You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

146 lines
4.1 KiB

8 months ago
from contextlib import nullcontext
import copy
import numpy as np
import pytest
from pandas._libs.missing import is_matching_na
from pandas.compat.numpy import np_version_gte1p25
from pandas.core.dtypes.common import is_float
from pandas import (
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
@pytest.mark.parametrize(
"arr, idx",
[
([1, 2, 3, 4], [0, 2, 1, 3]),
([1, np.nan, 3, np.nan], [0, 2, 1, 3]),
(
[1, np.nan, 3, np.nan],
MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]),
),
],
)
def test_equals(arr, idx):
s1 = Series(arr, index=idx)
s2 = s1.copy()
assert s1.equals(s2)
s1[1] = 9
assert not s1.equals(s2)
@pytest.mark.parametrize(
"val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None]
)
def test_equals_list_array(val):
# GH20676 Verify equals operator for list of Numpy arrays
arr = np.array([1, 2])
s1 = Series([arr, arr])
s2 = s1.copy()
assert s1.equals(s2)
s1[1] = val
cm = (
tm.assert_produces_warning(FutureWarning, check_stacklevel=False)
if isinstance(val, str) and not np_version_gte1p25
else nullcontext()
)
with cm:
assert not s1.equals(s2)
def test_equals_false_negative():
# GH8437 Verify false negative behavior of equals function for dtype object
arr = [False, np.nan]
s1 = Series(arr)
s2 = s1.copy()
s3 = Series(index=range(2), dtype=object)
s4 = s3.copy()
s5 = s3.copy()
s6 = s3.copy()
s3[:-1] = s4[:-1] = s5[0] = s6[0] = False
assert s1.equals(s1)
assert s1.equals(s2)
assert s1.equals(s3)
assert s1.equals(s4)
assert s1.equals(s5)
assert s5.equals(s6)
def test_equals_matching_nas():
# matching but not identical NAs
left = Series([np.datetime64("NaT")], dtype=object)
right = Series([np.datetime64("NaT")], dtype=object)
assert left.equals(right)
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
assert Index(left).equals(Index(right))
assert left.array.equals(right.array)
left = Series([np.timedelta64("NaT")], dtype=object)
right = Series([np.timedelta64("NaT")], dtype=object)
assert left.equals(right)
with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
assert Index(left).equals(Index(right))
assert left.array.equals(right.array)
left = Series([np.float64("NaN")], dtype=object)
right = Series([np.float64("NaN")], dtype=object)
assert left.equals(right)
assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype))
assert left.array.equals(right.array)
def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2):
# GH#39650
left = nulls_fixture
right = nulls_fixture2
if hasattr(right, "copy"):
right = right.copy()
else:
right = copy.copy(right)
ser = Series([left], dtype=object)
ser2 = Series([right], dtype=object)
if is_matching_na(left, right):
assert ser.equals(ser2)
elif (left is None and is_float(right)) or (right is None and is_float(left)):
assert ser.equals(ser2)
else:
assert not ser.equals(ser2)
def test_equals_none_vs_nan():
# GH#39650
ser = Series([1, None], dtype=object)
ser2 = Series([1, np.nan], dtype=object)
assert ser.equals(ser2)
assert Index(ser, dtype=ser.dtype).equals(Index(ser2, dtype=ser2.dtype))
assert ser.array.equals(ser2.array)
def test_equals_None_vs_float():
# GH#44190
left = Series([-np.inf, np.nan, -1.0, 0.0, 1.0, 10 / 3, np.inf], dtype=object)
right = Series([None] * len(left))
# these series were found to be equal due to a bug, check that they are correctly
# found to not equal
assert not left.equals(right)
assert not right.equals(left)
assert not left.to_frame().equals(right.to_frame())
assert not right.to_frame().equals(left.to_frame())
assert not Index(left, dtype="object").equals(Index(right, dtype="object"))
assert not Index(right, dtype="object").equals(Index(left, dtype="object"))