You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

716 lines
23 KiB

7 months ago
from textwrap import dedent
import numpy as np
import pytest
from pandas.compat import is_platform_windows
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
TimedeltaIndex,
Timestamp,
)
import pandas._testing as tm
from pandas.core.indexes.datetimes import date_range
@pytest.fixture
def test_frame():
return DataFrame(
{"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)},
index=date_range("1/1/2000", freq="s", periods=40),
)
def test_tab_complete_ipython6_warning(ip):
from IPython.core.completer import provisionalcompleter
code = dedent(
"""\
import numpy as np
from pandas import Series, date_range
data = np.arange(10, dtype=np.float64)
index = date_range("2020-01-01", periods=len(data))
s = Series(data, index=index)
rs = s.resample("D")
"""
)
ip.run_cell(code)
# GH 31324 newer jedi version raises Deprecation warning;
# appears resolved 2021-02-02
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
with provisionalcompleter("ignore"):
list(ip.Completer.completions("rs.", 1))
def test_deferred_with_groupby():
# GH 12486
# support deferred resample ops with groupby
data = [
["2010-01-01", "A", 2],
["2010-01-02", "A", 3],
["2010-01-05", "A", 8],
["2010-01-10", "A", 7],
["2010-01-13", "A", 3],
["2010-01-01", "B", 5],
["2010-01-03", "B", 2],
["2010-01-04", "B", 1],
["2010-01-11", "B", 7],
["2010-01-14", "B", 3],
]
df = DataFrame(data, columns=["date", "id", "score"])
df.date = pd.to_datetime(df.date)
def f_0(x):
return x.set_index("date").resample("D").asfreq()
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby("id").apply(f_0)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.set_index("date").groupby("id").resample("D").asfreq()
tm.assert_frame_equal(result, expected)
df = DataFrame(
{
"date": date_range(start="2016-01-01", periods=4, freq="W"),
"group": [1, 1, 2, 2],
"val": [5, 6, 7, 8],
}
).set_index("date")
def f_1(x):
return x.resample("1D").ffill()
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby("group").apply(f_1)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("group").resample("1D").ffill()
tm.assert_frame_equal(result, expected)
def test_getitem(test_frame):
g = test_frame.groupby("A")
expected = g.B.apply(lambda x: x.resample("2s").mean())
result = g.resample("2s").B.mean()
tm.assert_series_equal(result, expected)
result = g.B.resample("2s").mean()
tm.assert_series_equal(result, expected)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = g.resample("2s").mean().B
tm.assert_series_equal(result, expected)
def test_getitem_multiple():
# GH 13174
# multiple calls after selection causing an issue with aliasing
data = [{"id": 1, "buyer": "A"}, {"id": 2, "buyer": "B"}]
df = DataFrame(data, index=date_range("2016-01-01", periods=2))
r = df.groupby("id").resample("1D")
result = r["buyer"].count()
exp_mi = pd.MultiIndex.from_arrays([[1, 2], df.index], names=("id", None))
expected = Series(
[1, 1],
index=exp_mi,
name="buyer",
)
tm.assert_series_equal(result, expected)
result = r["buyer"].count()
tm.assert_series_equal(result, expected)
def test_groupby_resample_on_api_with_getitem():
# GH 17813
df = DataFrame(
{"id": list("aabbb"), "date": date_range("1-1-2016", periods=5), "data": 1}
)
exp = df.set_index("date").groupby("id").resample("2D")["data"].sum()
result = df.groupby("id").resample("2D", on="date")["data"].sum()
tm.assert_series_equal(result, exp)
def test_groupby_with_origin():
# GH 31809
freq = "1399min" # prime number that is smaller than 24h
start, end = "1/1/2000 00:00:00", "1/31/2000 00:00"
middle = "1/15/2000 00:00:00"
rng = date_range(start, end, freq="1231min") # prime number
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
ts2 = ts[middle:end]
# proves that grouper without a fixed origin does not work
# when dealing with unusual frequencies
simple_grouper = pd.Grouper(freq=freq)
count_ts = ts.groupby(simple_grouper).agg("count")
count_ts = count_ts[middle:end]
count_ts2 = ts2.groupby(simple_grouper).agg("count")
with pytest.raises(AssertionError, match="Index are different"):
tm.assert_index_equal(count_ts.index, count_ts2.index)
# test origin on 1970-01-01 00:00:00
origin = Timestamp(0)
adjusted_grouper = pd.Grouper(freq=freq, origin=origin)
adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count")
adjusted_count_ts = adjusted_count_ts[middle:end]
adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count")
tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2)
# test origin on 2049-10-18 20:00:00
origin_future = Timestamp(0) + pd.Timedelta("1399min") * 30_000
adjusted_grouper2 = pd.Grouper(freq=freq, origin=origin_future)
adjusted2_count_ts = ts.groupby(adjusted_grouper2).agg("count")
adjusted2_count_ts = adjusted2_count_ts[middle:end]
adjusted2_count_ts2 = ts2.groupby(adjusted_grouper2).agg("count")
tm.assert_series_equal(adjusted2_count_ts, adjusted2_count_ts2)
# both grouper use an adjusted timestamp that is a multiple of 1399 min
# they should be equals even if the adjusted_timestamp is in the future
tm.assert_series_equal(adjusted_count_ts, adjusted2_count_ts2)
def test_nearest():
# GH 17496
# Resample nearest
index = date_range("1/1/2000", periods=3, freq="min")
result = Series(range(3), index=index).resample("20s").nearest()
expected = Series(
[0, 0, 1, 1, 1, 2, 2],
index=pd.DatetimeIndex(
[
"2000-01-01 00:00:00",
"2000-01-01 00:00:20",
"2000-01-01 00:00:40",
"2000-01-01 00:01:00",
"2000-01-01 00:01:20",
"2000-01-01 00:01:40",
"2000-01-01 00:02:00",
],
dtype="datetime64[ns]",
freq="20s",
),
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"f",
[
"first",
"last",
"median",
"sem",
"sum",
"mean",
"min",
"max",
"size",
"count",
"nearest",
"bfill",
"ffill",
"asfreq",
"ohlc",
],
)
def test_methods(f, test_frame):
g = test_frame.groupby("A")
r = g.resample("2s")
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = getattr(r, f)()
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
tm.assert_equal(result, expected)
def test_methods_nunique(test_frame):
# series only
g = test_frame.groupby("A")
r = g.resample("2s")
result = r.B.nunique()
expected = g.B.apply(lambda x: x.resample("2s").nunique())
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("f", ["std", "var"])
def test_methods_std_var(f, test_frame):
g = test_frame.groupby("A")
r = g.resample("2s")
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = getattr(r, f)(ddof=1)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = g.apply(lambda x: getattr(x.resample("2s"), f)(ddof=1))
tm.assert_frame_equal(result, expected)
def test_apply(test_frame):
g = test_frame.groupby("A")
r = g.resample("2s")
# reduction
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = g.resample("2s").sum()
def f_0(x):
return x.resample("2s").sum()
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = r.apply(f_0)
tm.assert_frame_equal(result, expected)
def f_1(x):
return x.resample("2s").apply(lambda y: y.sum())
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = g.apply(f_1)
# y.sum() results in int64 instead of int32 on 32-bit architectures
expected = expected.astype("int64")
tm.assert_frame_equal(result, expected)
def test_apply_with_mutated_index():
# GH 15169
index = date_range("1-1-2015", "12-31-15", freq="D")
df = DataFrame(
data={"col1": np.random.default_rng(2).random(len(index))}, index=index
)
def f(x):
s = Series([1, 2], index=["a", "b"])
return s
expected = df.groupby(pd.Grouper(freq="ME")).apply(f)
result = df.resample("ME").apply(f)
tm.assert_frame_equal(result, expected)
# A case for series
expected = df["col1"].groupby(pd.Grouper(freq="ME"), group_keys=False).apply(f)
result = df["col1"].resample("ME").apply(f)
tm.assert_series_equal(result, expected)
def test_apply_columns_multilevel():
# GH 16231
cols = pd.MultiIndex.from_tuples([("A", "a", "", "one"), ("B", "b", "i", "two")])
ind = date_range(start="2017-01-01", freq="15Min", periods=8)
df = DataFrame(np.array([0] * 16).reshape(8, 2), index=ind, columns=cols)
agg_dict = {col: (np.sum if col[3] == "one" else np.mean) for col in df.columns}
result = df.resample("h").apply(lambda x: agg_dict[x.name](x))
expected = DataFrame(
2 * [[0, 0.0]],
index=date_range(start="2017-01-01", freq="1h", periods=2),
columns=pd.MultiIndex.from_tuples(
[("A", "a", "", "one"), ("B", "b", "i", "two")]
),
)
tm.assert_frame_equal(result, expected)
def test_apply_non_naive_index():
def weighted_quantile(series, weights, q):
series = series.sort_values()
cumsum = weights.reindex(series.index).fillna(0).cumsum()
cutoff = cumsum.iloc[-1] * q
return series[cumsum >= cutoff].iloc[0]
times = date_range("2017-6-23 18:00", periods=8, freq="15min", tz="UTC")
data = Series([1.0, 1, 1, 1, 1, 2, 2, 0], index=times)
weights = Series([160.0, 91, 65, 43, 24, 10, 1, 0], index=times)
result = data.resample("D").apply(weighted_quantile, weights=weights, q=0.5)
ind = date_range(
"2017-06-23 00:00:00+00:00", "2017-06-23 00:00:00+00:00", freq="D", tz="UTC"
)
expected = Series([1.0], index=ind)
tm.assert_series_equal(result, expected)
def test_resample_groupby_with_label(unit):
# GH 13235
index = date_range("2000-01-01", freq="2D", periods=5, unit=unit)
df = DataFrame(index=index, data={"col0": [0, 0, 1, 1, 2], "col1": [1, 1, 1, 1, 1]})
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("col0").resample("1W", label="left").sum()
mi = [
np.array([0, 0, 1, 2], dtype=np.int64),
np.array(
["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"],
dtype=f"M8[{unit}]",
),
]
mindex = pd.MultiIndex.from_arrays(mi, names=["col0", None])
expected = DataFrame(
data={"col0": [0, 0, 2, 2], "col1": [1, 1, 2, 1]}, index=mindex
)
tm.assert_frame_equal(result, expected)
def test_consistency_with_window(test_frame):
# consistent return values with window
df = test_frame
expected = Index([1, 2, 3], name="A")
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("A").resample("2s").mean()
assert result.index.nlevels == 2
tm.assert_index_equal(result.index.levels[0], expected)
result = df.groupby("A").rolling(20).mean()
assert result.index.nlevels == 2
tm.assert_index_equal(result.index.levels[0], expected)
def test_median_duplicate_columns():
# GH 14233
df = DataFrame(
np.random.default_rng(2).standard_normal((20, 3)),
columns=list("aaa"),
index=date_range("2012-01-01", periods=20, freq="s"),
)
df2 = df.copy()
df2.columns = ["a", "b", "c"]
expected = df2.resample("5s").median()
result = df.resample("5s").median()
expected.columns = result.columns
tm.assert_frame_equal(result, expected)
def test_apply_to_one_column_of_df():
# GH: 36951
df = DataFrame(
{"col": range(10), "col1": range(10, 20)},
index=date_range("2012-01-01", periods=10, freq="20min"),
)
# access "col" via getattr -> make sure we handle AttributeError
result = df.resample("h").apply(lambda group: group.col.sum())
expected = Series(
[3, 12, 21, 9], index=date_range("2012-01-01", periods=4, freq="h")
)
tm.assert_series_equal(result, expected)
# access "col" via _getitem__ -> make sure we handle KeyErrpr
result = df.resample("h").apply(lambda group: group["col"].sum())
tm.assert_series_equal(result, expected)
def test_resample_groupby_agg():
# GH: 33548
df = DataFrame(
{
"cat": [
"cat_1",
"cat_1",
"cat_2",
"cat_1",
"cat_2",
"cat_1",
"cat_2",
"cat_1",
],
"num": [5, 20, 22, 3, 4, 30, 10, 50],
"date": [
"2019-2-1",
"2018-02-03",
"2020-3-11",
"2019-2-2",
"2019-2-2",
"2018-12-4",
"2020-3-11",
"2020-12-12",
],
}
)
df["date"] = pd.to_datetime(df["date"])
resampled = df.groupby("cat").resample("YE", on="date")
expected = resampled[["num"]].sum()
result = resampled.agg({"num": "sum"})
tm.assert_frame_equal(result, expected)
def test_resample_groupby_agg_listlike():
# GH 42905
ts = Timestamp("2021-02-28 00:00:00")
df = DataFrame({"class": ["beta"], "value": [69]}, index=Index([ts], name="date"))
resampled = df.groupby("class").resample("ME")["value"]
result = resampled.agg(["sum", "size"])
expected = DataFrame(
[[69, 1]],
index=pd.MultiIndex.from_tuples([("beta", ts)], names=["class", "date"]),
columns=["sum", "size"],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
def test_empty(keys):
# GH 26411
df = DataFrame([], columns=["a", "b"], index=TimedeltaIndex([]))
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean()
expected = (
DataFrame(columns=["a", "b"])
.set_index(keys, drop=False)
.set_index(TimedeltaIndex([]), append=True)
)
if len(keys) == 1:
expected.index.name = keys[0]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("consolidate", [True, False])
def test_resample_groupby_agg_object_dtype_all_nan(consolidate):
# https://github.com/pandas-dev/pandas/issues/39329
dates = date_range("2020-01-01", periods=15, freq="D")
df1 = DataFrame({"key": "A", "date": dates, "col1": range(15), "col_object": "val"})
df2 = DataFrame({"key": "B", "date": dates, "col1": range(15)})
df = pd.concat([df1, df2], ignore_index=True)
if consolidate:
df = df._consolidate()
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby(["key"]).resample("W", on="date").min()
idx = pd.MultiIndex.from_arrays(
[
["A"] * 3 + ["B"] * 3,
pd.to_datetime(["2020-01-05", "2020-01-12", "2020-01-19"] * 2).as_unit(
"ns"
),
],
names=["key", "date"],
)
expected = DataFrame(
{
"key": ["A"] * 3 + ["B"] * 3,
"col1": [0, 5, 12] * 2,
"col_object": ["val"] * 3 + [np.nan] * 3,
},
index=idx,
)
tm.assert_frame_equal(result, expected)
def test_groupby_resample_with_list_of_keys():
# GH 47362
df = DataFrame(
data={
"date": date_range(start="2016-01-01", periods=8),
"group": [0, 0, 0, 0, 1, 1, 1, 1],
"val": [1, 7, 5, 2, 3, 10, 5, 1],
}
)
result = df.groupby("group").resample("2D", on="date")[["val"]].mean()
mi_exp = pd.MultiIndex.from_arrays(
[[0, 0, 1, 1], df["date"]._values[::2]], names=["group", "date"]
)
expected = DataFrame(
data={
"val": [4.0, 3.5, 6.5, 3.0],
},
index=mi_exp,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
def test_resample_no_index(keys):
# GH 47705
df = DataFrame([], columns=["a", "b", "date"])
df["date"] = pd.to_datetime(df["date"])
df = df.set_index("date")
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean()
expected = DataFrame(columns=["a", "b", "date"]).set_index(keys, drop=False)
expected["date"] = pd.to_datetime(expected["date"])
expected = expected.set_index("date", append=True, drop=True)
if len(keys) == 1:
expected.index.name = keys[0]
tm.assert_frame_equal(result, expected)
def test_resample_no_columns():
# GH#52484
df = DataFrame(
index=Index(
pd.to_datetime(
["2018-01-01 00:00:00", "2018-01-01 12:00:00", "2018-01-02 00:00:00"]
),
name="date",
)
)
result = df.groupby([0, 0, 1]).resample(rule=pd.to_timedelta("06:00:00")).mean()
index = pd.to_datetime(
[
"2018-01-01 00:00:00",
"2018-01-01 06:00:00",
"2018-01-01 12:00:00",
"2018-01-02 00:00:00",
]
)
expected = DataFrame(
index=pd.MultiIndex(
levels=[np.array([0, 1], dtype=np.intp), index],
codes=[[0, 0, 0, 1], [0, 1, 2, 3]],
names=[None, "date"],
)
)
# GH#52710 - Index comes out as 32-bit on 64-bit Windows
tm.assert_frame_equal(result, expected, check_index_type=not is_platform_windows())
def test_groupby_resample_size_all_index_same():
# GH 46826
df = DataFrame(
{"A": [1] * 3 + [2] * 3 + [1] * 3 + [2] * 3, "B": np.arange(12)},
index=date_range("31/12/2000 18:00", freq="h", periods=12),
)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("A").resample("D").size()
mi_exp = pd.MultiIndex.from_arrays(
[
[1, 1, 2, 2],
pd.DatetimeIndex(["2000-12-31", "2001-01-01"] * 2, dtype="M8[ns]"),
],
names=["A", None],
)
expected = Series(
3,
index=mi_exp,
)
tm.assert_series_equal(result, expected)
def test_groupby_resample_on_index_with_list_of_keys():
# GH 50840
df = DataFrame(
data={
"group": [0, 0, 0, 0, 1, 1, 1, 1],
"val": [3, 1, 4, 1, 5, 9, 2, 6],
},
index=date_range(start="2016-01-01", periods=8, name="date"),
)
result = df.groupby("group").resample("2D")[["val"]].mean()
mi_exp = pd.MultiIndex.from_arrays(
[[0, 0, 1, 1], df.index[::2]], names=["group", "date"]
)
expected = DataFrame(
data={
"val": [2.0, 2.5, 7.0, 4.0],
},
index=mi_exp,
)
tm.assert_frame_equal(result, expected)
def test_groupby_resample_on_index_with_list_of_keys_multi_columns():
# GH 50876
df = DataFrame(
data={
"group": [0, 0, 0, 0, 1, 1, 1, 1],
"first_val": [3, 1, 4, 1, 5, 9, 2, 6],
"second_val": [2, 7, 1, 8, 2, 8, 1, 8],
"third_val": [1, 4, 1, 4, 2, 1, 3, 5],
},
index=date_range(start="2016-01-01", periods=8, name="date"),
)
result = df.groupby("group").resample("2D")[["first_val", "second_val"]].mean()
mi_exp = pd.MultiIndex.from_arrays(
[[0, 0, 1, 1], df.index[::2]], names=["group", "date"]
)
expected = DataFrame(
data={
"first_val": [2.0, 2.5, 7.0, 4.0],
"second_val": [4.5, 4.5, 5.0, 4.5],
},
index=mi_exp,
)
tm.assert_frame_equal(result, expected)
def test_groupby_resample_on_index_with_list_of_keys_missing_column():
# GH 50876
df = DataFrame(
data={
"group": [0, 0, 0, 0, 1, 1, 1, 1],
"val": [3, 1, 4, 1, 5, 9, 2, 6],
},
index=Series(
date_range(start="2016-01-01", periods=8),
name="date",
),
)
gb = df.groupby("group")
rs = gb.resample("2D")
with pytest.raises(KeyError, match="Columns not found"):
rs[["val_not_in_dataframe"]]
@pytest.mark.parametrize("kind", ["datetime", "period"])
def test_groupby_resample_kind(kind):
# GH 24103
df = DataFrame(
{
"datetime": pd.to_datetime(
["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"]
),
"group": ["A", "B", "A", "B"],
"value": [1, 2, 3, 4],
}
)
df = df.set_index("datetime")
result = df.groupby("group")["value"].resample("D", kind=kind).last()
dt_level = pd.DatetimeIndex(["2018-11-01", "2018-11-02"])
if kind == "period":
dt_level = dt_level.to_period(freq="D")
expected_index = pd.MultiIndex.from_product(
[["A", "B"], dt_level],
names=["group", "datetime"],
)
expected = Series([1, 3, 2, 4], index=expected_index, name="value")
tm.assert_series_equal(result, expected)