You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

220 lines
6.9 KiB

6 months ago
from io import BytesIO
import os
import pathlib
import tarfile
import zipfile
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
date_range,
read_csv,
read_excel,
read_json,
read_parquet,
)
import pandas._testing as tm
from pandas.util import _test_decorators as td
pytestmark = pytest.mark.filterwarnings(
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
)
@pytest.fixture
def gcs_buffer():
"""Emulate GCS using a binary buffer."""
pytest.importorskip("gcsfs")
fsspec = pytest.importorskip("fsspec")
gcs_buffer = BytesIO()
gcs_buffer.close = lambda: True
class MockGCSFileSystem(fsspec.AbstractFileSystem):
@staticmethod
def open(*args, **kwargs):
gcs_buffer.seek(0)
return gcs_buffer
def ls(self, path, **kwargs):
# needed for pyarrow
return [{"name": path, "type": "file"}]
# Overwrites the default implementation from gcsfs to our mock class
fsspec.register_implementation("gs", MockGCSFileSystem, clobber=True)
return gcs_buffer
# Patches pyarrow; other processes should not pick up change
@pytest.mark.single_cpu
@pytest.mark.parametrize("format", ["csv", "json", "parquet", "excel", "markdown"])
def test_to_read_gcs(gcs_buffer, format, monkeypatch, capsys):
"""
Test that many to/read functions support GCS.
GH 33987
"""
df1 = DataFrame(
{
"int": [1, 3],
"float": [2.0, np.nan],
"str": ["t", "s"],
"dt": date_range("2018-06-18", periods=2),
}
)
path = f"gs://test/test.{format}"
if format == "csv":
df1.to_csv(path, index=True)
df2 = read_csv(path, parse_dates=["dt"], index_col=0)
elif format == "excel":
path = "gs://test/test.xlsx"
df1.to_excel(path)
df2 = read_excel(path, parse_dates=["dt"], index_col=0)
elif format == "json":
df1.to_json(path)
df2 = read_json(path, convert_dates=["dt"])
elif format == "parquet":
pytest.importorskip("pyarrow")
pa_fs = pytest.importorskip("pyarrow.fs")
class MockFileSystem(pa_fs.FileSystem):
@staticmethod
def from_uri(path):
print("Using pyarrow filesystem")
to_local = pathlib.Path(path.replace("gs://", "")).absolute().as_uri()
return pa_fs.LocalFileSystem(to_local)
with monkeypatch.context() as m:
m.setattr(pa_fs, "FileSystem", MockFileSystem)
df1.to_parquet(path)
df2 = read_parquet(path)
captured = capsys.readouterr()
assert captured.out == "Using pyarrow filesystem\nUsing pyarrow filesystem\n"
elif format == "markdown":
pytest.importorskip("tabulate")
df1.to_markdown(path)
df2 = df1
tm.assert_frame_equal(df1, df2)
def assert_equal_zip_safe(result: bytes, expected: bytes, compression: str):
"""
For zip compression, only compare the CRC-32 checksum of the file contents
to avoid checking the time-dependent last-modified timestamp which
in some CI builds is off-by-one
See https://en.wikipedia.org/wiki/ZIP_(file_format)#File_headers
"""
if compression == "zip":
# Only compare the CRC checksum of the file contents
with zipfile.ZipFile(BytesIO(result)) as exp, zipfile.ZipFile(
BytesIO(expected)
) as res:
for res_info, exp_info in zip(res.infolist(), exp.infolist()):
assert res_info.CRC == exp_info.CRC
elif compression == "tar":
with tarfile.open(fileobj=BytesIO(result)) as tar_exp, tarfile.open(
fileobj=BytesIO(expected)
) as tar_res:
for tar_res_info, tar_exp_info in zip(
tar_res.getmembers(), tar_exp.getmembers()
):
actual_file = tar_res.extractfile(tar_res_info)
expected_file = tar_exp.extractfile(tar_exp_info)
assert (actual_file is None) == (expected_file is None)
if actual_file is not None and expected_file is not None:
assert actual_file.read() == expected_file.read()
else:
assert result == expected
@pytest.mark.parametrize("encoding", ["utf-8", "cp1251"])
def test_to_csv_compression_encoding_gcs(
gcs_buffer, compression_only, encoding, compression_to_extension
):
"""
Compression and encoding should with GCS.
GH 35677 (to_csv, compression), GH 26124 (to_csv, encoding), and
GH 32392 (read_csv, encoding)
"""
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
# reference of compressed and encoded file
compression = {"method": compression_only}
if compression_only == "gzip":
compression["mtime"] = 1 # be reproducible
buffer = BytesIO()
df.to_csv(buffer, compression=compression, encoding=encoding, mode="wb")
# write compressed file with explicit compression
path_gcs = "gs://test/test.csv"
df.to_csv(path_gcs, compression=compression, encoding=encoding)
res = gcs_buffer.getvalue()
expected = buffer.getvalue()
assert_equal_zip_safe(res, expected, compression_only)
read_df = read_csv(
path_gcs, index_col=0, compression=compression_only, encoding=encoding
)
tm.assert_frame_equal(df, read_df)
# write compressed file with implicit compression
file_ext = compression_to_extension[compression_only]
compression["method"] = "infer"
path_gcs += f".{file_ext}"
df.to_csv(path_gcs, compression=compression, encoding=encoding)
res = gcs_buffer.getvalue()
expected = buffer.getvalue()
assert_equal_zip_safe(res, expected, compression_only)
read_df = read_csv(path_gcs, index_col=0, compression="infer", encoding=encoding)
tm.assert_frame_equal(df, read_df)
def test_to_parquet_gcs_new_file(monkeypatch, tmpdir):
"""Regression test for writing to a not-yet-existent GCS Parquet file."""
pytest.importorskip("fastparquet")
pytest.importorskip("gcsfs")
from fsspec import AbstractFileSystem
df1 = DataFrame(
{
"int": [1, 3],
"float": [2.0, np.nan],
"str": ["t", "s"],
"dt": date_range("2018-06-18", periods=2),
}
)
class MockGCSFileSystem(AbstractFileSystem):
def open(self, path, mode="r", *args):
if "w" not in mode:
raise FileNotFoundError
return open(os.path.join(tmpdir, "test.parquet"), mode, encoding="utf-8")
monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem)
df1.to_parquet(
"gs://test/test.csv", index=True, engine="fastparquet", compression=None
)
@td.skip_if_installed("gcsfs")
def test_gcs_not_present_exception():
with tm.external_error_raised(ImportError):
read_csv("gs://test/test.csv")