You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2232 lines
73 KiB

7 months ago
from datetime import datetime
from functools import partial
import numpy as np
import pytest
import pytz
from pandas._libs import lib
from pandas._typing import DatetimeNaTType
from pandas.compat import is_platform_windows
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timedelta,
Timestamp,
isna,
notna,
)
import pandas._testing as tm
from pandas.core.groupby.grouper import Grouper
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import (
Period,
period_range,
)
from pandas.core.resample import (
DatetimeIndex,
_get_timestamp_range_edges,
)
from pandas.tseries import offsets
from pandas.tseries.offsets import Minute
@pytest.fixture()
def _index_factory():
return date_range
@pytest.fixture
def _index_freq():
return "Min"
@pytest.fixture
def _static_values(index):
return np.random.default_rng(2).random(len(index))
@pytest.fixture(params=["s", "ms", "us", "ns"])
def unit(request):
return request.param
@pytest.fixture
def simple_date_range_series():
"""
Series with date range index and random data for test purposes.
"""
def _simple_date_range_series(start, end, freq="D"):
rng = date_range(start, end, freq=freq)
return Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
return _simple_date_range_series
def test_custom_grouper(index, unit):
dti = index.as_unit(unit)
s = Series(np.array([1] * len(dti)), index=dti, dtype="int64")
b = Grouper(freq=Minute(5))
g = s.groupby(b)
# check all cython functions work
g.ohlc() # doesn't use _cython_agg_general
funcs = ["sum", "mean", "prod", "min", "max", "var"]
for f in funcs:
g._cython_agg_general(f, alt=None, numeric_only=True)
b = Grouper(freq=Minute(5), closed="right", label="right")
g = s.groupby(b)
# check all cython functions work
g.ohlc() # doesn't use _cython_agg_general
funcs = ["sum", "mean", "prod", "min", "max", "var"]
for f in funcs:
g._cython_agg_general(f, alt=None, numeric_only=True)
assert g.ngroups == 2593
assert notna(g.mean()).all()
# construct expected val
arr = [1] + [5] * 2592
idx = dti[0:-1:5]
idx = idx.append(dti[-1:])
idx = DatetimeIndex(idx, freq="5min").as_unit(unit)
expect = Series(arr, index=idx)
# GH2763 - return input dtype if we can
result = g.agg("sum")
tm.assert_series_equal(result, expect)
def test_custom_grouper_df(index, unit):
b = Grouper(freq=Minute(5), closed="right", label="right")
dti = index.as_unit(unit)
df = DataFrame(
np.random.default_rng(2).random((len(dti), 10)), index=dti, dtype="float64"
)
r = df.groupby(b).agg("sum")
assert len(r.columns) == 10
assert len(r.index) == 2593
@pytest.mark.parametrize(
"_index_start,_index_end,_index_name",
[("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")],
)
@pytest.mark.parametrize(
"closed, expected",
[
(
"right",
lambda s: Series(
[s.iloc[0], s[1:6].mean(), s[6:11].mean(), s[11:].mean()],
index=date_range("1/1/2000", periods=4, freq="5min", name="index"),
),
),
(
"left",
lambda s: Series(
[s[:5].mean(), s[5:10].mean(), s[10:].mean()],
index=date_range(
"1/1/2000 00:05", periods=3, freq="5min", name="index"
),
),
),
],
)
def test_resample_basic(series, closed, expected, unit):
s = series
s.index = s.index.as_unit(unit)
expected = expected(s)
expected.index = expected.index.as_unit(unit)
result = s.resample("5min", closed=closed, label="right").mean()
tm.assert_series_equal(result, expected)
def test_resample_integerarray(unit):
# GH 25580, resample on IntegerArray
ts = Series(
range(9),
index=date_range("1/1/2000", periods=9, freq="min").as_unit(unit),
dtype="Int64",
)
result = ts.resample("3min").sum()
expected = Series(
[3, 12, 21],
index=date_range("1/1/2000", periods=3, freq="3min").as_unit(unit),
dtype="Int64",
)
tm.assert_series_equal(result, expected)
result = ts.resample("3min").mean()
expected = Series(
[1, 4, 7],
index=date_range("1/1/2000", periods=3, freq="3min").as_unit(unit),
dtype="Float64",
)
tm.assert_series_equal(result, expected)
def test_resample_basic_grouper(series, unit):
s = series
s.index = s.index.as_unit(unit)
result = s.resample("5Min").last()
grouper = Grouper(freq=Minute(5), closed="left", label="left")
expected = s.groupby(grouper).agg(lambda x: x.iloc[-1])
tm.assert_series_equal(result, expected)
@pytest.mark.filterwarnings(
"ignore:The 'convention' keyword in Series.resample:FutureWarning"
)
@pytest.mark.parametrize(
"_index_start,_index_end,_index_name",
[("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")],
)
@pytest.mark.parametrize(
"keyword,value",
[("label", "righttt"), ("closed", "righttt"), ("convention", "starttt")],
)
def test_resample_string_kwargs(series, keyword, value, unit):
# see gh-19303
# Check that wrong keyword argument strings raise an error
series.index = series.index.as_unit(unit)
msg = f"Unsupported value {value} for `{keyword}`"
with pytest.raises(ValueError, match=msg):
series.resample("5min", **({keyword: value}))
@pytest.mark.parametrize(
"_index_start,_index_end,_index_name",
[("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")],
)
def test_resample_how(series, downsample_method, unit):
if downsample_method == "ohlc":
pytest.skip("covered by test_resample_how_ohlc")
s = series
s.index = s.index.as_unit(unit)
grouplist = np.ones_like(s)
grouplist[0] = 0
grouplist[1:6] = 1
grouplist[6:11] = 2
grouplist[11:] = 3
expected = s.groupby(grouplist).agg(downsample_method)
expected.index = date_range(
"1/1/2000", periods=4, freq="5min", name="index"
).as_unit(unit)
result = getattr(
s.resample("5min", closed="right", label="right"), downsample_method
)()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"_index_start,_index_end,_index_name",
[("1/1/2000 00:00:00", "1/1/2000 00:13:00", "index")],
)
def test_resample_how_ohlc(series, unit):
s = series
s.index = s.index.as_unit(unit)
grouplist = np.ones_like(s)
grouplist[0] = 0
grouplist[1:6] = 1
grouplist[6:11] = 2
grouplist[11:] = 3
def _ohlc(group):
if isna(group).all():
return np.repeat(np.nan, 4)
return [group.iloc[0], group.max(), group.min(), group.iloc[-1]]
expected = DataFrame(
s.groupby(grouplist).agg(_ohlc).values.tolist(),
index=date_range("1/1/2000", periods=4, freq="5min", name="index").as_unit(
unit
),
columns=["open", "high", "low", "close"],
)
result = s.resample("5min", closed="right", label="right").ohlc()
tm.assert_frame_equal(result, expected)
def test_resample_how_callables(unit):
# GH#7929
data = np.arange(5, dtype=np.int64)
ind = date_range(start="2014-01-01", periods=len(data), freq="d").as_unit(unit)
df = DataFrame({"A": data, "B": data}, index=ind)
def fn(x, a=1):
return str(type(x))
class FnClass:
def __call__(self, x):
return str(type(x))
df_standard = df.resample("ME").apply(fn)
df_lambda = df.resample("ME").apply(lambda x: str(type(x)))
df_partial = df.resample("ME").apply(partial(fn))
df_partial2 = df.resample("ME").apply(partial(fn, a=2))
df_class = df.resample("ME").apply(FnClass())
tm.assert_frame_equal(df_standard, df_lambda)
tm.assert_frame_equal(df_standard, df_partial)
tm.assert_frame_equal(df_standard, df_partial2)
tm.assert_frame_equal(df_standard, df_class)
def test_resample_rounding(unit):
# GH 8371
# odd results when rounding is needed
ts = [
"2014-11-08 00:00:01",
"2014-11-08 00:00:02",
"2014-11-08 00:00:02",
"2014-11-08 00:00:03",
"2014-11-08 00:00:07",
"2014-11-08 00:00:07",
"2014-11-08 00:00:08",
"2014-11-08 00:00:08",
"2014-11-08 00:00:08",
"2014-11-08 00:00:09",
"2014-11-08 00:00:10",
"2014-11-08 00:00:11",
"2014-11-08 00:00:11",
"2014-11-08 00:00:13",
"2014-11-08 00:00:14",
"2014-11-08 00:00:15",
"2014-11-08 00:00:17",
"2014-11-08 00:00:20",
"2014-11-08 00:00:21",
]
df = DataFrame({"value": [1] * 19}, index=pd.to_datetime(ts))
df.index = df.index.as_unit(unit)
result = df.resample("6s").sum()
expected = DataFrame(
{"value": [4, 9, 4, 2]},
index=date_range("2014-11-08", freq="6s", periods=4).as_unit(unit),
)
tm.assert_frame_equal(result, expected)
result = df.resample("7s").sum()
expected = DataFrame(
{"value": [4, 10, 4, 1]},
index=date_range("2014-11-08", freq="7s", periods=4).as_unit(unit),
)
tm.assert_frame_equal(result, expected)
result = df.resample("11s").sum()
expected = DataFrame(
{"value": [11, 8]},
index=date_range("2014-11-08", freq="11s", periods=2).as_unit(unit),
)
tm.assert_frame_equal(result, expected)
result = df.resample("13s").sum()
expected = DataFrame(
{"value": [13, 6]},
index=date_range("2014-11-08", freq="13s", periods=2).as_unit(unit),
)
tm.assert_frame_equal(result, expected)
result = df.resample("17s").sum()
expected = DataFrame(
{"value": [16, 3]},
index=date_range("2014-11-08", freq="17s", periods=2).as_unit(unit),
)
tm.assert_frame_equal(result, expected)
def test_resample_basic_from_daily(unit):
# from daily
dti = date_range(
start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D", name="index"
).as_unit(unit)
s = Series(np.random.default_rng(2).random(len(dti)), dti)
# to weekly
result = s.resample("w-sun").last()
assert len(result) == 3
assert (result.index.dayofweek == [6, 6, 6]).all()
assert result.iloc[0] == s["1/2/2005"]
assert result.iloc[1] == s["1/9/2005"]
assert result.iloc[2] == s.iloc[-1]
result = s.resample("W-MON").last()
assert len(result) == 2
assert (result.index.dayofweek == [0, 0]).all()
assert result.iloc[0] == s["1/3/2005"]
assert result.iloc[1] == s["1/10/2005"]
result = s.resample("W-TUE").last()
assert len(result) == 2
assert (result.index.dayofweek == [1, 1]).all()
assert result.iloc[0] == s["1/4/2005"]
assert result.iloc[1] == s["1/10/2005"]
result = s.resample("W-WED").last()
assert len(result) == 2
assert (result.index.dayofweek == [2, 2]).all()
assert result.iloc[0] == s["1/5/2005"]
assert result.iloc[1] == s["1/10/2005"]
result = s.resample("W-THU").last()
assert len(result) == 2
assert (result.index.dayofweek == [3, 3]).all()
assert result.iloc[0] == s["1/6/2005"]
assert result.iloc[1] == s["1/10/2005"]
result = s.resample("W-FRI").last()
assert len(result) == 2
assert (result.index.dayofweek == [4, 4]).all()
assert result.iloc[0] == s["1/7/2005"]
assert result.iloc[1] == s["1/10/2005"]
# to biz day
result = s.resample("B").last()
assert len(result) == 7
assert (result.index.dayofweek == [4, 0, 1, 2, 3, 4, 0]).all()
assert result.iloc[0] == s["1/2/2005"]
assert result.iloc[1] == s["1/3/2005"]
assert result.iloc[5] == s["1/9/2005"]
assert result.index.name == "index"
def test_resample_upsampling_picked_but_not_correct(unit):
# Test for issue #3020
dates = date_range("01-Jan-2014", "05-Jan-2014", freq="D").as_unit(unit)
series = Series(1, index=dates)
result = series.resample("D").mean()
assert result.index[0] == dates[0]
# GH 5955
# incorrect deciding to upsample when the axis frequency matches the
# resample frequency
s = Series(
np.arange(1.0, 6), index=[datetime(1975, 1, i, 12, 0) for i in range(1, 6)]
)
s.index = s.index.as_unit(unit)
expected = Series(
np.arange(1.0, 6),
index=date_range("19750101", periods=5, freq="D").as_unit(unit),
)
result = s.resample("D").count()
tm.assert_series_equal(result, Series(1, index=expected.index))
result1 = s.resample("D").sum()
result2 = s.resample("D").mean()
tm.assert_series_equal(result1, expected)
tm.assert_series_equal(result2, expected)
@pytest.mark.parametrize("f", ["sum", "mean", "prod", "min", "max", "var"])
def test_resample_frame_basic_cy_funcs(f, unit):
df = DataFrame(
np.random.default_rng(2).standard_normal((50, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=50, freq="B"),
)
df.index = df.index.as_unit(unit)
b = Grouper(freq="ME")
g = df.groupby(b)
# check all cython functions work
g._cython_agg_general(f, alt=None, numeric_only=True)
@pytest.mark.parametrize("freq", ["YE", "ME"])
def test_resample_frame_basic_M_A(freq, unit):
df = DataFrame(
np.random.default_rng(2).standard_normal((50, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=50, freq="B"),
)
df.index = df.index.as_unit(unit)
result = df.resample(freq).mean()
tm.assert_series_equal(result["A"], df["A"].resample(freq).mean())
@pytest.mark.parametrize("freq", ["W-WED", "ME"])
def test_resample_frame_basic_kind(freq, unit):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df.index = df.index.as_unit(unit)
msg = "The 'kind' keyword in DataFrame.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
df.resample(freq, kind="period").mean()
def test_resample_upsample(unit):
# from daily
dti = date_range(
start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D", name="index"
).as_unit(unit)
s = Series(np.random.default_rng(2).random(len(dti)), dti)
# to minutely, by padding
result = s.resample("Min").ffill()
assert len(result) == 12961
assert result.iloc[0] == s.iloc[0]
assert result.iloc[-1] == s.iloc[-1]
assert result.index.name == "index"
def test_resample_how_method(unit):
# GH9915
s = Series(
[11, 22],
index=[
Timestamp("2015-03-31 21:48:52.672000"),
Timestamp("2015-03-31 21:49:52.739000"),
],
)
s.index = s.index.as_unit(unit)
expected = Series(
[11, np.nan, np.nan, np.nan, np.nan, np.nan, 22],
index=DatetimeIndex(
[
Timestamp("2015-03-31 21:48:50"),
Timestamp("2015-03-31 21:49:00"),
Timestamp("2015-03-31 21:49:10"),
Timestamp("2015-03-31 21:49:20"),
Timestamp("2015-03-31 21:49:30"),
Timestamp("2015-03-31 21:49:40"),
Timestamp("2015-03-31 21:49:50"),
],
freq="10s",
),
)
expected.index = expected.index.as_unit(unit)
tm.assert_series_equal(s.resample("10s").mean(), expected)
def test_resample_extra_index_point(unit):
# GH#9756
index = date_range(start="20150101", end="20150331", freq="BME").as_unit(unit)
expected = DataFrame({"A": Series([21, 41, 63], index=index)})
index = date_range(start="20150101", end="20150331", freq="B").as_unit(unit)
df = DataFrame({"A": Series(range(len(index)), index=index)}, dtype="int64")
result = df.resample("BME").last()
tm.assert_frame_equal(result, expected)
def test_upsample_with_limit(unit):
rng = date_range("1/1/2000", periods=3, freq="5min").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
result = ts.resample("min").ffill(limit=2)
expected = ts.reindex(result.index, method="ffill", limit=2)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("freq", ["1D", "10h", "5Min", "10s"])
@pytest.mark.parametrize("rule", ["YE", "3ME", "15D", "30h", "15Min", "30s"])
def test_nearest_upsample_with_limit(tz_aware_fixture, freq, rule, unit):
# GH 33939
rng = date_range("1/1/2000", periods=3, freq=freq, tz=tz_aware_fixture).as_unit(
unit
)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
result = ts.resample(rule).nearest(limit=2)
expected = ts.reindex(result.index, method="nearest", limit=2)
tm.assert_series_equal(result, expected)
def test_resample_ohlc(series, unit):
s = series
s.index = s.index.as_unit(unit)
grouper = Grouper(freq=Minute(5))
expect = s.groupby(grouper).agg(lambda x: x.iloc[-1])
result = s.resample("5Min").ohlc()
assert len(result) == len(expect)
assert len(result.columns) == 4
xs = result.iloc[-2]
assert xs["open"] == s.iloc[-6]
assert xs["high"] == s[-6:-1].max()
assert xs["low"] == s[-6:-1].min()
assert xs["close"] == s.iloc[-2]
xs = result.iloc[0]
assert xs["open"] == s.iloc[0]
assert xs["high"] == s[:5].max()
assert xs["low"] == s[:5].min()
assert xs["close"] == s.iloc[4]
def test_resample_ohlc_result(unit):
# GH 12332
index = date_range("1-1-2000", "2-15-2000", freq="h").as_unit(unit)
index = index.union(date_range("4-15-2000", "5-15-2000", freq="h").as_unit(unit))
s = Series(range(len(index)), index=index)
a = s.loc[:"4-15-2000"].resample("30min").ohlc()
assert isinstance(a, DataFrame)
b = s.loc[:"4-14-2000"].resample("30min").ohlc()
assert isinstance(b, DataFrame)
def test_resample_ohlc_result_odd_period(unit):
# GH12348
# raising on odd period
rng = date_range("2013-12-30", "2014-01-07").as_unit(unit)
index = rng.drop(
[
Timestamp("2014-01-01"),
Timestamp("2013-12-31"),
Timestamp("2014-01-04"),
Timestamp("2014-01-05"),
]
)
df = DataFrame(data=np.arange(len(index)), index=index)
result = df.resample("B").mean()
expected = df.reindex(index=date_range(rng[0], rng[-1], freq="B").as_unit(unit))
tm.assert_frame_equal(result, expected)
def test_resample_ohlc_dataframe(unit):
df = (
DataFrame(
{
"PRICE": {
Timestamp("2011-01-06 10:59:05", tz=None): 24990,
Timestamp("2011-01-06 12:43:33", tz=None): 25499,
Timestamp("2011-01-06 12:54:09", tz=None): 25499,
},
"VOLUME": {
Timestamp("2011-01-06 10:59:05", tz=None): 1500000000,
Timestamp("2011-01-06 12:43:33", tz=None): 5000000000,
Timestamp("2011-01-06 12:54:09", tz=None): 100000000,
},
}
)
).reindex(["VOLUME", "PRICE"], axis=1)
df.index = df.index.as_unit(unit)
df.columns.name = "Cols"
res = df.resample("h").ohlc()
exp = pd.concat(
[df["VOLUME"].resample("h").ohlc(), df["PRICE"].resample("h").ohlc()],
axis=1,
keys=df.columns,
)
assert exp.columns.names[0] == "Cols"
tm.assert_frame_equal(exp, res)
df.columns = [["a", "b"], ["c", "d"]]
res = df.resample("h").ohlc()
exp.columns = pd.MultiIndex.from_tuples(
[
("a", "c", "open"),
("a", "c", "high"),
("a", "c", "low"),
("a", "c", "close"),
("b", "d", "open"),
("b", "d", "high"),
("b", "d", "low"),
("b", "d", "close"),
]
)
tm.assert_frame_equal(exp, res)
# dupe columns fail atm
# df.columns = ['PRICE', 'PRICE']
def test_resample_dup_index():
# GH 4812
# dup columns with resample raising
df = DataFrame(
np.random.default_rng(2).standard_normal((4, 12)),
index=[2000, 2000, 2000, 2000],
columns=[Period(year=2000, month=i + 1, freq="M") for i in range(12)],
)
df.iloc[3, :] = np.nan
warning_msg = "DataFrame.resample with axis=1 is deprecated."
with tm.assert_produces_warning(FutureWarning, match=warning_msg):
result = df.resample("QE", axis=1).mean()
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = df.groupby(lambda x: int((x.month - 1) / 3), axis=1).mean()
expected.columns = [Period(year=2000, quarter=i + 1, freq="Q") for i in range(4)]
tm.assert_frame_equal(result, expected)
def test_resample_reresample(unit):
dti = date_range(
start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="D"
).as_unit(unit)
s = Series(np.random.default_rng(2).random(len(dti)), dti)
bs = s.resample("B", closed="right", label="right").mean()
result = bs.resample("8h").mean()
assert len(result) == 25
assert isinstance(result.index.freq, offsets.DateOffset)
assert result.index.freq == offsets.Hour(8)
@pytest.mark.parametrize(
"freq, expected_kwargs",
[
["YE-DEC", {"start": "1990", "end": "2000", "freq": "Y-DEC"}],
["YE-JUN", {"start": "1990", "end": "2000", "freq": "Y-JUN"}],
["ME", {"start": "1990-01", "end": "2000-01", "freq": "M"}],
],
)
def test_resample_timestamp_to_period(
simple_date_range_series, freq, expected_kwargs, unit
):
ts = simple_date_range_series("1/1/1990", "1/1/2000")
ts.index = ts.index.as_unit(unit)
msg = "The 'kind' keyword in Series.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ts.resample(freq, kind="period").mean()
expected = ts.resample(freq).mean()
expected.index = period_range(**expected_kwargs)
tm.assert_series_equal(result, expected)
def test_ohlc_5min(unit):
def _ohlc(group):
if isna(group).all():
return np.repeat(np.nan, 4)
return [group.iloc[0], group.max(), group.min(), group.iloc[-1]]
rng = date_range("1/1/2000 00:00:00", "1/1/2000 5:59:50", freq="10s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
resampled = ts.resample("5min", closed="right", label="right").ohlc()
assert (resampled.loc["1/1/2000 00:00"] == ts.iloc[0]).all()
exp = _ohlc(ts[1:31])
assert (resampled.loc["1/1/2000 00:05"] == exp).all()
exp = _ohlc(ts["1/1/2000 5:55:01":])
assert (resampled.loc["1/1/2000 6:00:00"] == exp).all()
def test_downsample_non_unique(unit):
rng = date_range("1/1/2000", "2/29/2000").as_unit(unit)
rng2 = rng.repeat(5).values
ts = Series(np.random.default_rng(2).standard_normal(len(rng2)), index=rng2)
result = ts.resample("ME").mean()
expected = ts.groupby(lambda x: x.month).mean()
assert len(result) == 2
tm.assert_almost_equal(result.iloc[0], expected[1])
tm.assert_almost_equal(result.iloc[1], expected[2])
def test_asfreq_non_unique(unit):
# GH #1077
rng = date_range("1/1/2000", "2/29/2000").as_unit(unit)
rng2 = rng.repeat(2).values
ts = Series(np.random.default_rng(2).standard_normal(len(rng2)), index=rng2)
msg = "cannot reindex on an axis with duplicate labels"
with pytest.raises(ValueError, match=msg):
ts.asfreq("B")
def test_resample_axis1(unit):
rng = date_range("1/1/2000", "2/29/2000").as_unit(unit)
df = DataFrame(
np.random.default_rng(2).standard_normal((3, len(rng))),
columns=rng,
index=["a", "b", "c"],
)
warning_msg = "DataFrame.resample with axis=1 is deprecated."
with tm.assert_produces_warning(FutureWarning, match=warning_msg):
result = df.resample("ME", axis=1).mean()
expected = df.T.resample("ME").mean().T
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("freq", ["min", "5min", "15min", "30min", "4h", "12h"])
def test_resample_anchored_ticks(freq, unit):
# If a fixed delta (5 minute, 4 hour) evenly divides a day, we should
# "anchor" the origin at midnight so we get regular intervals rather
# than starting from the first timestamp which might start in the
# middle of a desired interval
rng = date_range("1/1/2000 04:00:00", periods=86400, freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
ts[:2] = np.nan # so results are the same
result = ts[2:].resample(freq, closed="left", label="left").mean()
expected = ts.resample(freq, closed="left", label="left").mean()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("end", [1, 2])
def test_resample_single_group(end, unit):
mysum = lambda x: x.sum()
rng = date_range("2000-1-1", f"2000-{end}-10", freq="D").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
tm.assert_series_equal(ts.resample("ME").sum(), ts.resample("ME").apply(mysum))
def test_resample_single_group_std(unit):
# GH 3849
s = Series(
[30.1, 31.6],
index=[Timestamp("20070915 15:30:00"), Timestamp("20070915 15:40:00")],
)
s.index = s.index.as_unit(unit)
expected = Series(
[0.75], index=DatetimeIndex([Timestamp("20070915")], freq="D").as_unit(unit)
)
result = s.resample("D").apply(lambda x: np.std(x))
tm.assert_series_equal(result, expected)
def test_resample_offset(unit):
# GH 31809
rng = date_range("1/1/2000 00:00:00", "1/1/2000 02:00", freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
resampled = ts.resample("5min", offset="2min").mean()
exp_rng = date_range("12/31/1999 23:57:00", "1/1/2000 01:57", freq="5min").as_unit(
unit
)
tm.assert_index_equal(resampled.index, exp_rng)
@pytest.mark.parametrize(
"kwargs",
[
{"origin": "1999-12-31 23:57:00"},
{"origin": Timestamp("1970-01-01 00:02:00")},
{"origin": "epoch", "offset": "2m"},
# origin of '1999-31-12 12:02:00' should be equivalent for this case
{"origin": "1999-12-31 12:02:00"},
{"offset": "-3m"},
],
)
def test_resample_origin(kwargs, unit):
# GH 31809
rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
exp_rng = date_range(
"1999-12-31 23:57:00", "2000-01-01 01:57", freq="5min"
).as_unit(unit)
resampled = ts.resample("5min", **kwargs).mean()
tm.assert_index_equal(resampled.index, exp_rng)
@pytest.mark.parametrize(
"origin", ["invalid_value", "epch", "startday", "startt", "2000-30-30", object()]
)
def test_resample_bad_origin(origin, unit):
rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
msg = (
"'origin' should be equal to 'epoch', 'start', 'start_day', "
"'end', 'end_day' or should be a Timestamp convertible type. Got "
f"'{origin}' instead."
)
with pytest.raises(ValueError, match=msg):
ts.resample("5min", origin=origin)
@pytest.mark.parametrize("offset", ["invalid_value", "12dayys", "2000-30-30", object()])
def test_resample_bad_offset(offset, unit):
rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
msg = f"'offset' should be a Timedelta convertible type. Got '{offset}' instead."
with pytest.raises(ValueError, match=msg):
ts.resample("5min", offset=offset)
def test_resample_origin_prime_freq(unit):
# GH 31809
start, end = "2000-10-01 23:30:00", "2000-10-02 00:30:00"
rng = date_range(start, end, freq="7min").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
exp_rng = date_range(
"2000-10-01 23:14:00", "2000-10-02 00:22:00", freq="17min"
).as_unit(unit)
resampled = ts.resample("17min").mean()
tm.assert_index_equal(resampled.index, exp_rng)
resampled = ts.resample("17min", origin="start_day").mean()
tm.assert_index_equal(resampled.index, exp_rng)
exp_rng = date_range(
"2000-10-01 23:30:00", "2000-10-02 00:21:00", freq="17min"
).as_unit(unit)
resampled = ts.resample("17min", origin="start").mean()
tm.assert_index_equal(resampled.index, exp_rng)
resampled = ts.resample("17min", offset="23h30min").mean()
tm.assert_index_equal(resampled.index, exp_rng)
resampled = ts.resample("17min", origin="start_day", offset="23h30min").mean()
tm.assert_index_equal(resampled.index, exp_rng)
exp_rng = date_range(
"2000-10-01 23:18:00", "2000-10-02 00:26:00", freq="17min"
).as_unit(unit)
resampled = ts.resample("17min", origin="epoch").mean()
tm.assert_index_equal(resampled.index, exp_rng)
exp_rng = date_range(
"2000-10-01 23:24:00", "2000-10-02 00:15:00", freq="17min"
).as_unit(unit)
resampled = ts.resample("17min", origin="2000-01-01").mean()
tm.assert_index_equal(resampled.index, exp_rng)
def test_resample_origin_with_tz(unit):
# GH 31809
msg = "The origin must have the same timezone as the index."
tz = "Europe/Paris"
rng = date_range(
"2000-01-01 00:00:00", "2000-01-01 02:00", freq="s", tz=tz
).as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
exp_rng = date_range(
"1999-12-31 23:57:00", "2000-01-01 01:57", freq="5min", tz=tz
).as_unit(unit)
resampled = ts.resample("5min", origin="1999-12-31 23:57:00+00:00").mean()
tm.assert_index_equal(resampled.index, exp_rng)
# origin of '1999-31-12 12:02:00+03:00' should be equivalent for this case
resampled = ts.resample("5min", origin="1999-12-31 12:02:00+03:00").mean()
tm.assert_index_equal(resampled.index, exp_rng)
resampled = ts.resample("5min", origin="epoch", offset="2m").mean()
tm.assert_index_equal(resampled.index, exp_rng)
with pytest.raises(ValueError, match=msg):
ts.resample("5min", origin="12/31/1999 23:57:00").mean()
# if the series is not tz aware, origin should not be tz aware
rng = date_range("2000-01-01 00:00:00", "2000-01-01 02:00", freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
with pytest.raises(ValueError, match=msg):
ts.resample("5min", origin="12/31/1999 23:57:00+03:00").mean()
def test_resample_origin_epoch_with_tz_day_vs_24h(unit):
# GH 34474
start, end = "2000-10-01 23:30:00+0500", "2000-12-02 00:30:00+0500"
rng = date_range(start, end, freq="7min").as_unit(unit)
random_values = np.random.default_rng(2).standard_normal(len(rng))
ts_1 = Series(random_values, index=rng)
result_1 = ts_1.resample("D", origin="epoch").mean()
result_2 = ts_1.resample("24h", origin="epoch").mean()
tm.assert_series_equal(result_1, result_2)
# check that we have the same behavior with epoch even if we are not timezone aware
ts_no_tz = ts_1.tz_localize(None)
result_3 = ts_no_tz.resample("D", origin="epoch").mean()
result_4 = ts_no_tz.resample("24h", origin="epoch").mean()
tm.assert_series_equal(result_1, result_3.tz_localize(rng.tz), check_freq=False)
tm.assert_series_equal(result_1, result_4.tz_localize(rng.tz), check_freq=False)
# check that we have the similar results with two different timezones (+2H and +5H)
start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200"
rng = date_range(start, end, freq="7min").as_unit(unit)
ts_2 = Series(random_values, index=rng)
result_5 = ts_2.resample("D", origin="epoch").mean()
result_6 = ts_2.resample("24h", origin="epoch").mean()
tm.assert_series_equal(result_1.tz_localize(None), result_5.tz_localize(None))
tm.assert_series_equal(result_1.tz_localize(None), result_6.tz_localize(None))
def test_resample_origin_with_day_freq_on_dst(unit):
# GH 31809
tz = "America/Chicago"
def _create_series(values, timestamps, freq="D"):
return Series(
values,
index=DatetimeIndex(
[Timestamp(t, tz=tz) for t in timestamps], freq=freq, ambiguous=True
).as_unit(unit),
)
# test classical behavior of origin in a DST context
start = Timestamp("2013-11-02", tz=tz)
end = Timestamp("2013-11-03 23:59", tz=tz)
rng = date_range(start, end, freq="1h").as_unit(unit)
ts = Series(np.ones(len(rng)), index=rng)
expected = _create_series([24.0, 25.0], ["2013-11-02", "2013-11-03"])
for origin in ["epoch", "start", "start_day", start, None]:
result = ts.resample("D", origin=origin).sum()
tm.assert_series_equal(result, expected)
# test complex behavior of origin/offset in a DST context
start = Timestamp("2013-11-03", tz=tz)
end = Timestamp("2013-11-03 23:59", tz=tz)
rng = date_range(start, end, freq="1h").as_unit(unit)
ts = Series(np.ones(len(rng)), index=rng)
expected_ts = ["2013-11-02 22:00-05:00", "2013-11-03 22:00-06:00"]
expected = _create_series([23.0, 2.0], expected_ts)
result = ts.resample("D", origin="start", offset="-2h").sum()
tm.assert_series_equal(result, expected)
expected_ts = ["2013-11-02 22:00-05:00", "2013-11-03 21:00-06:00"]
expected = _create_series([22.0, 3.0], expected_ts, freq="24h")
result = ts.resample("24h", origin="start", offset="-2h").sum()
tm.assert_series_equal(result, expected)
expected_ts = ["2013-11-02 02:00-05:00", "2013-11-03 02:00-06:00"]
expected = _create_series([3.0, 22.0], expected_ts)
result = ts.resample("D", origin="start", offset="2h").sum()
tm.assert_series_equal(result, expected)
expected_ts = ["2013-11-02 23:00-05:00", "2013-11-03 23:00-06:00"]
expected = _create_series([24.0, 1.0], expected_ts)
result = ts.resample("D", origin="start", offset="-1h").sum()
tm.assert_series_equal(result, expected)
expected_ts = ["2013-11-02 01:00-05:00", "2013-11-03 01:00:00-0500"]
expected = _create_series([1.0, 24.0], expected_ts)
result = ts.resample("D", origin="start", offset="1h").sum()
tm.assert_series_equal(result, expected)
def test_resample_daily_anchored(unit):
rng = date_range("1/1/2000 0:00:00", periods=10000, freq="min").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
ts[:2] = np.nan # so results are the same
result = ts[2:].resample("D", closed="left", label="left").mean()
expected = ts.resample("D", closed="left", label="left").mean()
tm.assert_series_equal(result, expected)
def test_resample_to_period_monthly_buglet(unit):
# GH #1259
rng = date_range("1/1/2000", "12/31/2000").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
msg = "The 'kind' keyword in Series.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ts.resample("ME", kind="period").mean()
exp_index = period_range("Jan-2000", "Dec-2000", freq="M")
tm.assert_index_equal(result.index, exp_index)
def test_period_with_agg():
# aggregate a period resampler with a lambda
s2 = Series(
np.random.default_rng(2).integers(0, 5, 50),
index=period_range("2012-01-01", freq="h", periods=50),
dtype="float64",
)
expected = s2.to_timestamp().resample("D").mean().to_period()
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = s2.resample("D")
result = rs.agg(lambda x: x.mean())
tm.assert_series_equal(result, expected)
def test_resample_segfault(unit):
# GH 8573
# segfaulting in older versions
all_wins_and_wagers = [
(1, datetime(2013, 10, 1, 16, 20), 1, 0),
(2, datetime(2013, 10, 1, 16, 10), 1, 0),
(2, datetime(2013, 10, 1, 18, 15), 1, 0),
(2, datetime(2013, 10, 1, 16, 10, 31), 1, 0),
]
df = DataFrame.from_records(
all_wins_and_wagers, columns=("ID", "timestamp", "A", "B")
).set_index("timestamp")
df.index = df.index.as_unit(unit)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("ID").resample("5min").sum()
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby("ID").apply(lambda x: x.resample("5min").sum())
tm.assert_frame_equal(result, expected)
def test_resample_dtype_preservation(unit):
# GH 12202
# validation tests for dtype preservation
df = DataFrame(
{
"date": date_range(start="2016-01-01", periods=4, freq="W").as_unit(unit),
"group": [1, 1, 2, 2],
"val": Series([5, 6, 7, 8], dtype="int32"),
}
).set_index("date")
result = df.resample("1D").ffill()
assert result.val.dtype == np.int32
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("group").resample("1D").ffill()
assert result.val.dtype == np.int32
def test_resample_dtype_coercion(unit):
pytest.importorskip("scipy.interpolate")
# GH 16361
df = {"a": [1, 3, 1, 4]}
df = DataFrame(df, index=date_range("2017-01-01", "2017-01-04").as_unit(unit))
expected = df.astype("float64").resample("h").mean()["a"].interpolate("cubic")
result = df.resample("h")["a"].mean().interpolate("cubic")
tm.assert_series_equal(result, expected)
result = df.resample("h").mean()["a"].interpolate("cubic")
tm.assert_series_equal(result, expected)
def test_weekly_resample_buglet(unit):
# #1327
rng = date_range("1/1/2000", freq="B", periods=20).as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
resampled = ts.resample("W").mean()
expected = ts.resample("W-SUN").mean()
tm.assert_series_equal(resampled, expected)
def test_monthly_resample_error(unit):
# #1451
dates = date_range("4/16/2012 20:00", periods=5000, freq="h").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates)
# it works!
ts.resample("ME")
def test_nanosecond_resample_error():
# GH 12307 - Values falls after last bin when
# Resampling using pd.tseries.offsets.Nano as period
start = 1443707890427
exp_start = 1443707890400
indx = date_range(start=pd.to_datetime(start), periods=10, freq="100ns")
ts = Series(range(len(indx)), index=indx)
r = ts.resample(pd.tseries.offsets.Nano(100))
result = r.agg("mean")
exp_indx = date_range(start=pd.to_datetime(exp_start), periods=10, freq="100ns")
exp = Series(range(len(exp_indx)), index=exp_indx, dtype=float)
tm.assert_series_equal(result, exp)
def test_resample_anchored_intraday(unit):
# #1471, #1458
rng = date_range("1/1/2012", "4/1/2012", freq="100min").as_unit(unit)
df = DataFrame(rng.month, index=rng)
result = df.resample("ME").mean()
msg = "The 'kind' keyword in DataFrame.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = df.resample("ME", kind="period").mean().to_timestamp(how="end")
expected.index += Timedelta(1, "ns") - Timedelta(1, "D")
expected.index = expected.index.as_unit(unit)._with_freq("infer")
assert expected.index.freq == "ME"
tm.assert_frame_equal(result, expected)
result = df.resample("ME", closed="left").mean()
msg = "The 'kind' keyword in DataFrame.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
exp = df.shift(1, freq="D").resample("ME", kind="period").mean()
exp = exp.to_timestamp(how="end")
exp.index = exp.index + Timedelta(1, "ns") - Timedelta(1, "D")
exp.index = exp.index.as_unit(unit)._with_freq("infer")
assert exp.index.freq == "ME"
tm.assert_frame_equal(result, exp)
def test_resample_anchored_intraday2(unit):
rng = date_range("1/1/2012", "4/1/2012", freq="100min").as_unit(unit)
df = DataFrame(rng.month, index=rng)
result = df.resample("QE").mean()
msg = "The 'kind' keyword in DataFrame.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = df.resample("QE", kind="period").mean().to_timestamp(how="end")
expected.index += Timedelta(1, "ns") - Timedelta(1, "D")
expected.index._data.freq = "QE"
expected.index._freq = lib.no_default
expected.index = expected.index.as_unit(unit)
tm.assert_frame_equal(result, expected)
result = df.resample("QE", closed="left").mean()
msg = "The 'kind' keyword in DataFrame.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = (
df.shift(1, freq="D").resample("QE", kind="period", closed="left").mean()
)
expected = expected.to_timestamp(how="end")
expected.index += Timedelta(1, "ns") - Timedelta(1, "D")
expected.index._data.freq = "QE"
expected.index._freq = lib.no_default
expected.index = expected.index.as_unit(unit)
tm.assert_frame_equal(result, expected)
def test_resample_anchored_intraday3(simple_date_range_series, unit):
ts = simple_date_range_series("2012-04-29 23:00", "2012-04-30 5:00", freq="h")
ts.index = ts.index.as_unit(unit)
resampled = ts.resample("ME").mean()
assert len(resampled) == 1
@pytest.mark.parametrize("freq", ["MS", "BMS", "QS-MAR", "YS-DEC", "YS-JUN"])
def test_resample_anchored_monthstart(simple_date_range_series, freq, unit):
ts = simple_date_range_series("1/1/2000", "12/31/2002")
ts.index = ts.index.as_unit(unit)
ts.resample(freq).mean()
@pytest.mark.parametrize("label, sec", [[None, 2.0], ["right", "4.2"]])
def test_resample_anchored_multiday(label, sec):
# When resampling a range spanning multiple days, ensure that the
# start date gets used to determine the offset. Fixes issue where
# a one day period is not a multiple of the frequency.
#
# See: https://github.com/pandas-dev/pandas/issues/8683
index1 = date_range("2014-10-14 23:06:23.206", periods=3, freq="400ms")
index2 = date_range("2014-10-15 23:00:00", periods=2, freq="2200ms")
index = index1.union(index2)
s = Series(np.random.default_rng(2).standard_normal(5), index=index)
# Ensure left closing works
result = s.resample("2200ms", label=label).mean()
assert result.index[-1] == Timestamp(f"2014-10-15 23:00:{sec}00")
def test_corner_cases(unit):
# miscellaneous test coverage
rng = date_range("1/1/2000", periods=12, freq="min").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
result = ts.resample("5min", closed="right", label="left").mean()
ex_index = date_range("1999-12-31 23:55", periods=4, freq="5min").as_unit(unit)
tm.assert_index_equal(result.index, ex_index)
def test_corner_cases_date(simple_date_range_series, unit):
# resample to periods
ts = simple_date_range_series("2000-04-28", "2000-04-30 11:00", freq="h")
ts.index = ts.index.as_unit(unit)
msg = "The 'kind' keyword in Series.resample is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ts.resample("ME", kind="period").mean()
assert len(result) == 1
assert result.index[0] == Period("2000-04", freq="M")
def test_anchored_lowercase_buglet(unit):
dates = date_range("4/16/2012 20:00", periods=50000, freq="s").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates)
# it works!
ts.resample("d").mean()
def test_upsample_apply_functions(unit):
# #1596
rng = date_range("2012-06-12", periods=4, freq="h").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
result = ts.resample("20min").aggregate(["mean", "sum"])
assert isinstance(result, DataFrame)
def test_resample_not_monotonic(unit):
rng = date_range("2012-06-12", periods=200, freq="h").as_unit(unit)
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
ts = ts.take(np.random.default_rng(2).permutation(len(ts)))
result = ts.resample("D").sum()
exp = ts.sort_index().resample("D").sum()
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize(
"dtype",
[
"int64",
"int32",
"float64",
pytest.param(
"float32",
marks=pytest.mark.xfail(
reason="Empty groups cause x.mean() to return float64"
),
),
],
)
def test_resample_median_bug_1688(dtype, unit):
# GH#55958
dti = DatetimeIndex(
[datetime(2012, 1, 1, 0, 0, 0), datetime(2012, 1, 1, 0, 5, 0)]
).as_unit(unit)
df = DataFrame(
[1, 2],
index=dti,
dtype=dtype,
)
result = df.resample("min").apply(lambda x: x.mean())
exp = df.asfreq("min")
tm.assert_frame_equal(result, exp)
result = df.resample("min").median()
exp = df.asfreq("min")
tm.assert_frame_equal(result, exp)
def test_how_lambda_functions(simple_date_range_series, unit):
ts = simple_date_range_series("1/1/2000", "4/1/2000")
ts.index = ts.index.as_unit(unit)
result = ts.resample("ME").apply(lambda x: x.mean())
exp = ts.resample("ME").mean()
tm.assert_series_equal(result, exp)
foo_exp = ts.resample("ME").mean()
foo_exp.name = "foo"
bar_exp = ts.resample("ME").std()
bar_exp.name = "bar"
result = ts.resample("ME").apply([lambda x: x.mean(), lambda x: x.std(ddof=1)])
result.columns = ["foo", "bar"]
tm.assert_series_equal(result["foo"], foo_exp)
tm.assert_series_equal(result["bar"], bar_exp)
# this is a MI Series, so comparing the names of the results
# doesn't make sense
result = ts.resample("ME").aggregate(
{"foo": lambda x: x.mean(), "bar": lambda x: x.std(ddof=1)}
)
tm.assert_series_equal(result["foo"], foo_exp, check_names=False)
tm.assert_series_equal(result["bar"], bar_exp, check_names=False)
def test_resample_unequal_times(unit):
# #1772
start = datetime(1999, 3, 1, 5)
# end hour is less than start
end = datetime(2012, 7, 31, 4)
bad_ind = date_range(start, end, freq="30min").as_unit(unit)
df = DataFrame({"close": 1}, index=bad_ind)
# it works!
df.resample("YS").sum()
def test_resample_consistency(unit):
# GH 6418
# resample with bfill / limit / reindex consistency
i30 = date_range("2002-02-02", periods=4, freq="30min").as_unit(unit)
s = Series(np.arange(4.0), index=i30)
s.iloc[2] = np.nan
# Upsample by factor 3 with reindex() and resample() methods:
i10 = date_range(i30[0], i30[-1], freq="10min").as_unit(unit)
s10 = s.reindex(index=i10, method="bfill")
s10_2 = s.reindex(index=i10, method="bfill", limit=2)
rl = s.reindex_like(s10, method="bfill", limit=2)
r10_2 = s.resample("10Min").bfill(limit=2)
r10 = s.resample("10Min").bfill()
# s10_2, r10, r10_2, rl should all be equal
tm.assert_series_equal(s10_2, r10)
tm.assert_series_equal(s10_2, r10_2)
tm.assert_series_equal(s10_2, rl)
dates1: list[DatetimeNaTType] = [
datetime(2014, 10, 1),
datetime(2014, 9, 3),
datetime(2014, 11, 5),
datetime(2014, 9, 5),
datetime(2014, 10, 8),
datetime(2014, 7, 15),
]
dates2: list[DatetimeNaTType] = (
dates1[:2] + [pd.NaT] + dates1[2:4] + [pd.NaT] + dates1[4:]
)
dates3 = [pd.NaT] + dates1 + [pd.NaT]
@pytest.mark.parametrize("dates", [dates1, dates2, dates3])
def test_resample_timegrouper(dates, unit):
# GH 7227
dates = DatetimeIndex(dates).as_unit(unit)
df = DataFrame({"A": dates, "B": np.arange(len(dates))})
result = df.set_index("A").resample("ME").count()
exp_idx = DatetimeIndex(
["2014-07-31", "2014-08-31", "2014-09-30", "2014-10-31", "2014-11-30"],
freq="ME",
name="A",
).as_unit(unit)
expected = DataFrame({"B": [1, 0, 2, 2, 1]}, index=exp_idx)
if df["A"].isna().any():
expected.index = expected.index._with_freq(None)
tm.assert_frame_equal(result, expected)
result = df.groupby(Grouper(freq="ME", key="A")).count()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dates", [dates1, dates2, dates3])
def test_resample_timegrouper2(dates, unit):
dates = DatetimeIndex(dates).as_unit(unit)
df = DataFrame({"A": dates, "B": np.arange(len(dates)), "C": np.arange(len(dates))})
result = df.set_index("A").resample("ME").count()
exp_idx = DatetimeIndex(
["2014-07-31", "2014-08-31", "2014-09-30", "2014-10-31", "2014-11-30"],
freq="ME",
name="A",
).as_unit(unit)
expected = DataFrame(
{"B": [1, 0, 2, 2, 1], "C": [1, 0, 2, 2, 1]},
index=exp_idx,
columns=["B", "C"],
)
if df["A"].isna().any():
expected.index = expected.index._with_freq(None)
tm.assert_frame_equal(result, expected)
result = df.groupby(Grouper(freq="ME", key="A")).count()
tm.assert_frame_equal(result, expected)
def test_resample_nunique(unit):
# GH 12352
df = DataFrame(
{
"ID": {
Timestamp("2015-06-05 00:00:00"): "0010100903",
Timestamp("2015-06-08 00:00:00"): "0010150847",
},
"DATE": {
Timestamp("2015-06-05 00:00:00"): "2015-06-05",
Timestamp("2015-06-08 00:00:00"): "2015-06-08",
},
}
)
df.index = df.index.as_unit(unit)
r = df.resample("D")
g = df.groupby(Grouper(freq="D"))
expected = df.groupby(Grouper(freq="D")).ID.apply(lambda x: x.nunique())
assert expected.name == "ID"
for t in [r, g]:
result = t.ID.nunique()
tm.assert_series_equal(result, expected)
result = df.ID.resample("D").nunique()
tm.assert_series_equal(result, expected)
result = df.ID.groupby(Grouper(freq="D")).nunique()
tm.assert_series_equal(result, expected)
def test_resample_nunique_preserves_column_level_names(unit):
# see gh-23222
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=5, freq="D"),
).abs()
df.index = df.index.as_unit(unit)
df.columns = pd.MultiIndex.from_arrays(
[df.columns.tolist()] * 2, names=["lev0", "lev1"]
)
result = df.resample("1h").nunique()
tm.assert_index_equal(df.columns, result.columns)
@pytest.mark.parametrize(
"func",
[
lambda x: x.nunique(),
lambda x: x.agg(Series.nunique),
lambda x: x.agg("nunique"),
],
ids=["nunique", "series_nunique", "nunique_str"],
)
def test_resample_nunique_with_date_gap(func, unit):
# GH 13453
# Since all elements are unique, these should all be the same
index = date_range("1-1-2000", "2-15-2000", freq="h").as_unit(unit)
index2 = date_range("4-15-2000", "5-15-2000", freq="h").as_unit(unit)
index3 = index.append(index2)
s = Series(range(len(index3)), index=index3, dtype="int64")
r = s.resample("ME")
result = r.count()
expected = func(r)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("n", [10000, 100000])
@pytest.mark.parametrize("k", [10, 100, 1000])
def test_resample_group_info(n, k, unit):
# GH10914
# use a fixed seed to always have the same uniques
prng = np.random.default_rng(2)
dr = date_range(start="2015-08-27", periods=n // 10, freq="min").as_unit(unit)
ts = Series(prng.integers(0, n // k, n).astype("int64"), index=prng.choice(dr, n))
left = ts.resample("30min").nunique()
ix = date_range(start=ts.index.min(), end=ts.index.max(), freq="30min").as_unit(
unit
)
vals = ts.values
bins = np.searchsorted(ix.values, ts.index, side="right")
sorter = np.lexsort((vals, bins))
vals, bins = vals[sorter], bins[sorter]
mask = np.r_[True, vals[1:] != vals[:-1]]
mask |= np.r_[True, bins[1:] != bins[:-1]]
arr = np.bincount(bins[mask] - 1, minlength=len(ix)).astype("int64", copy=False)
right = Series(arr, index=ix)
tm.assert_series_equal(left, right)
def test_resample_size(unit):
n = 10000
dr = date_range("2015-09-19", periods=n, freq="min").as_unit(unit)
ts = Series(
np.random.default_rng(2).standard_normal(n),
index=np.random.default_rng(2).choice(dr, n),
)
left = ts.resample("7min").size()
ix = date_range(start=left.index.min(), end=ts.index.max(), freq="7min").as_unit(
unit
)
bins = np.searchsorted(ix.values, ts.index.values, side="right")
val = np.bincount(bins, minlength=len(ix) + 1)[1:].astype("int64", copy=False)
right = Series(val, index=ix)
tm.assert_series_equal(left, right)
def test_resample_across_dst():
# The test resamples a DatetimeIndex with values before and after a
# DST change
# Issue: 14682
# The DatetimeIndex we will start with
# (note that DST happens at 03:00+02:00 -> 02:00+01:00)
# 2016-10-30 02:23:00+02:00, 2016-10-30 02:23:00+01:00
df1 = DataFrame([1477786980, 1477790580], columns=["ts"])
dti1 = DatetimeIndex(
pd.to_datetime(df1.ts, unit="s")
.dt.tz_localize("UTC")
.dt.tz_convert("Europe/Madrid")
)
# The expected DatetimeIndex after resampling.
# 2016-10-30 02:00:00+02:00, 2016-10-30 02:00:00+01:00
df2 = DataFrame([1477785600, 1477789200], columns=["ts"])
dti2 = DatetimeIndex(
pd.to_datetime(df2.ts, unit="s")
.dt.tz_localize("UTC")
.dt.tz_convert("Europe/Madrid"),
freq="h",
)
df = DataFrame([5, 5], index=dti1)
result = df.resample(rule="h").sum()
expected = DataFrame([5, 5], index=dti2)
tm.assert_frame_equal(result, expected)
def test_groupby_with_dst_time_change(unit):
# GH 24972
index = (
DatetimeIndex([1478064900001000000, 1480037118776792000], tz="UTC")
.tz_convert("America/Chicago")
.as_unit(unit)
)
df = DataFrame([1, 2], index=index)
result = df.groupby(Grouper(freq="1d")).last()
expected_index_values = date_range(
"2016-11-02", "2016-11-24", freq="d", tz="America/Chicago"
).as_unit(unit)
index = DatetimeIndex(expected_index_values)
expected = DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index)
tm.assert_frame_equal(result, expected)
def test_resample_dst_anchor(unit):
# 5172
dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz="US/Eastern").as_unit(unit)
df = DataFrame([5], index=dti)
dti = DatetimeIndex(df.index.normalize(), freq="D").as_unit(unit)
expected = DataFrame([5], index=dti)
tm.assert_frame_equal(df.resample(rule="D").sum(), expected)
df.resample(rule="MS").sum()
tm.assert_frame_equal(
df.resample(rule="MS").sum(),
DataFrame(
[5],
index=DatetimeIndex(
[datetime(2012, 11, 1)], tz="US/Eastern", freq="MS"
).as_unit(unit),
),
)
def test_resample_dst_anchor2(unit):
dti = date_range(
"2013-09-30", "2013-11-02", freq="30Min", tz="Europe/Paris"
).as_unit(unit)
values = range(dti.size)
df = DataFrame({"a": values, "b": values, "c": values}, index=dti, dtype="int64")
how = {"a": "min", "b": "max", "c": "count"}
rs = df.resample("W-MON")
result = rs.agg(how)[["a", "b", "c"]]
expected = DataFrame(
{
"a": [0, 48, 384, 720, 1056, 1394],
"b": [47, 383, 719, 1055, 1393, 1586],
"c": [48, 336, 336, 336, 338, 193],
},
index=date_range(
"9/30/2013", "11/4/2013", freq="W-MON", tz="Europe/Paris"
).as_unit(unit),
)
tm.assert_frame_equal(
result,
expected,
"W-MON Frequency",
)
rs2 = df.resample("2W-MON")
result2 = rs2.agg(how)[["a", "b", "c"]]
expected2 = DataFrame(
{
"a": [0, 48, 720, 1394],
"b": [47, 719, 1393, 1586],
"c": [48, 672, 674, 193],
},
index=date_range(
"9/30/2013", "11/11/2013", freq="2W-MON", tz="Europe/Paris"
).as_unit(unit),
)
tm.assert_frame_equal(
result2,
expected2,
"2W-MON Frequency",
)
rs3 = df.resample("MS")
result3 = rs3.agg(how)[["a", "b", "c"]]
expected3 = DataFrame(
{"a": [0, 48, 1538], "b": [47, 1537, 1586], "c": [48, 1490, 49]},
index=date_range("9/1/2013", "11/1/2013", freq="MS", tz="Europe/Paris").as_unit(
unit
),
)
tm.assert_frame_equal(
result3,
expected3,
"MS Frequency",
)
rs4 = df.resample("2MS")
result4 = rs4.agg(how)[["a", "b", "c"]]
expected4 = DataFrame(
{"a": [0, 1538], "b": [1537, 1586], "c": [1538, 49]},
index=date_range(
"9/1/2013", "11/1/2013", freq="2MS", tz="Europe/Paris"
).as_unit(unit),
)
tm.assert_frame_equal(
result4,
expected4,
"2MS Frequency",
)
df_daily = df["10/26/2013":"10/29/2013"]
rs_d = df_daily.resample("D")
result_d = rs_d.agg({"a": "min", "b": "max", "c": "count"})[["a", "b", "c"]]
expected_d = DataFrame(
{
"a": [1248, 1296, 1346, 1394],
"b": [1295, 1345, 1393, 1441],
"c": [48, 50, 48, 48],
},
index=date_range(
"10/26/2013", "10/29/2013", freq="D", tz="Europe/Paris"
).as_unit(unit),
)
tm.assert_frame_equal(
result_d,
expected_d,
"D Frequency",
)
def test_downsample_across_dst(unit):
# GH 8531
tz = pytz.timezone("Europe/Berlin")
dt = datetime(2014, 10, 26)
dates = date_range(tz.localize(dt), periods=4, freq="2h").as_unit(unit)
result = Series(5, index=dates).resample("h").mean()
expected = Series(
[5.0, np.nan] * 3 + [5.0],
index=date_range(tz.localize(dt), periods=7, freq="h").as_unit(unit),
)
tm.assert_series_equal(result, expected)
def test_downsample_across_dst_weekly(unit):
# GH 9119, GH 21459
df = DataFrame(
index=DatetimeIndex(
["2017-03-25", "2017-03-26", "2017-03-27", "2017-03-28", "2017-03-29"],
tz="Europe/Amsterdam",
).as_unit(unit),
data=[11, 12, 13, 14, 15],
)
result = df.resample("1W").sum()
expected = DataFrame(
[23, 42],
index=DatetimeIndex(
["2017-03-26", "2017-04-02"], tz="Europe/Amsterdam", freq="W"
).as_unit(unit),
)
tm.assert_frame_equal(result, expected)
def test_downsample_across_dst_weekly_2(unit):
# GH 9119, GH 21459
idx = date_range("2013-04-01", "2013-05-01", tz="Europe/London", freq="h").as_unit(
unit
)
s = Series(index=idx, dtype=np.float64)
result = s.resample("W").mean()
expected = Series(
index=date_range("2013-04-07", freq="W", periods=5, tz="Europe/London").as_unit(
unit
),
dtype=np.float64,
)
tm.assert_series_equal(result, expected)
def test_downsample_dst_at_midnight(unit):
# GH 25758
start = datetime(2018, 11, 3, 12)
end = datetime(2018, 11, 5, 12)
index = date_range(start, end, freq="1h").as_unit(unit)
index = index.tz_localize("UTC").tz_convert("America/Havana")
data = list(range(len(index)))
dataframe = DataFrame(data, index=index)
result = dataframe.groupby(Grouper(freq="1D")).mean()
dti = date_range("2018-11-03", periods=3).tz_localize(
"America/Havana", ambiguous=True
)
dti = DatetimeIndex(dti, freq="D").as_unit(unit)
expected = DataFrame([7.5, 28.0, 44.5], index=dti)
tm.assert_frame_equal(result, expected)
def test_resample_with_nat(unit):
# GH 13020
index = DatetimeIndex(
[
pd.NaT,
"1970-01-01 00:00:00",
pd.NaT,
"1970-01-01 00:00:01",
"1970-01-01 00:00:02",
]
).as_unit(unit)
frame = DataFrame([2, 3, 5, 7, 11], index=index)
index_1s = DatetimeIndex(
["1970-01-01 00:00:00", "1970-01-01 00:00:01", "1970-01-01 00:00:02"]
).as_unit(unit)
frame_1s = DataFrame([3.0, 7.0, 11.0], index=index_1s)
tm.assert_frame_equal(frame.resample("1s").mean(), frame_1s)
index_2s = DatetimeIndex(["1970-01-01 00:00:00", "1970-01-01 00:00:02"]).as_unit(
unit
)
frame_2s = DataFrame([5.0, 11.0], index=index_2s)
tm.assert_frame_equal(frame.resample("2s").mean(), frame_2s)
index_3s = DatetimeIndex(["1970-01-01 00:00:00"]).as_unit(unit)
frame_3s = DataFrame([7.0], index=index_3s)
tm.assert_frame_equal(frame.resample("3s").mean(), frame_3s)
tm.assert_frame_equal(frame.resample("60s").mean(), frame_3s)
def test_resample_datetime_values(unit):
# GH 13119
# check that datetime dtype is preserved when NaT values are
# introduced by the resampling
dates = [datetime(2016, 1, 15), datetime(2016, 1, 19)]
df = DataFrame({"timestamp": dates}, index=dates)
df.index = df.index.as_unit(unit)
exp = Series(
[datetime(2016, 1, 15), pd.NaT, datetime(2016, 1, 19)],
index=date_range("2016-01-15", periods=3, freq="2D").as_unit(unit),
name="timestamp",
)
res = df.resample("2D").first()["timestamp"]
tm.assert_series_equal(res, exp)
res = df["timestamp"].resample("2D").first()
tm.assert_series_equal(res, exp)
def test_resample_apply_with_additional_args(series, unit):
# GH 14615
def f(data, add_arg):
return np.mean(data) * add_arg
series.index = series.index.as_unit(unit)
multiplier = 10
result = series.resample("D").apply(f, multiplier)
expected = series.resample("D").mean().multiply(multiplier)
tm.assert_series_equal(result, expected)
# Testing as kwarg
result = series.resample("D").apply(f, add_arg=multiplier)
expected = series.resample("D").mean().multiply(multiplier)
tm.assert_series_equal(result, expected)
def test_resample_apply_with_additional_args2():
# Testing dataframe
def f(data, add_arg):
return np.mean(data) * add_arg
multiplier = 10
df = DataFrame({"A": 1, "B": 2}, index=date_range("2017", periods=10))
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("A").resample("D").agg(f, multiplier).astype(float)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby("A").resample("D").mean().multiply(multiplier)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("k", [1, 2, 3])
@pytest.mark.parametrize(
"n1, freq1, n2, freq2",
[
(30, "s", 0.5, "Min"),
(60, "s", 1, "Min"),
(3600, "s", 1, "h"),
(60, "Min", 1, "h"),
(21600, "s", 0.25, "D"),
(86400, "s", 1, "D"),
(43200, "s", 0.5, "D"),
(1440, "Min", 1, "D"),
(12, "h", 0.5, "D"),
(24, "h", 1, "D"),
],
)
def test_resample_equivalent_offsets(n1, freq1, n2, freq2, k, unit):
# GH 24127
n1_ = n1 * k
n2_ = n2 * k
dti = date_range("1991-09-05", "1991-09-12", freq=freq1).as_unit(unit)
ser = Series(range(len(dti)), index=dti)
result1 = ser.resample(str(n1_) + freq1).mean()
result2 = ser.resample(str(n2_) + freq2).mean()
tm.assert_series_equal(result1, result2)
@pytest.mark.parametrize(
"first,last,freq,exp_first,exp_last",
[
("19910905", "19920406", "D", "19910905", "19920407"),
("19910905 00:00", "19920406 06:00", "D", "19910905", "19920407"),
("19910905 06:00", "19920406 06:00", "h", "19910905 06:00", "19920406 07:00"),
("19910906", "19920406", "ME", "19910831", "19920430"),
("19910831", "19920430", "ME", "19910831", "19920531"),
("1991-08", "1992-04", "ME", "19910831", "19920531"),
],
)
def test_get_timestamp_range_edges(first, last, freq, exp_first, exp_last, unit):
first = Period(first)
first = first.to_timestamp(first.freq).as_unit(unit)
last = Period(last)
last = last.to_timestamp(last.freq).as_unit(unit)
exp_first = Timestamp(exp_first)
exp_last = Timestamp(exp_last)
freq = pd.tseries.frequencies.to_offset(freq)
result = _get_timestamp_range_edges(first, last, freq, unit="ns")
expected = (exp_first, exp_last)
assert result == expected
@pytest.mark.parametrize("duplicates", [True, False])
def test_resample_apply_product(duplicates, unit):
# GH 5586
index = date_range(start="2012-01-31", freq="ME", periods=12).as_unit(unit)
ts = Series(range(12), index=index)
df = DataFrame({"A": ts, "B": ts + 2})
if duplicates:
df.columns = ["A", "A"]
msg = "using DatetimeIndexResampler.prod"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.resample("QE").apply(np.prod)
expected = DataFrame(
np.array([[0, 24], [60, 210], [336, 720], [990, 1716]], dtype=np.int64),
index=DatetimeIndex(
["2012-03-31", "2012-06-30", "2012-09-30", "2012-12-31"], freq="QE-DEC"
).as_unit(unit),
columns=df.columns,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"first,last,freq_in,freq_out,exp_last",
[
(
"2020-03-28",
"2020-03-31",
"D",
"24h",
"2020-03-30 01:00",
), # includes transition into DST
(
"2020-03-28",
"2020-10-27",
"D",
"24h",
"2020-10-27 00:00",
), # includes transition into and out of DST
(
"2020-10-25",
"2020-10-27",
"D",
"24h",
"2020-10-26 23:00",
), # includes transition out of DST
(
"2020-03-28",
"2020-03-31",
"24h",
"D",
"2020-03-30 00:00",
), # same as above, but from 24H to D
("2020-03-28", "2020-10-27", "24h", "D", "2020-10-27 00:00"),
("2020-10-25", "2020-10-27", "24h", "D", "2020-10-26 00:00"),
],
)
def test_resample_calendar_day_with_dst(
first: str, last: str, freq_in: str, freq_out: str, exp_last: str, unit
):
# GH 35219
ts = Series(
1.0, date_range(first, last, freq=freq_in, tz="Europe/Amsterdam").as_unit(unit)
)
result = ts.resample(freq_out).ffill()
expected = Series(
1.0,
date_range(first, exp_last, freq=freq_out, tz="Europe/Amsterdam").as_unit(unit),
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", ["min", "max", "first", "last"])
def test_resample_aggregate_functions_min_count(func, unit):
# GH#37768
index = date_range(start="2020", freq="ME", periods=3).as_unit(unit)
ser = Series([1, np.nan, np.nan], index)
result = getattr(ser.resample("QE"), func)(min_count=2)
expected = Series(
[np.nan],
index=DatetimeIndex(["2020-03-31"], freq="QE-DEC").as_unit(unit),
)
tm.assert_series_equal(result, expected)
def test_resample_unsigned_int(any_unsigned_int_numpy_dtype, unit):
# gh-43329
df = DataFrame(
index=date_range(start="2000-01-01", end="2000-01-03 23", freq="12h").as_unit(
unit
),
columns=["x"],
data=[0, 1, 0] * 2,
dtype=any_unsigned_int_numpy_dtype,
)
df = df.loc[(df.index < "2000-01-02") | (df.index > "2000-01-03"), :]
result = df.resample("D").max()
expected = DataFrame(
[1, np.nan, 0],
columns=["x"],
index=date_range(start="2000-01-01", end="2000-01-03 23", freq="D").as_unit(
unit
),
)
tm.assert_frame_equal(result, expected)
def test_long_rule_non_nano():
# https://github.com/pandas-dev/pandas/issues/51024
idx = date_range("0300-01-01", "2000-01-01", unit="s", freq="100YE")
ser = Series([1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5], index=idx)
result = ser.resample("200YE").mean()
expected_idx = DatetimeIndex(
np.array(
[
"0300-12-31",
"0500-12-31",
"0700-12-31",
"0900-12-31",
"1100-12-31",
"1300-12-31",
"1500-12-31",
"1700-12-31",
"1900-12-31",
]
).astype("datetime64[s]"),
freq="200YE-DEC",
)
expected = Series([1.0, 3.0, 6.5, 4.0, 3.0, 6.5, 4.0, 3.0, 6.5], index=expected_idx)
tm.assert_series_equal(result, expected)
def test_resample_empty_series_with_tz():
# GH#53664
df = DataFrame({"ts": [], "values": []}).astype(
{"ts": "datetime64[ns, Atlantic/Faroe]"}
)
result = df.resample("2MS", on="ts", closed="left", label="left", origin="start")[
"values"
].sum()
expected_idx = DatetimeIndex(
[], freq="2MS", name="ts", dtype="datetime64[ns, Atlantic/Faroe]"
)
expected = Series([], index=expected_idx, name="values", dtype="float64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"freq, freq_depr",
[
("2ME", "2M"),
("2QE", "2Q"),
("2QE-SEP", "2Q-SEP"),
("1YE", "1Y"),
("2YE-MAR", "2Y-MAR"),
("1YE", "1A"),
("2YE-MAR", "2A-MAR"),
],
)
def test_resample_M_Q_Y_A_deprecated(freq, freq_depr):
# GH#9586
depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed "
f"in a future version, please use '{freq[1:]}' instead."
s = Series(range(10), index=date_range("20130101", freq="d", periods=10))
expected = s.resample(freq).mean()
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
result = s.resample(freq_depr).mean()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"freq, freq_depr",
[
("2BME", "2BM"),
("2BQE", "2BQ"),
("2BQE-MAR", "2BQ-MAR"),
],
)
def test_resample_BM_BQ_deprecated(freq, freq_depr):
# GH#52064
depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed "
f"in a future version, please use '{freq[1:]}' instead."
s = Series(range(10), index=date_range("20130101", freq="d", periods=10))
expected = s.resample(freq).mean()
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
result = s.resample(freq_depr).mean()
tm.assert_series_equal(result, expected)
def test_resample_ms_closed_right(unit):
# https://github.com/pandas-dev/pandas/issues/55271
dti = date_range(start="2020-01-31", freq="1min", periods=6000, unit=unit)
df = DataFrame({"ts": dti}, index=dti)
grouped = df.resample("MS", closed="right")
result = grouped.last()
exp_dti = DatetimeIndex(
[datetime(2020, 1, 1), datetime(2020, 2, 1)], freq="MS"
).as_unit(unit)
expected = DataFrame(
{"ts": [datetime(2020, 2, 1), datetime(2020, 2, 4, 3, 59)]},
index=exp_dti,
).astype(f"M8[{unit}]")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("freq", ["B", "C"])
def test_resample_c_b_closed_right(freq: str, unit):
# https://github.com/pandas-dev/pandas/issues/55281
dti = date_range(start="2020-01-31", freq="1min", periods=6000, unit=unit)
df = DataFrame({"ts": dti}, index=dti)
grouped = df.resample(freq, closed="right")
result = grouped.last()
exp_dti = DatetimeIndex(
[
datetime(2020, 1, 30),
datetime(2020, 1, 31),
datetime(2020, 2, 3),
datetime(2020, 2, 4),
],
freq=freq,
).as_unit(unit)
expected = DataFrame(
{
"ts": [
datetime(2020, 1, 31),
datetime(2020, 2, 3),
datetime(2020, 2, 4),
datetime(2020, 2, 4, 3, 59),
]
},
index=exp_dti,
).astype(f"M8[{unit}]")
tm.assert_frame_equal(result, expected)
def test_resample_b_55282(unit):
# https://github.com/pandas-dev/pandas/issues/55282
dti = date_range("2023-09-26", periods=6, freq="12h", unit=unit)
ser = Series([1, 2, 3, 4, 5, 6], index=dti)
result = ser.resample("B", closed="right", label="right").mean()
exp_dti = DatetimeIndex(
[
datetime(2023, 9, 26),
datetime(2023, 9, 27),
datetime(2023, 9, 28),
datetime(2023, 9, 29),
],
freq="B",
).as_unit(unit)
expected = Series(
[1.0, 2.5, 4.5, 6.0],
index=exp_dti,
)
tm.assert_series_equal(result, expected)
@td.skip_if_no("pyarrow")
@pytest.mark.parametrize(
"tz",
[
None,
pytest.param(
"UTC",
marks=pytest.mark.xfail(
condition=is_platform_windows(),
reason="TODO: Set ARROW_TIMEZONE_DATABASE env var in CI",
),
),
],
)
def test_arrow_timestamp_resample(tz):
# GH 56371
idx = Series(date_range("2020-01-01", periods=5), dtype="timestamp[ns][pyarrow]")
if tz is not None:
idx = idx.dt.tz_localize(tz)
expected = Series(np.arange(5, dtype=np.float64), index=idx)
result = expected.resample("1D").mean()
tm.assert_series_equal(result, expected)