
|
||
|
# GH39401
|
||
|
result = ri.append([])
|
||
|
tm.assert_index_equal(result, ri, exact=True)
|
||
|
|
||
|
@pytest.mark.parametrize("base", [RangeIndex(0, 2), Index([0, 1])])
|
||
|
def test_isin_range(self, base):
|
||
|
# GH#41151
|
||
|
values = RangeIndex(0, 1)
|
||
|
result = base.isin(values)
|
||
|
expected = np.array([True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_sort_values_key(self):
|
||
|
# GH#43666, GH#52764
|
||
|
sort_order = {8: 2, 6: 0, 4: 8, 2: 10, 0: 12}
|
||
|
values = RangeIndex(0, 10, 2)
|
||
|
result = values.sort_values(key=lambda x: x.map(sort_order))
|
||
|
expected = Index([6, 8, 4, 2, 0], dtype="int64")
|
||
|
tm.assert_index_equal(result, expected, check_exact=True)
|
||
|
|
||
|
# check this matches the Series.sort_values behavior
|
||
|
ser = values.to_series()
|
||
|
result2 = ser.sort_values(key=lambda x: x.map(sort_order))
|
||
|
tm.assert_series_equal(result2, expected.to_series(), check_exact=True)
|
||
|
|
||
|
def test_range_index_rsub_by_const(self):
|
||
|
# GH#53255
|
||
|
result = 3 - RangeIndex(0, 4, 1)
|
||
|
expected = RangeIndex(3, -1, -1)
|
||
|
tm.assert_index_equal(result, expected)
|