You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

448 lines
13 KiB

7 months ago
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
from_dummies,
get_dummies,
)
import pandas._testing as tm
@pytest.fixture
def dummies_basic():
return DataFrame(
{
"col1_a": [1, 0, 1],
"col1_b": [0, 1, 0],
"col2_a": [0, 1, 0],
"col2_b": [1, 0, 0],
"col2_c": [0, 0, 1],
},
)
@pytest.fixture
def dummies_with_unassigned():
return DataFrame(
{
"col1_a": [1, 0, 0],
"col1_b": [0, 1, 0],
"col2_a": [0, 1, 0],
"col2_b": [0, 0, 0],
"col2_c": [0, 0, 1],
},
)
def test_error_wrong_data_type():
dummies = [0, 1, 0]
with pytest.raises(
TypeError,
match=r"Expected 'data' to be a 'DataFrame'; Received 'data' of type: list",
):
from_dummies(dummies)
def test_error_no_prefix_contains_unassigned():
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]})
with pytest.raises(
ValueError,
match=(
r"Dummy DataFrame contains unassigned value\(s\); "
r"First instance in row: 2"
),
):
from_dummies(dummies)
def test_error_no_prefix_wrong_default_category_type():
dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]})
with pytest.raises(
TypeError,
match=(
r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; "
r"Received 'default_category' of type: list"
),
):
from_dummies(dummies, default_category=["c", "d"])
def test_error_no_prefix_multi_assignment():
dummies = DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]})
with pytest.raises(
ValueError,
match=(
r"Dummy DataFrame contains multi-assignment\(s\); "
r"First instance in row: 2"
),
):
from_dummies(dummies)
def test_error_no_prefix_contains_nan():
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, np.nan]})
with pytest.raises(
ValueError, match=r"Dummy DataFrame contains NA value in column: 'b'"
):
from_dummies(dummies)
def test_error_contains_non_dummies():
dummies = DataFrame(
{"a": [1, 6, 3, 1], "b": [0, 1, 0, 2], "c": ["c1", "c2", "c3", "c4"]}
)
with pytest.raises(
TypeError,
match=r"Passed DataFrame contains non-dummy data",
):
from_dummies(dummies)
def test_error_with_prefix_multiple_seperators():
dummies = DataFrame(
{
"col1_a": [1, 0, 1],
"col1_b": [0, 1, 0],
"col2-a": [0, 1, 0],
"col2-b": [1, 0, 1],
},
)
with pytest.raises(
ValueError,
match=(r"Separator not specified for column: col2-a"),
):
from_dummies(dummies, sep="_")
def test_error_with_prefix_sep_wrong_type(dummies_basic):
with pytest.raises(
TypeError,
match=(
r"Expected 'sep' to be of type 'str' or 'None'; "
r"Received 'sep' of type: list"
),
):
from_dummies(dummies_basic, sep=["_"])
def test_error_with_prefix_contains_unassigned(dummies_with_unassigned):
with pytest.raises(
ValueError,
match=(
r"Dummy DataFrame contains unassigned value\(s\); "
r"First instance in row: 2"
),
):
from_dummies(dummies_with_unassigned, sep="_")
def test_error_with_prefix_default_category_wrong_type(dummies_with_unassigned):
with pytest.raises(
TypeError,
match=(
r"Expected 'default_category' to be of type 'None', 'Hashable', or 'dict'; "
r"Received 'default_category' of type: list"
),
):
from_dummies(dummies_with_unassigned, sep="_", default_category=["x", "y"])
def test_error_with_prefix_default_category_dict_not_complete(
dummies_with_unassigned,
):
with pytest.raises(
ValueError,
match=(
r"Length of 'default_category' \(1\) did not match "
r"the length of the columns being encoded \(2\)"
),
):
from_dummies(dummies_with_unassigned, sep="_", default_category={"col1": "x"})
def test_error_with_prefix_contains_nan(dummies_basic):
# Set float64 dtype to avoid upcast when setting np.nan
dummies_basic["col2_c"] = dummies_basic["col2_c"].astype("float64")
dummies_basic.loc[2, "col2_c"] = np.nan
with pytest.raises(
ValueError, match=r"Dummy DataFrame contains NA value in column: 'col2_c'"
):
from_dummies(dummies_basic, sep="_")
def test_error_with_prefix_contains_non_dummies(dummies_basic):
# Set object dtype to avoid upcast when setting "str"
dummies_basic["col2_c"] = dummies_basic["col2_c"].astype(object)
dummies_basic.loc[2, "col2_c"] = "str"
with pytest.raises(TypeError, match=r"Passed DataFrame contains non-dummy data"):
from_dummies(dummies_basic, sep="_")
def test_error_with_prefix_double_assignment():
dummies = DataFrame(
{
"col1_a": [1, 0, 1],
"col1_b": [1, 1, 0],
"col2_a": [0, 1, 0],
"col2_b": [1, 0, 0],
"col2_c": [0, 0, 1],
},
)
with pytest.raises(
ValueError,
match=(
r"Dummy DataFrame contains multi-assignment\(s\); "
r"First instance in row: 0"
),
):
from_dummies(dummies, sep="_")
def test_roundtrip_series_to_dataframe():
categories = Series(["a", "b", "c", "a"])
dummies = get_dummies(categories)
result = from_dummies(dummies)
expected = DataFrame({"": ["a", "b", "c", "a"]})
tm.assert_frame_equal(result, expected)
def test_roundtrip_single_column_dataframe():
categories = DataFrame({"": ["a", "b", "c", "a"]})
dummies = get_dummies(categories)
result = from_dummies(dummies, sep="_")
expected = categories
tm.assert_frame_equal(result, expected)
def test_roundtrip_with_prefixes():
categories = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]})
dummies = get_dummies(categories)
result = from_dummies(dummies, sep="_")
expected = categories
tm.assert_frame_equal(result, expected)
def test_no_prefix_string_cats_basic():
dummies = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]})
expected = DataFrame({"": ["a", "b", "c", "a"]})
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
def test_no_prefix_string_cats_basic_bool_values():
dummies = DataFrame(
{
"a": [True, False, False, True],
"b": [False, True, False, False],
"c": [False, False, True, False],
}
)
expected = DataFrame({"": ["a", "b", "c", "a"]})
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
def test_no_prefix_string_cats_basic_mixed_bool_values():
dummies = DataFrame(
{"a": [1, 0, 0, 1], "b": [False, True, False, False], "c": [0, 0, 1, 0]}
)
expected = DataFrame({"": ["a", "b", "c", "a"]})
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
def test_no_prefix_int_cats_basic():
dummies = DataFrame(
{1: [1, 0, 0, 0], 25: [0, 1, 0, 0], 2: [0, 0, 1, 0], 5: [0, 0, 0, 1]}
)
expected = DataFrame({"": [1, 25, 2, 5]})
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
def test_no_prefix_float_cats_basic():
dummies = DataFrame(
{1.0: [1, 0, 0, 0], 25.0: [0, 1, 0, 0], 2.5: [0, 0, 1, 0], 5.84: [0, 0, 0, 1]}
)
expected = DataFrame({"": [1.0, 25.0, 2.5, 5.84]})
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
def test_no_prefix_mixed_cats_basic():
dummies = DataFrame(
{
1.23: [1, 0, 0, 0, 0],
"c": [0, 1, 0, 0, 0],
2: [0, 0, 1, 0, 0],
False: [0, 0, 0, 1, 0],
None: [0, 0, 0, 0, 1],
}
)
expected = DataFrame({"": [1.23, "c", 2, False, None]}, dtype="object")
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
def test_no_prefix_string_cats_contains_get_dummies_NaN_column():
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0], "NaN": [0, 0, 1]})
expected = DataFrame({"": ["a", "b", "NaN"]})
result = from_dummies(dummies)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"default_category, expected",
[
pytest.param(
"c",
DataFrame({"": ["a", "b", "c"]}),
id="default_category is a str",
),
pytest.param(
1,
DataFrame({"": ["a", "b", 1]}),
id="default_category is a int",
),
pytest.param(
1.25,
DataFrame({"": ["a", "b", 1.25]}),
id="default_category is a float",
),
pytest.param(
0,
DataFrame({"": ["a", "b", 0]}),
id="default_category is a 0",
),
pytest.param(
False,
DataFrame({"": ["a", "b", False]}),
id="default_category is a bool",
),
pytest.param(
(1, 2),
DataFrame({"": ["a", "b", (1, 2)]}),
id="default_category is a tuple",
),
],
)
def test_no_prefix_string_cats_default_category(
default_category, expected, using_infer_string
):
dummies = DataFrame({"a": [1, 0, 0], "b": [0, 1, 0]})
result = from_dummies(dummies, default_category=default_category)
if using_infer_string:
expected[""] = expected[""].astype("string[pyarrow_numpy]")
tm.assert_frame_equal(result, expected)
def test_with_prefix_basic(dummies_basic):
expected = DataFrame({"col1": ["a", "b", "a"], "col2": ["b", "a", "c"]})
result = from_dummies(dummies_basic, sep="_")
tm.assert_frame_equal(result, expected)
def test_with_prefix_contains_get_dummies_NaN_column():
dummies = DataFrame(
{
"col1_a": [1, 0, 0],
"col1_b": [0, 1, 0],
"col1_NaN": [0, 0, 1],
"col2_a": [0, 1, 0],
"col2_b": [0, 0, 0],
"col2_c": [0, 0, 1],
"col2_NaN": [1, 0, 0],
},
)
expected = DataFrame({"col1": ["a", "b", "NaN"], "col2": ["NaN", "a", "c"]})
result = from_dummies(dummies, sep="_")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"default_category, expected",
[
pytest.param(
"x",
DataFrame({"col1": ["a", "b", "x"], "col2": ["x", "a", "c"]}),
id="default_category is a str",
),
pytest.param(
0,
DataFrame({"col1": ["a", "b", 0], "col2": [0, "a", "c"]}),
id="default_category is a 0",
),
pytest.param(
False,
DataFrame({"col1": ["a", "b", False], "col2": [False, "a", "c"]}),
id="default_category is a False",
),
pytest.param(
{"col2": 1, "col1": 2.5},
DataFrame({"col1": ["a", "b", 2.5], "col2": [1, "a", "c"]}),
id="default_category is a dict with int and float values",
),
pytest.param(
{"col2": None, "col1": False},
DataFrame({"col1": ["a", "b", False], "col2": [None, "a", "c"]}),
id="default_category is a dict with bool and None values",
),
pytest.param(
{"col2": (1, 2), "col1": [1.25, False]},
DataFrame({"col1": ["a", "b", [1.25, False]], "col2": [(1, 2), "a", "c"]}),
id="default_category is a dict with list and tuple values",
),
],
)
def test_with_prefix_default_category(
dummies_with_unassigned, default_category, expected
):
result = from_dummies(
dummies_with_unassigned, sep="_", default_category=default_category
)
tm.assert_frame_equal(result, expected)
def test_ea_categories():
# GH 54300
df = DataFrame({"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]})
df.columns = df.columns.astype("string[python]")
result = from_dummies(df)
expected = DataFrame({"": Series(list("abca"), dtype="string[python]")})
tm.assert_frame_equal(result, expected)
def test_ea_categories_with_sep():
# GH 54300
df = DataFrame(
{
"col1_a": [1, 0, 1],
"col1_b": [0, 1, 0],
"col2_a": [0, 1, 0],
"col2_b": [1, 0, 0],
"col2_c": [0, 0, 1],
}
)
df.columns = df.columns.astype("string[python]")
result = from_dummies(df, sep="_")
expected = DataFrame(
{
"col1": Series(list("aba"), dtype="string[python]"),
"col2": Series(list("bac"), dtype="string[python]"),
}
)
expected.columns = expected.columns.astype("string[python]")
tm.assert_frame_equal(result, expected)
def test_maintain_original_index():
# GH 54300
df = DataFrame(
{"a": [1, 0, 0, 1], "b": [0, 1, 0, 0], "c": [0, 0, 1, 0]}, index=list("abcd")
)
result = from_dummies(df)
expected = DataFrame({"": list("abca")}, index=list("abcd"))
tm.assert_frame_equal(result, expected)