You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
8.7 KiB
231 lines
8.7 KiB
8 months ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
Series,
|
||
|
concat,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameConcat:
|
||
|
def test_concat_multiple_frames_dtypes(self):
|
||
|
# GH#2759
|
||
|
df1 = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
|
||
|
df2 = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
|
||
|
results = concat((df1, df2), axis=1).dtypes
|
||
|
expected = Series(
|
||
|
[np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
|
||
|
index=["foo", "bar", 0, 1],
|
||
|
)
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
def test_concat_tuple_keys(self):
|
||
|
# GH#14438
|
||
|
df1 = DataFrame(np.ones((2, 2)), columns=list("AB"))
|
||
|
df2 = DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
|
||
|
results = concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
|
||
|
expected = DataFrame(
|
||
|
{
|
||
|
"A": {
|
||
|
("bee", "bah", 0): 1.0,
|
||
|
("bee", "bah", 1): 1.0,
|
||
|
("bee", "boo", 0): 2.0,
|
||
|
("bee", "boo", 1): 2.0,
|
||
|
("bee", "boo", 2): 2.0,
|
||
|
},
|
||
|
"B": {
|
||
|
("bee", "bah", 0): 1.0,
|
||
|
("bee", "bah", 1): 1.0,
|
||
|
("bee", "boo", 0): 2.0,
|
||
|
("bee", "boo", 1): 2.0,
|
||
|
("bee", "boo", 2): 2.0,
|
||
|
},
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(results, expected)
|
||
|
|
||
|
def test_concat_named_keys(self):
|
||
|
# GH#14252
|
||
|
df = DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
|
||
|
index = Index(["a", "b"], name="baz")
|
||
|
concatted_named_from_keys = concat([df, df], keys=index)
|
||
|
expected_named = DataFrame(
|
||
|
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
|
||
|
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
|
||
|
)
|
||
|
tm.assert_frame_equal(concatted_named_from_keys, expected_named)
|
||
|
|
||
|
index_no_name = Index(["a", "b"], name=None)
|
||
|
concatted_named_from_names = concat([df, df], keys=index_no_name, names=["baz"])
|
||
|
tm.assert_frame_equal(concatted_named_from_names, expected_named)
|
||
|
|
||
|
concatted_unnamed = concat([df, df], keys=index_no_name)
|
||
|
expected_unnamed = DataFrame(
|
||
|
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
|
||
|
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
|
||
|
)
|
||
|
tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
|
||
|
|
||
|
def test_concat_axis_parameter(self):
|
||
|
# GH#14369
|
||
|
df1 = DataFrame({"A": [0.1, 0.2]}, index=range(2))
|
||
|
df2 = DataFrame({"A": [0.3, 0.4]}, index=range(2))
|
||
|
|
||
|
# Index/row/0 DataFrame
|
||
|
expected_index = DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
|
||
|
|
||
|
concatted_index = concat([df1, df2], axis="index")
|
||
|
tm.assert_frame_equal(concatted_index, expected_index)
|
||
|
|
||
|
concatted_row = concat([df1, df2], axis="rows")
|
||
|
tm.assert_frame_equal(concatted_row, expected_index)
|
||
|
|
||
|
concatted_0 = concat([df1, df2], axis=0)
|
||
|
tm.assert_frame_equal(concatted_0, expected_index)
|
||
|
|
||
|
# Columns/1 DataFrame
|
||
|
expected_columns = DataFrame(
|
||
|
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
|
||
|
)
|
||
|
|
||
|
concatted_columns = concat([df1, df2], axis="columns")
|
||
|
tm.assert_frame_equal(concatted_columns, expected_columns)
|
||
|
|
||
|
concatted_1 = concat([df1, df2], axis=1)
|
||
|
tm.assert_frame_equal(concatted_1, expected_columns)
|
||
|
|
||
|
series1 = Series([0.1, 0.2])
|
||
|
series2 = Series([0.3, 0.4])
|
||
|
|
||
|
# Index/row/0 Series
|
||
|
expected_index_series = Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
|
||
|
|
||
|
concatted_index_series = concat([series1, series2], axis="index")
|
||
|
tm.assert_series_equal(concatted_index_series, expected_index_series)
|
||
|
|
||
|
concatted_row_series = concat([series1, series2], axis="rows")
|
||
|
tm.assert_series_equal(concatted_row_series, expected_index_series)
|
||
|
|
||
|
concatted_0_series = concat([series1, series2], axis=0)
|
||
|
tm.assert_series_equal(concatted_0_series, expected_index_series)
|
||
|
|
||
|
# Columns/1 Series
|
||
|
expected_columns_series = DataFrame(
|
||
|
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
|
||
|
)
|
||
|
|
||
|
concatted_columns_series = concat([series1, series2], axis="columns")
|
||
|
tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
|
||
|
|
||
|
concatted_1_series = concat([series1, series2], axis=1)
|
||
|
tm.assert_frame_equal(concatted_1_series, expected_columns_series)
|
||
|
|
||
|
# Testing ValueError
|
||
|
with pytest.raises(ValueError, match="No axis named"):
|
||
|
concat([series1, series2], axis="something")
|
||
|
|
||
|
def test_concat_numerical_names(self):
|
||
|
# GH#15262, GH#12223
|
||
|
df = DataFrame(
|
||
|
{"col": range(9)},
|
||
|
dtype="int32",
|
||
|
index=(
|
||
|
pd.MultiIndex.from_product(
|
||
|
[["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
|
||
|
)
|
||
|
),
|
||
|
)
|
||
|
result = concat((df.iloc[:2, :], df.iloc[-2:, :]))
|
||
|
expected = DataFrame(
|
||
|
{"col": [0, 1, 7, 8]},
|
||
|
dtype="int32",
|
||
|
index=pd.MultiIndex.from_tuples(
|
||
|
[("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
|
||
|
),
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_concat_astype_dup_col(self):
|
||
|
# GH#23049
|
||
|
df = DataFrame([{"a": "b"}])
|
||
|
df = concat([df, df], axis=1)
|
||
|
|
||
|
result = df.astype("category")
|
||
|
expected = DataFrame(
|
||
|
np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
|
||
|
).astype("category")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_concat_dataframe_keys_bug(self, sort):
|
||
|
t1 = DataFrame(
|
||
|
{"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))}
|
||
|
)
|
||
|
t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))})
|
||
|
|
||
|
# it works
|
||
|
result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort)
|
||
|
assert list(result.columns) == [("t1", "value"), ("t2", "value")]
|
||
|
|
||
|
def test_concat_bool_with_int(self):
|
||
|
# GH#42092 we may want to change this to return object, but that
|
||
|
# would need a deprecation
|
||
|
df1 = DataFrame(Series([True, False, True, True], dtype="bool"))
|
||
|
df2 = DataFrame(Series([1, 0, 1], dtype="int64"))
|
||
|
|
||
|
result = concat([df1, df2])
|
||
|
expected = concat([df1.astype("int64"), df2])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_concat_duplicates_in_index_with_keys(self):
|
||
|
# GH#42651
|
||
|
index = [1, 1, 3]
|
||
|
data = [1, 2, 3]
|
||
|
|
||
|
df = DataFrame(data=data, index=index)
|
||
|
result = concat([df], keys=["A"], names=["ID", "date"])
|
||
|
mi = pd.MultiIndex.from_product([["A"], index], names=["ID", "date"])
|
||
|
expected = DataFrame(data=data, index=mi)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
tm.assert_index_equal(result.index.levels[1], Index([1, 3], name="date"))
|
||
|
|
||
|
@pytest.mark.parametrize("ignore_index", [True, False])
|
||
|
@pytest.mark.parametrize("order", ["C", "F"])
|
||
|
@pytest.mark.parametrize("axis", [0, 1])
|
||
|
def test_concat_copies(self, axis, order, ignore_index, using_copy_on_write):
|
||
|
# based on asv ConcatDataFrames
|
||
|
df = DataFrame(np.zeros((10, 5), dtype=np.float32, order=order))
|
||
|
|
||
|
res = concat([df] * 5, axis=axis, ignore_index=ignore_index, copy=True)
|
||
|
|
||
|
if not using_copy_on_write:
|
||
|
for arr in res._iter_column_arrays():
|
||
|
for arr2 in df._iter_column_arrays():
|
||
|
assert not np.shares_memory(arr, arr2)
|
||
|
|
||
|
def test_outer_sort_columns(self):
|
||
|
# GH#47127
|
||
|
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
|
||
|
df2 = DataFrame({"A": [100]})
|
||
|
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
||
|
expected = DataFrame({0: [1.0, np.nan], "A": [0, 100], "B": [1.0, np.nan]})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_inner_sort_columns(self):
|
||
|
# GH#47127
|
||
|
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
|
||
|
df2 = DataFrame({"A": [100], 0: 2})
|
||
|
result = concat([df1, df2], ignore_index=True, join="inner", sort=True)
|
||
|
expected = DataFrame({0: [1, 2], "A": [0, 100]})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_sort_columns_one_df(self):
|
||
|
# GH#47127
|
||
|
df1 = DataFrame({"A": [100], 0: 2})
|
||
|
result = concat([df1], ignore_index=True, join="inner", sort=True)
|
||
|
expected = DataFrame({0: [2], "A": [100]})
|
||
|
tm.assert_frame_equal(result, expected)
|