You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1100 lines
33 KiB

7 months ago
from datetime import datetime
import re
import numpy as np
import pytest
from pandas._libs import lib
from pandas.errors import UnsupportedFunctionCall
import pandas as pd
from pandas import (
DataFrame,
NamedAgg,
Series,
)
import pandas._testing as tm
from pandas.core.indexes.datetimes import date_range
@pytest.fixture
def dti():
return date_range(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq="Min")
@pytest.fixture
def _test_series(dti):
return Series(np.random.default_rng(2).random(len(dti)), dti)
@pytest.fixture
def test_frame(dti, _test_series):
return DataFrame({"A": _test_series, "B": _test_series, "C": np.arange(len(dti))})
def test_str(_test_series):
r = _test_series.resample("h")
assert (
"DatetimeIndexResampler [freq=<Hour>, axis=0, closed=left, "
"label=left, convention=start, origin=start_day]" in str(r)
)
r = _test_series.resample("h", origin="2000-01-01")
assert (
"DatetimeIndexResampler [freq=<Hour>, axis=0, closed=left, "
"label=left, convention=start, origin=2000-01-01 00:00:00]" in str(r)
)
def test_api(_test_series):
r = _test_series.resample("h")
result = r.mean()
assert isinstance(result, Series)
assert len(result) == 217
r = _test_series.to_frame().resample("h")
result = r.mean()
assert isinstance(result, DataFrame)
assert len(result) == 217
def test_groupby_resample_api():
# GH 12448
# .groupby(...).resample(...) hitting warnings
# when appropriate
df = DataFrame(
{
"date": date_range(start="2016-01-01", periods=4, freq="W"),
"group": [1, 1, 2, 2],
"val": [5, 6, 7, 8],
}
).set_index("date")
# replication step
i = (
date_range("2016-01-03", periods=8).tolist()
+ date_range("2016-01-17", periods=8).tolist()
)
index = pd.MultiIndex.from_arrays([[1] * 8 + [2] * 8, i], names=["group", "date"])
expected = DataFrame({"val": [5] * 7 + [6] + [7] * 7 + [8]}, index=index)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("group").apply(lambda x: x.resample("1D").ffill())[["val"]]
tm.assert_frame_equal(result, expected)
def test_groupby_resample_on_api():
# GH 15021
# .groupby(...).resample(on=...) results in an unexpected
# keyword warning.
df = DataFrame(
{
"key": ["A", "B"] * 5,
"dates": date_range("2016-01-01", periods=10),
"values": np.random.default_rng(2).standard_normal(10),
}
)
expected = df.set_index("dates").groupby("key").resample("D").mean()
result = df.groupby("key").resample("D", on="dates").mean()
tm.assert_frame_equal(result, expected)
def test_resample_group_keys():
df = DataFrame({"A": 1, "B": 2}, index=date_range("2000", periods=10))
expected = df.copy()
# group_keys=False
g = df.resample("5D", group_keys=False)
result = g.apply(lambda x: x)
tm.assert_frame_equal(result, expected)
# group_keys defaults to False
g = df.resample("5D")
result = g.apply(lambda x: x)
tm.assert_frame_equal(result, expected)
# group_keys=True
expected.index = pd.MultiIndex.from_arrays(
[
pd.to_datetime(["2000-01-01", "2000-01-06"]).as_unit("ns").repeat(5),
expected.index,
]
)
g = df.resample("5D", group_keys=True)
result = g.apply(lambda x: x)
tm.assert_frame_equal(result, expected)
def test_pipe(test_frame, _test_series):
# GH17905
# series
r = _test_series.resample("h")
expected = r.max() - r.mean()
result = r.pipe(lambda x: x.max() - x.mean())
tm.assert_series_equal(result, expected)
# dataframe
r = test_frame.resample("h")
expected = r.max() - r.mean()
result = r.pipe(lambda x: x.max() - x.mean())
tm.assert_frame_equal(result, expected)
def test_getitem(test_frame):
r = test_frame.resample("h")
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns)
r = test_frame.resample("h")["B"]
assert r._selected_obj.name == test_frame.columns[1]
# technically this is allowed
r = test_frame.resample("h")["A", "B"]
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
r = test_frame.resample("h")["A", "B"]
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
@pytest.mark.parametrize("key", [["D"], ["A", "D"]])
def test_select_bad_cols(key, test_frame):
g = test_frame.resample("h")
# 'A' should not be referenced as a bad column...
# will have to rethink regex if you change message!
msg = r"^\"Columns not found: 'D'\"$"
with pytest.raises(KeyError, match=msg):
g[key]
def test_attribute_access(test_frame):
r = test_frame.resample("h")
tm.assert_series_equal(r.A.sum(), r["A"].sum())
@pytest.mark.parametrize("attr", ["groups", "ngroups", "indices"])
def test_api_compat_before_use(attr):
# make sure that we are setting the binner
# on these attributes
rng = date_range("1/1/2012", periods=100, freq="s")
ts = Series(np.arange(len(rng)), index=rng)
rs = ts.resample("30s")
# before use
getattr(rs, attr)
# after grouper is initialized is ok
rs.mean()
getattr(rs, attr)
def tests_raises_on_nuisance(test_frame):
df = test_frame
df["D"] = "foo"
r = df.resample("h")
result = r[["A", "B"]].mean()
expected = pd.concat([r.A.mean(), r.B.mean()], axis=1)
tm.assert_frame_equal(result, expected)
expected = r[["A", "B", "C"]].mean()
msg = re.escape("agg function failed [how->mean,dtype->")
with pytest.raises(TypeError, match=msg):
r.mean()
result = r.mean(numeric_only=True)
tm.assert_frame_equal(result, expected)
def test_downsample_but_actually_upsampling():
# this is reindex / asfreq
rng = date_range("1/1/2012", periods=100, freq="s")
ts = Series(np.arange(len(rng), dtype="int64"), index=rng)
result = ts.resample("20s").asfreq()
expected = Series(
[0, 20, 40, 60, 80],
index=date_range("2012-01-01 00:00:00", freq="20s", periods=5),
)
tm.assert_series_equal(result, expected)
def test_combined_up_downsampling_of_irregular():
# since we are really doing an operation like this
# ts2.resample('2s').mean().ffill()
# preserve these semantics
rng = date_range("1/1/2012", periods=100, freq="s")
ts = Series(np.arange(len(rng)), index=rng)
ts2 = ts.iloc[[0, 1, 2, 3, 5, 7, 11, 15, 16, 25, 30]]
result = ts2.resample("2s").mean().ffill()
expected = Series(
[
0.5,
2.5,
5.0,
7.0,
7.0,
11.0,
11.0,
15.0,
16.0,
16.0,
16.0,
16.0,
25.0,
25.0,
25.0,
30.0,
],
index=pd.DatetimeIndex(
[
"2012-01-01 00:00:00",
"2012-01-01 00:00:02",
"2012-01-01 00:00:04",
"2012-01-01 00:00:06",
"2012-01-01 00:00:08",
"2012-01-01 00:00:10",
"2012-01-01 00:00:12",
"2012-01-01 00:00:14",
"2012-01-01 00:00:16",
"2012-01-01 00:00:18",
"2012-01-01 00:00:20",
"2012-01-01 00:00:22",
"2012-01-01 00:00:24",
"2012-01-01 00:00:26",
"2012-01-01 00:00:28",
"2012-01-01 00:00:30",
],
dtype="datetime64[ns]",
freq="2s",
),
)
tm.assert_series_equal(result, expected)
def test_transform_series(_test_series):
r = _test_series.resample("20min")
expected = _test_series.groupby(pd.Grouper(freq="20min")).transform("mean")
result = r.transform("mean")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("on", [None, "date"])
def test_transform_frame(on):
# GH#47079
index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D")
index.name = "date"
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=list("AB"), index=index
)
expected = df.groupby(pd.Grouper(freq="20min")).transform("mean")
if on == "date":
# Move date to being a column; result will then have a RangeIndex
expected = expected.reset_index(drop=True)
df = df.reset_index()
r = df.resample("20min", on=on)
result = r.transform("mean")
tm.assert_frame_equal(result, expected)
def test_fillna():
# need to upsample here
rng = date_range("1/1/2012", periods=10, freq="2s")
ts = Series(np.arange(len(rng), dtype="int64"), index=rng)
r = ts.resample("s")
expected = r.ffill()
msg = "DatetimeIndexResampler.fillna is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = r.fillna(method="ffill")
tm.assert_series_equal(result, expected)
expected = r.bfill()
with tm.assert_produces_warning(FutureWarning, match=msg):
result = r.fillna(method="bfill")
tm.assert_series_equal(result, expected)
msg2 = (
r"Invalid fill method\. Expecting pad \(ffill\), backfill "
r"\(bfill\) or nearest\. Got 0"
)
with pytest.raises(ValueError, match=msg2):
with tm.assert_produces_warning(FutureWarning, match=msg):
r.fillna(0)
@pytest.mark.parametrize(
"func",
[
lambda x: x.resample("20min", group_keys=False),
lambda x: x.groupby(pd.Grouper(freq="20min"), group_keys=False),
],
ids=["resample", "groupby"],
)
def test_apply_without_aggregation(func, _test_series):
# both resample and groupby should work w/o aggregation
t = func(_test_series)
result = t.apply(lambda x: x)
tm.assert_series_equal(result, _test_series)
def test_apply_without_aggregation2(_test_series):
grouped = _test_series.to_frame(name="foo").resample("20min", group_keys=False)
result = grouped["foo"].apply(lambda x: x)
tm.assert_series_equal(result, _test_series.rename("foo"))
def test_agg_consistency():
# make sure that we are consistent across
# similar aggregations with and w/o selection list
df = DataFrame(
np.random.default_rng(2).standard_normal((1000, 3)),
index=date_range("1/1/2012", freq="s", periods=1000),
columns=["A", "B", "C"],
)
r = df.resample("3min")
msg = r"Column\(s\) \['r1', 'r2'\] do not exist"
with pytest.raises(KeyError, match=msg):
r.agg({"r1": "mean", "r2": "sum"})
def test_agg_consistency_int_str_column_mix():
# GH#39025
df = DataFrame(
np.random.default_rng(2).standard_normal((1000, 2)),
index=date_range("1/1/2012", freq="s", periods=1000),
columns=[1, "a"],
)
r = df.resample("3min")
msg = r"Column\(s\) \[2, 'b'\] do not exist"
with pytest.raises(KeyError, match=msg):
r.agg({2: "mean", "b": "sum"})
# TODO(GH#14008): once GH 14008 is fixed, move these tests into
# `Base` test class
@pytest.fixture
def index():
index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D")
index.name = "date"
return index
@pytest.fixture
def df(index):
frame = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=list("AB"), index=index
)
return frame
@pytest.fixture
def df_col(df):
return df.reset_index()
@pytest.fixture
def df_mult(df_col, index):
df_mult = df_col.copy()
df_mult.index = pd.MultiIndex.from_arrays(
[range(10), index], names=["index", "date"]
)
return df_mult
@pytest.fixture
def a_mean(df):
return df.resample("2D")["A"].mean()
@pytest.fixture
def a_std(df):
return df.resample("2D")["A"].std()
@pytest.fixture
def a_sum(df):
return df.resample("2D")["A"].sum()
@pytest.fixture
def b_mean(df):
return df.resample("2D")["B"].mean()
@pytest.fixture
def b_std(df):
return df.resample("2D")["B"].std()
@pytest.fixture
def b_sum(df):
return df.resample("2D")["B"].sum()
@pytest.fixture
def df_resample(df):
return df.resample("2D")
@pytest.fixture
def df_col_resample(df_col):
return df_col.resample("2D", on="date")
@pytest.fixture
def df_mult_resample(df_mult):
return df_mult.resample("2D", level="date")
@pytest.fixture
def df_grouper_resample(df):
return df.groupby(pd.Grouper(freq="2D"))
@pytest.fixture(
params=["df_resample", "df_col_resample", "df_mult_resample", "df_grouper_resample"]
)
def cases(request):
return request.getfixturevalue(request.param)
def test_agg_mixed_column_aggregation(cases, a_mean, a_std, b_mean, b_std, request):
expected = pd.concat([a_mean, a_std, b_mean, b_std], axis=1)
expected.columns = pd.MultiIndex.from_product([["A", "B"], ["mean", "std"]])
msg = "using SeriesGroupBy.[mean|std]"
# "date" is an index and a column, so get included in the agg
if "df_mult" in request.node.callspec.id:
date_mean = cases["date"].mean()
date_std = cases["date"].std()
expected = pd.concat([date_mean, date_std, expected], axis=1)
expected.columns = pd.MultiIndex.from_product(
[["date", "A", "B"], ["mean", "std"]]
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = cases.aggregate([np.mean, np.std])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"agg",
[
{"func": {"A": np.mean, "B": np.std}},
{"A": ("A", np.mean), "B": ("B", np.std)},
{"A": NamedAgg("A", np.mean), "B": NamedAgg("B", np.std)},
],
)
def test_agg_both_mean_std_named_result(cases, a_mean, b_std, agg):
msg = "using SeriesGroupBy.[mean|std]"
expected = pd.concat([a_mean, b_std], axis=1)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = cases.aggregate(**agg)
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_both_mean_std_dict_of_list(cases, a_mean, a_std):
expected = pd.concat([a_mean, a_std], axis=1)
expected.columns = pd.MultiIndex.from_tuples([("A", "mean"), ("A", "std")])
result = cases.aggregate({"A": ["mean", "std"]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"agg", [{"func": ["mean", "sum"]}, {"mean": "mean", "sum": "sum"}]
)
def test_agg_both_mean_sum(cases, a_mean, a_sum, agg):
expected = pd.concat([a_mean, a_sum], axis=1)
expected.columns = ["mean", "sum"]
result = cases["A"].aggregate(**agg)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"agg",
[
{"A": {"mean": "mean", "sum": "sum"}},
{
"A": {"mean": "mean", "sum": "sum"},
"B": {"mean2": "mean", "sum2": "sum"},
},
],
)
def test_agg_dict_of_dict_specificationerror(cases, agg):
msg = "nested renamer is not supported"
with pytest.raises(pd.errors.SpecificationError, match=msg):
cases.aggregate(agg)
def test_agg_dict_of_lists(cases, a_mean, a_std, b_mean, b_std):
expected = pd.concat([a_mean, a_std, b_mean, b_std], axis=1)
expected.columns = pd.MultiIndex.from_tuples(
[("A", "mean"), ("A", "std"), ("B", "mean"), ("B", "std")]
)
result = cases.aggregate({"A": ["mean", "std"], "B": ["mean", "std"]})
tm.assert_frame_equal(result, expected, check_like=True)
@pytest.mark.parametrize(
"agg",
[
{"func": {"A": np.sum, "B": lambda x: np.std(x, ddof=1)}},
{"A": ("A", np.sum), "B": ("B", lambda x: np.std(x, ddof=1))},
{"A": NamedAgg("A", np.sum), "B": NamedAgg("B", lambda x: np.std(x, ddof=1))},
],
)
def test_agg_with_lambda(cases, agg):
# passed lambda
msg = "using SeriesGroupBy.sum"
rcustom = cases["B"].apply(lambda x: np.std(x, ddof=1))
expected = pd.concat([cases["A"].sum(), rcustom], axis=1)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = cases.agg(**agg)
tm.assert_frame_equal(result, expected, check_like=True)
@pytest.mark.parametrize(
"agg",
[
{"func": {"result1": np.sum, "result2": np.mean}},
{"A": ("result1", np.sum), "B": ("result2", np.mean)},
{"A": NamedAgg("result1", np.sum), "B": NamedAgg("result2", np.mean)},
],
)
def test_agg_no_column(cases, agg):
msg = r"Column\(s\) \['result1', 'result2'\] do not exist"
with pytest.raises(KeyError, match=msg):
cases[["A", "B"]].agg(**agg)
@pytest.mark.parametrize(
"cols, agg",
[
[None, {"A": ["sum", "std"], "B": ["mean", "std"]}],
[
[
"A",
"B",
],
{"A": ["sum", "std"], "B": ["mean", "std"]},
],
],
)
def test_agg_specificationerror_nested(cases, cols, agg, a_sum, a_std, b_mean, b_std):
# agg with different hows
# equivalent of using a selection list / or not
expected = pd.concat([a_sum, a_std, b_mean, b_std], axis=1)
expected.columns = pd.MultiIndex.from_tuples(
[("A", "sum"), ("A", "std"), ("B", "mean"), ("B", "std")]
)
if cols is not None:
obj = cases[cols]
else:
obj = cases
result = obj.agg(agg)
tm.assert_frame_equal(result, expected, check_like=True)
@pytest.mark.parametrize(
"agg", [{"A": ["sum", "std"]}, {"A": ["sum", "std"], "B": ["mean", "std"]}]
)
def test_agg_specificationerror_series(cases, agg):
msg = "nested renamer is not supported"
# series like aggs
with pytest.raises(pd.errors.SpecificationError, match=msg):
cases["A"].agg(agg)
def test_agg_specificationerror_invalid_names(cases):
# errors
# invalid names in the agg specification
msg = r"Column\(s\) \['B'\] do not exist"
with pytest.raises(KeyError, match=msg):
cases[["A"]].agg({"A": ["sum", "std"], "B": ["mean", "std"]})
@pytest.mark.parametrize(
"func", [["min"], ["mean", "max"], {"A": "sum"}, {"A": "prod", "B": "median"}]
)
def test_multi_agg_axis_1_raises(func):
# GH#46904
index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D")
index.name = "date"
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=list("AB"), index=index
).T
warning_msg = "DataFrame.resample with axis=1 is deprecated."
with tm.assert_produces_warning(FutureWarning, match=warning_msg):
res = df.resample("ME", axis=1)
with pytest.raises(
NotImplementedError, match="axis other than 0 is not supported"
):
res.agg(func)
def test_agg_nested_dicts():
index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D")
index.name = "date"
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=list("AB"), index=index
)
df_col = df.reset_index()
df_mult = df_col.copy()
df_mult.index = pd.MultiIndex.from_arrays(
[range(10), df.index], names=["index", "date"]
)
r = df.resample("2D")
cases = [
r,
df_col.resample("2D", on="date"),
df_mult.resample("2D", level="date"),
df.groupby(pd.Grouper(freq="2D")),
]
msg = "nested renamer is not supported"
for t in cases:
with pytest.raises(pd.errors.SpecificationError, match=msg):
t.aggregate({"r1": {"A": ["mean", "sum"]}, "r2": {"B": ["mean", "sum"]}})
for t in cases:
with pytest.raises(pd.errors.SpecificationError, match=msg):
t[["A", "B"]].agg(
{"A": {"ra": ["mean", "std"]}, "B": {"rb": ["mean", "std"]}}
)
with pytest.raises(pd.errors.SpecificationError, match=msg):
t.agg({"A": {"ra": ["mean", "std"]}, "B": {"rb": ["mean", "std"]}})
def test_try_aggregate_non_existing_column():
# GH 16766
data = [
{"dt": datetime(2017, 6, 1, 0), "x": 1.0, "y": 2.0},
{"dt": datetime(2017, 6, 1, 1), "x": 2.0, "y": 2.0},
{"dt": datetime(2017, 6, 1, 2), "x": 3.0, "y": 1.5},
]
df = DataFrame(data).set_index("dt")
# Error as we don't have 'z' column
msg = r"Column\(s\) \['z'\] do not exist"
with pytest.raises(KeyError, match=msg):
df.resample("30min").agg({"x": ["mean"], "y": ["median"], "z": ["sum"]})
def test_agg_list_like_func_with_args():
# 50624
df = DataFrame(
{"x": [1, 2, 3]}, index=date_range("2020-01-01", periods=3, freq="D")
)
def foo1(x, a=1, c=0):
return x + a + c
def foo2(x, b=2, c=0):
return x + b + c
msg = r"foo1\(\) got an unexpected keyword argument 'b'"
with pytest.raises(TypeError, match=msg):
df.resample("D").agg([foo1, foo2], 3, b=3, c=4)
result = df.resample("D").agg([foo1, foo2], 3, c=4)
expected = DataFrame(
[[8, 8], [9, 9], [10, 10]],
index=date_range("2020-01-01", periods=3, freq="D"),
columns=pd.MultiIndex.from_tuples([("x", "foo1"), ("x", "foo2")]),
)
tm.assert_frame_equal(result, expected)
def test_selection_api_validation():
# GH 13500
index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D")
rng = np.arange(len(index), dtype=np.int64)
df = DataFrame(
{"date": index, "a": rng},
index=pd.MultiIndex.from_arrays([rng, index], names=["v", "d"]),
)
df_exp = DataFrame({"a": rng}, index=index)
# non DatetimeIndex
msg = (
"Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, "
"but got an instance of 'Index'"
)
with pytest.raises(TypeError, match=msg):
df.resample("2D", level="v")
msg = "The Grouper cannot specify both a key and a level!"
with pytest.raises(ValueError, match=msg):
df.resample("2D", on="date", level="d")
msg = "unhashable type: 'list'"
with pytest.raises(TypeError, match=msg):
df.resample("2D", on=["a", "date"])
msg = r"\"Level \['a', 'date'\] not found\""
with pytest.raises(KeyError, match=msg):
df.resample("2D", level=["a", "date"])
# upsampling not allowed
msg = (
"Upsampling from level= or on= selection is not supported, use "
r"\.set_index\(\.\.\.\) to explicitly set index to datetime-like"
)
with pytest.raises(ValueError, match=msg):
df.resample("2D", level="d").asfreq()
with pytest.raises(ValueError, match=msg):
df.resample("2D", on="date").asfreq()
exp = df_exp.resample("2D").sum()
exp.index.name = "date"
result = df.resample("2D", on="date").sum()
tm.assert_frame_equal(exp, result)
exp.index.name = "d"
with pytest.raises(TypeError, match="datetime64 type does not support sum"):
df.resample("2D", level="d").sum()
result = df.resample("2D", level="d").sum(numeric_only=True)
tm.assert_frame_equal(exp, result)
@pytest.mark.parametrize(
"col_name", ["t2", "t2x", "t2q", "T_2M", "t2p", "t2m", "t2m1", "T2M"]
)
def test_agg_with_datetime_index_list_agg_func(col_name):
# GH 22660
# The parametrized column names would get converted to dates by our
# date parser. Some would result in OutOfBoundsError (ValueError) while
# others would result in OverflowError when passed into Timestamp.
# We catch these errors and move on to the correct branch.
df = DataFrame(
list(range(200)),
index=date_range(
start="2017-01-01", freq="15min", periods=200, tz="Europe/Berlin"
),
columns=[col_name],
)
result = df.resample("1d").aggregate(["mean"])
expected = DataFrame(
[47.5, 143.5, 195.5],
index=date_range(start="2017-01-01", freq="D", periods=3, tz="Europe/Berlin"),
columns=pd.MultiIndex(levels=[[col_name], ["mean"]], codes=[[0], [0]]),
)
tm.assert_frame_equal(result, expected)
def test_resample_agg_readonly():
# GH#31710 cython needs to allow readonly data
index = date_range("2020-01-01", "2020-01-02", freq="1h")
arr = np.zeros_like(index)
arr.setflags(write=False)
ser = Series(arr, index=index)
rs = ser.resample("1D")
expected = Series([pd.Timestamp(0), pd.Timestamp(0)], index=index[::24])
result = rs.agg("last")
tm.assert_series_equal(result, expected)
result = rs.agg("first")
tm.assert_series_equal(result, expected)
result = rs.agg("max")
tm.assert_series_equal(result, expected)
result = rs.agg("min")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"start,end,freq,data,resample_freq,origin,closed,exp_data,exp_end,exp_periods",
[
(
"2000-10-01 23:30:00",
"2000-10-02 00:26:00",
"7min",
[0, 3, 6, 9, 12, 15, 18, 21, 24],
"17min",
"end",
None,
[0, 18, 27, 63],
"20001002 00:26:00",
4,
),
(
"20200101 8:26:35",
"20200101 9:31:58",
"77s",
[1] * 51,
"7min",
"end",
"right",
[1, 6, 5, 6, 5, 6, 5, 6, 5, 6],
"2020-01-01 09:30:45",
10,
),
(
"2000-10-01 23:30:00",
"2000-10-02 00:26:00",
"7min",
[0, 3, 6, 9, 12, 15, 18, 21, 24],
"17min",
"end",
"left",
[0, 18, 27, 39, 24],
"20001002 00:43:00",
5,
),
(
"2000-10-01 23:30:00",
"2000-10-02 00:26:00",
"7min",
[0, 3, 6, 9, 12, 15, 18, 21, 24],
"17min",
"end_day",
None,
[3, 15, 45, 45],
"2000-10-02 00:29:00",
4,
),
],
)
def test_end_and_end_day_origin(
start,
end,
freq,
data,
resample_freq,
origin,
closed,
exp_data,
exp_end,
exp_periods,
):
rng = date_range(start, end, freq=freq)
ts = Series(data, index=rng)
res = ts.resample(resample_freq, origin=origin, closed=closed).sum()
expected = Series(
exp_data,
index=date_range(end=exp_end, freq=resample_freq, periods=exp_periods),
)
tm.assert_series_equal(res, expected)
@pytest.mark.parametrize(
# expected_data is a string when op raises a ValueError
"method, numeric_only, expected_data",
[
("sum", True, {"num": [25]}),
("sum", False, {"cat": ["cat_1cat_2"], "num": [25]}),
("sum", lib.no_default, {"cat": ["cat_1cat_2"], "num": [25]}),
("prod", True, {"num": [100]}),
("prod", False, "can't multiply sequence"),
("prod", lib.no_default, "can't multiply sequence"),
("min", True, {"num": [5]}),
("min", False, {"cat": ["cat_1"], "num": [5]}),
("min", lib.no_default, {"cat": ["cat_1"], "num": [5]}),
("max", True, {"num": [20]}),
("max", False, {"cat": ["cat_2"], "num": [20]}),
("max", lib.no_default, {"cat": ["cat_2"], "num": [20]}),
("first", True, {"num": [5]}),
("first", False, {"cat": ["cat_1"], "num": [5]}),
("first", lib.no_default, {"cat": ["cat_1"], "num": [5]}),
("last", True, {"num": [20]}),
("last", False, {"cat": ["cat_2"], "num": [20]}),
("last", lib.no_default, {"cat": ["cat_2"], "num": [20]}),
("mean", True, {"num": [12.5]}),
("mean", False, "Could not convert"),
("mean", lib.no_default, "Could not convert"),
("median", True, {"num": [12.5]}),
("median", False, r"Cannot convert \['cat_1' 'cat_2'\] to numeric"),
("median", lib.no_default, r"Cannot convert \['cat_1' 'cat_2'\] to numeric"),
("std", True, {"num": [10.606601717798213]}),
("std", False, "could not convert string to float"),
("std", lib.no_default, "could not convert string to float"),
("var", True, {"num": [112.5]}),
("var", False, "could not convert string to float"),
("var", lib.no_default, "could not convert string to float"),
("sem", True, {"num": [7.5]}),
("sem", False, "could not convert string to float"),
("sem", lib.no_default, "could not convert string to float"),
],
)
def test_frame_downsample_method(method, numeric_only, expected_data):
# GH#46442 test if `numeric_only` behave as expected for DataFrameGroupBy
index = date_range("2018-01-01", periods=2, freq="D")
expected_index = date_range("2018-12-31", periods=1, freq="YE")
df = DataFrame({"cat": ["cat_1", "cat_2"], "num": [5, 20]}, index=index)
resampled = df.resample("YE")
if numeric_only is lib.no_default:
kwargs = {}
else:
kwargs = {"numeric_only": numeric_only}
func = getattr(resampled, method)
if isinstance(expected_data, str):
if method in ("var", "mean", "median", "prod"):
klass = TypeError
msg = re.escape(f"agg function failed [how->{method},dtype->")
else:
klass = ValueError
msg = expected_data
with pytest.raises(klass, match=msg):
_ = func(**kwargs)
else:
result = func(**kwargs)
expected = DataFrame(expected_data, index=expected_index)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"method, numeric_only, expected_data",
[
("sum", True, ()),
("sum", False, ["cat_1cat_2"]),
("sum", lib.no_default, ["cat_1cat_2"]),
("prod", True, ()),
("prod", False, ()),
("prod", lib.no_default, ()),
("min", True, ()),
("min", False, ["cat_1"]),
("min", lib.no_default, ["cat_1"]),
("max", True, ()),
("max", False, ["cat_2"]),
("max", lib.no_default, ["cat_2"]),
("first", True, ()),
("first", False, ["cat_1"]),
("first", lib.no_default, ["cat_1"]),
("last", True, ()),
("last", False, ["cat_2"]),
("last", lib.no_default, ["cat_2"]),
],
)
def test_series_downsample_method(method, numeric_only, expected_data):
# GH#46442 test if `numeric_only` behave as expected for SeriesGroupBy
index = date_range("2018-01-01", periods=2, freq="D")
expected_index = date_range("2018-12-31", periods=1, freq="YE")
df = Series(["cat_1", "cat_2"], index=index)
resampled = df.resample("YE")
kwargs = {} if numeric_only is lib.no_default else {"numeric_only": numeric_only}
func = getattr(resampled, method)
if numeric_only and numeric_only is not lib.no_default:
msg = rf"Cannot use numeric_only=True with SeriesGroupBy\.{method}"
with pytest.raises(TypeError, match=msg):
func(**kwargs)
elif method == "prod":
msg = re.escape("agg function failed [how->prod,dtype->")
with pytest.raises(TypeError, match=msg):
func(**kwargs)
else:
result = func(**kwargs)
expected = Series(expected_data, index=expected_index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, raises",
[
("sum", True),
("prod", True),
("min", True),
("max", True),
("first", False),
("last", False),
("median", False),
("mean", True),
("std", True),
("var", True),
("sem", False),
("ohlc", False),
("nunique", False),
],
)
def test_args_kwargs_depr(method, raises):
index = date_range("20180101", periods=3, freq="h")
df = Series([2, 4, 6], index=index)
resampled = df.resample("30min")
args = ()
func = getattr(resampled, method)
error_msg = "numpy operations are not valid with resample."
error_msg_type = "too many arguments passed in"
warn_msg = f"Passing additional args to DatetimeIndexResampler.{method}"
if raises:
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
with pytest.raises(UnsupportedFunctionCall, match=error_msg):
func(*args, 1, 2, 3, 4)
else:
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
with pytest.raises(TypeError, match=error_msg_type):
func(*args, 1, 2, 3, 4)
def test_df_axis_param_depr():
index = date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D")
index.name = "date"
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=list("AB"), index=index
).T
# Deprecation error when axis=1 is explicitly passed
warning_msg = "DataFrame.resample with axis=1 is deprecated."
with tm.assert_produces_warning(FutureWarning, match=warning_msg):
df.resample("ME", axis=1)
# Deprecation error when axis=0 is explicitly passed
df = df.T
warning_msg = (
"The 'axis' keyword in DataFrame.resample is deprecated and "
"will be removed in a future version."
)
with tm.assert_produces_warning(FutureWarning, match=warning_msg):
df.resample("ME", axis=0)
def test_series_axis_param_depr(_test_series):
warning_msg = (
"The 'axis' keyword in Series.resample is "
"deprecated and will be removed in a future version."
)
with tm.assert_produces_warning(FutureWarning, match=warning_msg):
_test_series.resample("h", axis=0)
def test_resample_empty():
# GH#52484
df = DataFrame(
index=pd.to_datetime(
["2018-01-01 00:00:00", "2018-01-01 12:00:00", "2018-01-02 00:00:00"]
)
)
expected = DataFrame(
index=pd.to_datetime(
[
"2018-01-01 00:00:00",
"2018-01-01 08:00:00",
"2018-01-01 16:00:00",
"2018-01-02 00:00:00",
]
)
)
result = df.resample("8h").mean()
tm.assert_frame_equal(result, expected)