You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
448 lines
13 KiB
448 lines
13 KiB
7 months ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
from_dummies,
|
||
|
get_dummies,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def dummies_basic():
|
||
|
return DataFrame(
|
||
|
{
|
||
|
"col1_a": [1, 0, 1],
|
||
|
"col1_b": [0, 1, 0],
|
||
|
"col2_a": [0, 1, 0],
|
||
|
"col2_b": [1, 0, 0],
|
||
|
"col2_c": [0, 0, 1],
|
||
|
},
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def dummies_with_unassigned():
|
||
|
return DataFrame(
|
||
|
{
|
||
|
"col1_a": [1, 0, 0],
|
||
|
"col1_b": [0, 1, 0],
|
||
|
"col2_a": [0, 1, 0],
|
||
|
"col2_b": [0, 0, 0],
|
||
|
"col2_c": [0, 0, 1],
|
||
|
},
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_error_wrong_data_type():
|
||
|
dummies = [0, 1, 0]
|
||
|
with pytest.raises(
|
||
|
TypeError,
|
||
|
match=r"Expected 'data' to be a 'DataFrame'; Received 'data' of type: list",
|
||
|
):
|
||
|
from_dummies(dummies)
|
||
|
|
||
|
|
||
|
def test_error_no_prefix_contains_unassigned():
|
||
|
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]})
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
r"Dummy DataFrame contains unassigned value\(s\); "
|
||
|
r"First instance in row: 2"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies)
|
||
|
|
||
|
|
||
|
def test_error_no_prefix_wrong_default_category_type():
|
||
|
dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]})
|
||
|
with pytest.raises(
|
||
|
TypeError,
|
||
|
match=(
|
||
|
r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; "
|
||
|
r"Received 'default_category' of type: list"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies, default_category=["c", "d"])
|
||
|
|
||
|
|
||
|
def test_error_no_prefix_multi_assignment():
|
||
|
dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]})
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
r"Dummy DataFrame contains multi-assignment\(s\); "
|
||
|
r"First instance in row: 2"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies)
|
||
|
|
||
|
|
||
|
def test_error_no_prefix_contains_nan():
|
||
|
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, np.nan]})
|
||
|
with pytest.raises(
|
||
|
ValueError, match=r"Dummy DataFrame contains NA value in column: 'b'"
|
||
|
):
|
||
|
from_dummies(dummies)
|
||
|
|
||
|
|
||
|
def test_error_contains_non_dummies():
|
||
|
dummies = DataFrame(
|
||
|
{"a": [1, 6, 3, 1], "b": [0, 1, 0, 2], "c": ["c1", "c2", "c3", "c4"]}
|
||
|
)
|
||
|
with pytest.raises(
|
||
|
TypeError,
|
||
|
match=r"Passed DataFrame contains non-dummy data",
|
||
|
):
|
||
|
from_dummies(dummies)
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_multiple_seperators():
|
||
|
dummies = DataFrame(
|
||
|
{
|
||
|
"col1_a": [1, 0, 1],
|
||
|
"col1_b": [0, 1, 0],
|
||
|
"col2-a": [0, 1, 0],
|
||
|
"col2-b": [1, 0, 1],
|
||
|
},
|
||
|
)
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(r"Separator not specified for column: col2-a"),
|
||
|
):
|
||
|
from_dummies(dummies, sep="_")
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_sep_wrong_type(dummies_basic):
|
||
|
with pytest.raises(
|
||
|
TypeError,
|
||
|
match=(
|
||
|
r"Expected 'sep' to be of type 'str' or 'None'; "
|
||
|
r"Received 'sep' of type: list"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies_basic, sep=["_"])
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_contains_unassigned(dummies_with_unassigned):
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
r"Dummy DataFrame contains unassigned value\(s\); "
|
||
|
r"First instance in row: 2"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies_with_unassigned, sep="_")
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_default_category_wrong_type(dummies_with_unassigned):
|
||
|
with pytest.raises(
|
||
|
TypeError,
|
||
|
match=(
|
||
|
r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; "
|
||
|
r"Received 'default_category' of type: list"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies_with_unassigned, sep="_", default_category=["x", "y"])
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_default_category_dict_not_complete(
|
||
|
dummies_with_unassigned,
|
||
|
):
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
r"Length of 'default_category' \(1\) did not match "
|
||
|
r"the length of the columns being encoded \(2\)"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies_with_unassigned, sep="_", default_category={"col1": "x"})
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_contains_nan(dummies_basic):
|
||
|
# Set float64 dtype to avoid upcast when setting np.nan
|
||
|
dummies_basic["col2_c"] = dummies_basic["col2_c"].astype("float64")
|
||
|
dummies_basic.loc[2, "col2_c"] = np.nan
|
||
|
with pytest.raises(
|
||
|
ValueError, match=r"Dummy DataFrame contains NA value in column: 'col2_c'"
|
||
|
):
|
||
|
from_dummies(dummies_basic, sep="_")
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_contains_non_dummies(dummies_basic):
|
||
|
# Set object dtype to avoid upcast when setting "str"
|
||
|
dummies_basic["col2_c"] = dummies_basic["col2_c"].astype(object)
|
||
|
dummies_basic.loc[2, "col2_c"] = "str"
|
||
|
with pytest.raises(TypeError, match=r"Passed DataFrame contains non-dummy data"):
|
||
|
from_dummies(dummies_basic, sep="_")
|
||
|
|
||
|
|
||
|
def test_error_with_prefix_double_assignment():
|
||
|
dummies = DataFrame(
|
||
|
{
|
||
|
"col1_a": [1, 0, 1],
|
||
|
"col1_b": [1, 1, 0],
|
||
|
"col2_a": [0, 1, 0],
|
||
|
"col2_b": [1, 0, 0],
|
||
|
"col2_c": [0, 0, 1],
|
||
|
},
|
||
|
)
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match=(
|
||
|
r"Dummy DataFrame contains multi-assignment\(s\); "
|
||
|
r"First instance in row: 0"
|
||
|
),
|
||
|
):
|
||
|
from_dummies(dummies, sep="_")
|
||
|
|
||
|
|
||
|
def test_roundtrip_series_to_dataframe():
|
||
|
categories = Series(["a", "b", "c", "a"])
|
||
|
dummies = get_dummies(categories)
|
||
|
result = from_dummies(dummies)
|
||
|
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_roundtrip_single_column_dataframe():
|
||
|
categories = DataFrame({"": ["a", "b", "c", "a"]})
|
||
|
dummies = get_dummies(categories)
|
||
|
result = from_dummies(dummies, sep="_")
|
||
|
expected = categories
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_roundtrip_with_prefixes():
|
||
|
categories = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]})
|
||
|
dummies = get_dummies(categories)
|
||
|
result = from_dummies(dummies, sep="_")
|
||
|
expected = categories
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_string_cats_basic():
|
||
|
dummies = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]})
|
||
|
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_string_cats_basic_bool_values():
|
||
|
dummies = DataFrame(
|
||
|
{
|
||
|
"a": [True, False, False, True],
|
||
|
"b": [False, True, False, False],
|
||
|
"c": [False, False, True, False],
|
||
|
}
|
||
|
)
|
||
|
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_string_cats_basic_mixed_bool_values():
|
||
|
dummies = DataFrame(
|
||
|
{"a": [1, 0, 0, 1], "b": [False, True, False, False], "c": [0, 0, 1, 0]}
|
||
|
)
|
||
|
expected = DataFrame({"": ["a", "b", "c", "a"]})
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_int_cats_basic():
|
||
|
dummies = DataFrame(
|
||
|
{1: [1, 0, 0, 0], 25: [0, 1, 0, 0], 2: [0, 0, 1, 0], 5: [0, 0, 0, 1]}
|
||
|
)
|
||
|
expected = DataFrame({"": [1, 25, 2, 5]})
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_float_cats_basic():
|
||
|
dummies = DataFrame(
|
||
|
{1.0: [1, 0, 0, 0], 25.0: [0, 1, 0, 0], 2.5: [0, 0, 1, 0], 5.84: [0, 0, 0, 1]}
|
||
|
)
|
||
|
expected = DataFrame({"": [1.0, 25.0, 2.5, 5.84]})
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_mixed_cats_basic():
|
||
|
dummies = DataFrame(
|
||
|
{
|
||
|
1.23: [1, 0, 0, 0, 0],
|
||
|
"c": [0, 1, 0, 0, 0],
|
||
|
2: [0, 0, 1, 0, 0],
|
||
|
False: [0, 0, 0, 1, 0],
|
||
|
None: [0, 0, 0, 0, 1],
|
||
|
}
|
||
|
)
|
||
|
expected = DataFrame({"": [1.23, "c", 2, False, None]}, dtype="object")
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_no_prefix_string_cats_contains_get_dummies_NaN_column():
|
||
|
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0], "NaN": [0, 0, 1]})
|
||
|
expected = DataFrame({"": ["a", "b", "NaN"]})
|
||
|
result = from_dummies(dummies)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"default_category, expected",
|
||
|
[
|
||
|
pytest.param(
|
||
|
"c",
|
||
|
DataFrame({"": ["a", "b", "c"]}),
|
||
|
id="default_category is a str",
|
||
|
),
|
||
|
pytest.param(
|
||
|
1,
|
||
|
DataFrame({"": ["a", "b", 1]}),
|
||
|
id="default_category is a int",
|
||
|
),
|
||
|
pytest.param(
|
||
|
1.25,
|
||
|
DataFrame({"": ["a", "b", 1.25]}),
|
||
|
id="default_category is a float",
|
||
|
),
|
||
|
pytest.param(
|
||
|
0,
|
||
|
DataFrame({"": ["a", "b", 0]}),
|
||
|
id="default_category is a 0",
|
||
|
),
|
||
|
pytest.param(
|
||
|
False,
|
||
|
DataFrame({"": ["a", "b", False]}),
|
||
|
id="default_category is a bool",
|
||
|
),
|
||
|
pytest.param(
|
||
|
(1, 2),
|
||
|
DataFrame({"": ["a", "b", (1, 2)]}),
|
||
|
id="default_category is a tuple",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_no_prefix_string_cats_default_category(
|
||
|
default_category, expected, using_infer_string
|
||
|
):
|
||
|
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]})
|
||
|
result = from_dummies(dummies, default_category=default_category)
|
||
|
if using_infer_string:
|
||
|
expected[""] = expected[""].astype("string[pyarrow_numpy]")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_with_prefix_basic(dummies_basic):
|
||
|
expected = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]})
|
||
|
result = from_dummies(dummies_basic, sep="_")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_with_prefix_contains_get_dummies_NaN_column():
|
||
|
dummies = DataFrame(
|
||
|
{
|
||
|
"col1_a": [1, 0, 0],
|
||
|
"col1_b": [0, 1, 0],
|
||
|
"col1_NaN": [0, 0, 1],
|
||
|
"col2_a": [0, 1, 0],
|
||
|
"col2_b": [0, 0, 0],
|
||
|
"col2_c": [0, 0, 1],
|
||
|
"col2_NaN": [1, 0, 0],
|
||
|
},
|
||
|
)
|
||
|
expected = DataFrame({"col1": ["a", "b", "NaN"], "col2": ["NaN", "a", "c"]})
|
||
|
result = from_dummies(dummies, sep="_")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"default_category, expected",
|
||
|
[
|
||
|
pytest.param(
|
||
|
"x",
|
||
|
DataFrame({"col1": ["a", "b", "x"], "col2": ["x", "a", "c"]}),
|
||
|
id="default_category is a str",
|
||
|
),
|
||
|
pytest.param(
|
||
|
0,
|
||
|
DataFrame({"col1": ["a", "b", 0], "col2": [0, "a", "c"]}),
|
||
|
id="default_category is a 0",
|
||
|
),
|
||
|
pytest.param(
|
||
|
False,
|
||
|
DataFrame({"col1": ["a", "b", False], "col2": [False, "a", "c"]}),
|
||
|
id="default_category is a False",
|
||
|
),
|
||
|
pytest.param(
|
||
|
{"col2": 1, "col1": 2.5},
|
||
|
DataFrame({"col1": ["a", "b", 2.5], "col2": [1, "a", "c"]}),
|
||
|
id="default_category is a dict with int and float values",
|
||
|
),
|
||
|
pytest.param(
|
||
|
{"col2": None, "col1": False},
|
||
|
DataFrame({"col1": ["a", "b", False], "col2": [None, "a", "c"]}),
|
||
|
id="default_category is a dict with bool and None values",
|
||
|
),
|
||
|
pytest.param(
|
||
|
{"col2": (1, 2), "col1": [1.25, False]},
|
||
|
DataFrame({"col1": ["a", "b", [1.25, False]], "col2": [(1, 2), "a", "c"]}),
|
||
|
id="default_category is a dict with list and tuple values",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_with_prefix_default_category(
|
||
|
dummies_with_unassigned, default_category, expected
|
||
|
):
|
||
|
result = from_dummies(
|
||
|
dummies_with_unassigned, sep="_", default_category=default_category
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ea_categories():
|
||
|
# GH 54300
|
||
|
df = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]})
|
||
|
df.columns = df.columns.astype("string[python]")
|
||
|
result = from_dummies(df)
|
||
|
expected = DataFrame({"": Series(list("abca"), dtype="string[python]")})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ea_categories_with_sep():
|
||
|
# GH 54300
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"col1_a": [1, 0, 1],
|
||
|
"col1_b": [0, 1, 0],
|
||
|
"col2_a": [0, 1, 0],
|
||
|
"col2_b": [1, 0, 0],
|
||
|
"col2_c": [0, 0, 1],
|
||
|
}
|
||
|
)
|
||
|
df.columns = df.columns.astype("string[python]")
|
||
|
result = from_dummies(df, sep="_")
|
||
|
expected = DataFrame(
|
||
|
{
|
||
|
"col1": Series(list("aba"), dtype="string[python]"),
|
||
|
"col2": Series(list("bac"), dtype="string[python]"),
|
||
|
}
|
||
|
)
|
||
|
expected.columns = expected.columns.astype("string[python]")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_maintain_original_index():
|
||
|
# GH 54300
|
||
|
df = DataFrame(
|
||
|
{"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]}, index=list("abcd")
|
||
|
)
|
||
|
result = from_dummies(df)
|
||
|
expected = DataFrame({"": list("abca")}, index=list("abcd"))
|
||
|
tm.assert_frame_equal(result, expected)
|