You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

985 lines
33 KiB

7 months ago
from datetime import (
date,
timedelta,
timezone,
)
from decimal import Decimal
import operator
import numpy as np
import pytest
from pandas._libs import lib
from pandas._libs.tslibs import IncompatibleFrequency
import pandas as pd
from pandas import (
Categorical,
DatetimeTZDtype,
Index,
Series,
Timedelta,
bdate_range,
date_range,
isna,
)
import pandas._testing as tm
from pandas.core import ops
from pandas.core.computation import expressions as expr
from pandas.core.computation.check import NUMEXPR_INSTALLED
@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
def switch_numexpr_min_elements(request, monkeypatch):
with monkeypatch.context() as m:
m.setattr(expr, "_MIN_ELEMENTS", request.param)
yield
def _permute(obj):
return obj.take(np.random.default_rng(2).permutation(len(obj)))
class TestSeriesFlexArithmetic:
@pytest.mark.parametrize(
"ts",
[
(lambda x: x, lambda x: x * 2, False),
(lambda x: x, lambda x: x[::2], False),
(lambda x: x, lambda x: 5, True),
(
lambda x: Series(range(10), dtype=np.float64),
lambda x: Series(range(10), dtype=np.float64),
True,
),
],
)
@pytest.mark.parametrize(
"opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"]
)
def test_flex_method_equivalence(self, opname, ts):
# check that Series.{opname} behaves like Series.__{opname}__,
tser = Series(
np.arange(20, dtype=np.float64),
index=date_range("2020-01-01", periods=20),
name="ts",
)
series = ts[0](tser)
other = ts[1](tser)
check_reverse = ts[2]
op = getattr(Series, opname)
alt = getattr(operator, opname)
result = op(series, other)
expected = alt(series, other)
tm.assert_almost_equal(result, expected)
if check_reverse:
rop = getattr(Series, "r" + opname)
result = rop(series, other)
expected = alt(other, series)
tm.assert_almost_equal(result, expected)
def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators):
# GH 13208
class MySeries(Series):
_metadata = ["x"]
@property
def _constructor(self):
return MySeries
opname = all_arithmetic_operators
op = getattr(Series, opname)
m = MySeries([1, 2, 3], name="test")
m.x = 42
result = op(m, 1)
assert result.x == 42
def test_flex_add_scalar_fill_value(self):
# GH12723
ser = Series([0, 1, np.nan, 3, 4, 5])
exp = ser.fillna(0).add(2)
res = ser.add(2, fill_value=0)
tm.assert_series_equal(res, exp)
pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)]
for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]:
fv = 0
lop = getattr(Series, op)
lequiv = getattr(operator, op)
rop = getattr(Series, "r" + op)
# bind op at definition time...
requiv = lambda x, y, op=op: getattr(operator, op)(y, x)
pairings.append((lop, lequiv, fv))
pairings.append((rop, requiv, fv))
@pytest.mark.parametrize("op, equiv_op, fv", pairings)
def test_operators_combine(self, op, equiv_op, fv):
def _check_fill(meth, op, a, b, fill_value=0):
exp_index = a.index.union(b.index)
a = a.reindex(exp_index)
b = b.reindex(exp_index)
amask = isna(a)
bmask = isna(b)
exp_values = []
for i in range(len(exp_index)):
with np.errstate(all="ignore"):
if amask[i]:
if bmask[i]:
exp_values.append(np.nan)
continue
exp_values.append(op(fill_value, b[i]))
elif bmask[i]:
if amask[i]:
exp_values.append(np.nan)
continue
exp_values.append(op(a[i], fill_value))
else:
exp_values.append(op(a[i], b[i]))
result = meth(a, b, fill_value=fill_value)
expected = Series(exp_values, exp_index)
tm.assert_series_equal(result, expected)
a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5))
b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6))
result = op(a, b)
exp = equiv_op(a, b)
tm.assert_series_equal(result, exp)
_check_fill(op, equiv_op, a, b, fill_value=fv)
# should accept axis=0 or axis='rows'
op(a, b, axis=0)
class TestSeriesArithmetic:
# Some of these may end up in tests/arithmetic, but are not yet sorted
def test_add_series_with_period_index(self):
rng = pd.period_range("1/1/2000", "1/1/2010", freq="Y")
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
result = ts + ts[::2]
expected = ts + ts
expected.iloc[1::2] = np.nan
tm.assert_series_equal(result, expected)
result = ts + _permute(ts[::2])
tm.assert_series_equal(result, expected)
msg = "Input has different freq=D from Period\\(freq=Y-DEC\\)"
with pytest.raises(IncompatibleFrequency, match=msg):
ts + ts.asfreq("D", how="end")
@pytest.mark.parametrize(
"target_add,input_value,expected_value",
[
("!", ["hello", "world"], ["hello!", "world!"]),
("m", ["hello", "world"], ["hellom", "worldm"]),
],
)
def test_string_addition(self, target_add, input_value, expected_value):
# GH28658 - ensure adding 'm' does not raise an error
a = Series(input_value)
result = a + target_add
expected = Series(expected_value)
tm.assert_series_equal(result, expected)
def test_divmod(self):
# GH#25557
a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"])
b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"])
result = a.divmod(b)
expected = divmod(a, b)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
result = a.rdivmod(b)
expected = divmod(b, a)
tm.assert_series_equal(result[0], expected[0])
tm.assert_series_equal(result[1], expected[1])
@pytest.mark.parametrize("index", [None, range(9)])
def test_series_integer_mod(self, index):
# GH#24396
s1 = Series(range(1, 10))
s2 = Series("foo", index=index)
msg = "not all arguments converted during string formatting|mod not"
with pytest.raises((TypeError, NotImplementedError), match=msg):
s2 % s1
def test_add_with_duplicate_index(self):
# GH14227
s1 = Series([1, 2], index=[1, 1])
s2 = Series([10, 10], index=[1, 2])
result = s1 + s2
expected = Series([11, 12, np.nan], index=[1, 1, 2])
tm.assert_series_equal(result, expected)
def test_add_na_handling(self):
ser = Series(
[Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)]
)
result = ser + ser.shift(1)
result2 = ser.shift(1) + ser
assert isna(result.iloc[0])
assert isna(result2.iloc[0])
def test_add_corner_cases(self, datetime_series):
empty = Series([], index=Index([]), dtype=np.float64)
result = datetime_series + empty
assert np.isnan(result).all()
result = empty + empty.copy()
assert len(result) == 0
def test_add_float_plus_int(self, datetime_series):
# float + int
int_ts = datetime_series.astype(int)[:-5]
added = datetime_series + int_ts
expected = Series(
datetime_series.values[:-5] + int_ts.values,
index=datetime_series.index[:-5],
name="ts",
)
tm.assert_series_equal(added[:-5], expected)
def test_mul_empty_int_corner_case(self):
s1 = Series([], [], dtype=np.int32)
s2 = Series({"x": 0.0})
tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"]))
def test_sub_datetimelike_align(self):
# GH#7500
# datetimelike ops need to align
dt = Series(date_range("2012-1-1", periods=3, freq="D"))
dt.iloc[2] = np.nan
dt2 = dt[::-1]
expected = Series([timedelta(0), timedelta(0), pd.NaT])
# name is reset
result = dt2 - dt
tm.assert_series_equal(result, expected)
expected = Series(expected, name=0)
result = (dt2.to_frame() - dt.to_frame())[0]
tm.assert_series_equal(result, expected)
def test_alignment_doesnt_change_tz(self):
# GH#33671
dti = date_range("2016-01-01", periods=10, tz="CET")
dti_utc = dti.tz_convert("UTC")
ser = Series(10, index=dti)
ser_utc = Series(10, index=dti_utc)
# we don't care about the result, just that original indexes are unchanged
ser * ser_utc
assert ser.index is dti
assert ser_utc.index is dti_utc
def test_alignment_categorical(self):
# GH13365
cat = Categorical(["3z53", "3z53", "LoJG", "LoJG", "LoJG", "N503"])
ser1 = Series(2, index=cat)
ser2 = Series(2, index=cat[:-1])
result = ser1 * ser2
exp_index = ["3z53"] * 4 + ["LoJG"] * 9 + ["N503"]
exp_index = pd.CategoricalIndex(exp_index, categories=cat.categories)
exp_values = [4.0] * 13 + [np.nan]
expected = Series(exp_values, exp_index)
tm.assert_series_equal(result, expected)
def test_arithmetic_with_duplicate_index(self):
# GH#8363
# integer ops with a non-unique index
index = [2, 2, 3, 3, 4]
ser = Series(np.arange(1, 6, dtype="int64"), index=index)
other = Series(np.arange(5, dtype="int64"), index=index)
result = ser - other
expected = Series(1, index=[2, 2, 3, 3, 4])
tm.assert_series_equal(result, expected)
# GH#8363
# datetime ops with a non-unique index
ser = Series(date_range("20130101 09:00:00", periods=5), index=index)
other = Series(date_range("20130101", periods=5), index=index)
result = ser - other
expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4])
tm.assert_series_equal(result, expected)
def test_masked_and_non_masked_propagate_na(self):
# GH#45810
ser1 = Series([0, np.nan], dtype="float")
ser2 = Series([0, 1], dtype="Int64")
result = ser1 * ser2
expected = Series([0, pd.NA], dtype="Float64")
tm.assert_series_equal(result, expected)
def test_mask_div_propagate_na_for_non_na_dtype(self):
# GH#42630
ser1 = Series([15, pd.NA, 5, 4], dtype="Int64")
ser2 = Series([15, 5, np.nan, 4])
result = ser1 / ser2
expected = Series([1.0, pd.NA, pd.NA, 1.0], dtype="Float64")
tm.assert_series_equal(result, expected)
result = ser2 / ser1
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("val, dtype", [(3, "Int64"), (3.5, "Float64")])
def test_add_list_to_masked_array(self, val, dtype):
# GH#22962
ser = Series([1, None, 3], dtype="Int64")
result = ser + [1, None, val]
expected = Series([2, None, 3 + val], dtype=dtype)
tm.assert_series_equal(result, expected)
result = [1, None, val] + ser
tm.assert_series_equal(result, expected)
def test_add_list_to_masked_array_boolean(self, request):
# GH#22962
warning = (
UserWarning
if request.node.callspec.id == "numexpr" and NUMEXPR_INSTALLED
else None
)
ser = Series([True, None, False], dtype="boolean")
with tm.assert_produces_warning(warning):
result = ser + [True, None, True]
expected = Series([True, None, True], dtype="boolean")
tm.assert_series_equal(result, expected)
with tm.assert_produces_warning(warning):
result = [True, None, True] + ser
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Comparisons
class TestSeriesFlexComparison:
@pytest.mark.parametrize("axis", [0, None, "index"])
def test_comparison_flex_basic(self, axis, comparison_op):
left = Series(np.random.default_rng(2).standard_normal(10))
right = Series(np.random.default_rng(2).standard_normal(10))
result = getattr(left, comparison_op.__name__)(right, axis=axis)
expected = comparison_op(left, right)
tm.assert_series_equal(result, expected)
def test_comparison_bad_axis(self, comparison_op):
left = Series(np.random.default_rng(2).standard_normal(10))
right = Series(np.random.default_rng(2).standard_normal(10))
msg = "No axis named 1 for object type"
with pytest.raises(ValueError, match=msg):
getattr(left, comparison_op.__name__)(right, axis=1)
@pytest.mark.parametrize(
"values, op",
[
([False, False, True, False], "eq"),
([True, True, False, True], "ne"),
([False, False, True, False], "le"),
([False, False, False, False], "lt"),
([False, True, True, False], "ge"),
([False, True, False, False], "gt"),
],
)
def test_comparison_flex_alignment(self, values, op):
left = Series([1, 3, 2], index=list("abc"))
right = Series([2, 2, 2], index=list("bcd"))
result = getattr(left, op)(right)
expected = Series(values, index=list("abcd"))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"values, op, fill_value",
[
([False, False, True, True], "eq", 2),
([True, True, False, False], "ne", 2),
([False, False, True, True], "le", 0),
([False, False, False, True], "lt", 0),
([True, True, True, False], "ge", 0),
([True, True, False, False], "gt", 0),
],
)
def test_comparison_flex_alignment_fill(self, values, op, fill_value):
left = Series([1, 3, 2], index=list("abc"))
right = Series([2, 2, 2], index=list("bcd"))
result = getattr(left, op)(right, fill_value=fill_value)
expected = Series(values, index=list("abcd"))
tm.assert_series_equal(result, expected)
class TestSeriesComparison:
def test_comparison_different_length(self):
a = Series(["a", "b", "c"])
b = Series(["b", "a"])
msg = "only compare identically-labeled Series"
with pytest.raises(ValueError, match=msg):
a < b
a = Series([1, 2])
b = Series([2, 3, 4])
with pytest.raises(ValueError, match=msg):
a == b
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_ser_flex_cmp_return_dtypes(self, opname):
# GH#15115
ser = Series([1, 3, 2], index=range(3))
const = 2
result = getattr(ser, opname)(const).dtypes
expected = np.dtype("bool")
assert result == expected
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_ser_flex_cmp_return_dtypes_empty(self, opname):
# GH#15115 empty Series case
ser = Series([1, 3, 2], index=range(3))
empty = ser.iloc[:0]
const = 2
result = getattr(empty, opname)(const).dtypes
expected = np.dtype("bool")
assert result == expected
@pytest.mark.parametrize(
"names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")]
)
def test_ser_cmp_result_names(self, names, comparison_op):
# datetime64 dtype
op = comparison_op
dti = date_range("1949-06-07 03:00:00", freq="h", periods=5, name=names[0])
ser = Series(dti).rename(names[1])
result = op(ser, dti)
assert result.name == names[2]
# datetime64tz dtype
dti = dti.tz_localize("US/Central")
dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize
ser = Series(dti).rename(names[1])
result = op(ser, dti)
assert result.name == names[2]
# timedelta64 dtype
tdi = dti - dti.shift(1)
ser = Series(tdi).rename(names[1])
result = op(ser, tdi)
assert result.name == names[2]
# interval dtype
if op in [operator.eq, operator.ne]:
# interval dtype comparisons not yet implemented
ii = pd.interval_range(start=0, periods=5, name=names[0])
ser = Series(ii).rename(names[1])
result = op(ser, ii)
assert result.name == names[2]
# categorical
if op in [operator.eq, operator.ne]:
# categorical dtype comparisons raise for inequalities
cidx = tdi.astype("category")
ser = Series(cidx).rename(names[1])
result = op(ser, cidx)
assert result.name == names[2]
def test_comparisons(self, using_infer_string):
s = Series(["a", "b", "c"])
s2 = Series([False, True, False])
# it works!
exp = Series([False, False, False])
if using_infer_string:
import pyarrow as pa
msg = "has no kernel"
# TODO(3.0) GH56008
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
s == s2
with tm.assert_produces_warning(
DeprecationWarning, match="comparison", check_stacklevel=False
):
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
s2 == s
else:
tm.assert_series_equal(s == s2, exp)
tm.assert_series_equal(s2 == s, exp)
# -----------------------------------------------------------------
# Categorical Dtype Comparisons
def test_categorical_comparisons(self):
# GH#8938
# allow equality comparisons
a = Series(list("abc"), dtype="category")
b = Series(list("abc"), dtype="object")
c = Series(["a", "b", "cc"], dtype="object")
d = Series(list("acb"), dtype="object")
e = Categorical(list("abc"))
f = Categorical(list("acb"))
# vs scalar
assert not (a == "a").all()
assert ((a != "a") == ~(a == "a")).all()
assert not ("a" == a).all()
assert (a == "a")[0]
assert ("a" == a)[0]
assert not ("a" != a)[0]
# vs list-like
assert (a == a).all()
assert not (a != a).all()
assert (a == list(a)).all()
assert (a == b).all()
assert (b == a).all()
assert ((~(a == b)) == (a != b)).all()
assert ((~(b == a)) == (b != a)).all()
assert not (a == c).all()
assert not (c == a).all()
assert not (a == d).all()
assert not (d == a).all()
# vs a cat-like
assert (a == e).all()
assert (e == a).all()
assert not (a == f).all()
assert not (f == a).all()
assert (~(a == e) == (a != e)).all()
assert (~(e == a) == (e != a)).all()
assert (~(a == f) == (a != f)).all()
assert (~(f == a) == (f != a)).all()
# non-equality is not comparable
msg = "can only compare equality or not"
with pytest.raises(TypeError, match=msg):
a < b
with pytest.raises(TypeError, match=msg):
b < a
with pytest.raises(TypeError, match=msg):
a > b
with pytest.raises(TypeError, match=msg):
b > a
def test_unequal_categorical_comparison_raises_type_error(self):
# unequal comparison should raise for unordered cats
cat = Series(Categorical(list("abc")))
msg = "can only compare equality or not"
with pytest.raises(TypeError, match=msg):
cat > "b"
cat = Series(Categorical(list("abc"), ordered=False))
with pytest.raises(TypeError, match=msg):
cat > "b"
# https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057
# and following comparisons with scalars not in categories should raise
# for unequal comps, but not for equal/not equal
cat = Series(Categorical(list("abc"), ordered=True))
msg = "Invalid comparison between dtype=category and str"
with pytest.raises(TypeError, match=msg):
cat < "d"
with pytest.raises(TypeError, match=msg):
cat > "d"
with pytest.raises(TypeError, match=msg):
"d" < cat
with pytest.raises(TypeError, match=msg):
"d" > cat
tm.assert_series_equal(cat == "d", Series([False, False, False]))
tm.assert_series_equal(cat != "d", Series([True, True, True]))
# -----------------------------------------------------------------
def test_comparison_tuples(self):
# GH#11339
# comparisons vs tuple
s = Series([(1, 1), (1, 2)])
result = s == (1, 2)
expected = Series([False, True])
tm.assert_series_equal(result, expected)
result = s != (1, 2)
expected = Series([True, False])
tm.assert_series_equal(result, expected)
result = s == (0, 0)
expected = Series([False, False])
tm.assert_series_equal(result, expected)
result = s != (0, 0)
expected = Series([True, True])
tm.assert_series_equal(result, expected)
s = Series([(1, 1), (1, 1)])
result = s == (1, 1)
expected = Series([True, True])
tm.assert_series_equal(result, expected)
result = s != (1, 1)
expected = Series([False, False])
tm.assert_series_equal(result, expected)
def test_comparison_frozenset(self):
ser = Series([frozenset([1]), frozenset([1, 2])])
result = ser == frozenset([1])
expected = Series([True, False])
tm.assert_series_equal(result, expected)
def test_comparison_operators_with_nas(self, comparison_op):
ser = Series(bdate_range("1/1/2000", periods=10), dtype=object)
ser[::2] = np.nan
# test that comparisons work
val = ser[5]
result = comparison_op(ser, val)
expected = comparison_op(ser.dropna(), val).reindex(ser.index)
msg = "Downcasting object dtype arrays"
with tm.assert_produces_warning(FutureWarning, match=msg):
if comparison_op is operator.ne:
expected = expected.fillna(True).astype(bool)
else:
expected = expected.fillna(False).astype(bool)
tm.assert_series_equal(result, expected)
def test_ne(self):
ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float)
expected = np.array([True, True, False, True, True])
tm.assert_numpy_array_equal(ts.index != 5, expected)
tm.assert_numpy_array_equal(~(ts.index == 5), expected)
@pytest.mark.parametrize(
"left, right",
[
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2], index=list("ABD"), name="x"),
),
(
Series([1, 2, 3], index=list("ABC"), name="x"),
Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
),
],
)
def test_comp_ops_df_compat(self, left, right, frame_or_series):
# GH 1134
# GH 50083 to clarify that index and columns must be identically labeled
if frame_or_series is not Series:
msg = (
rf"Can only compare identically-labeled \(both index and columns\) "
f"{frame_or_series.__name__} objects"
)
left = left.to_frame()
right = right.to_frame()
else:
msg = (
f"Can only compare identically-labeled {frame_or_series.__name__} "
f"objects"
)
with pytest.raises(ValueError, match=msg):
left == right
with pytest.raises(ValueError, match=msg):
right == left
with pytest.raises(ValueError, match=msg):
left != right
with pytest.raises(ValueError, match=msg):
right != left
with pytest.raises(ValueError, match=msg):
left < right
with pytest.raises(ValueError, match=msg):
right < left
def test_compare_series_interval_keyword(self):
# GH#25338
ser = Series(["IntervalA", "IntervalB", "IntervalC"])
result = ser == "IntervalA"
expected = Series([True, False, False])
tm.assert_series_equal(result, expected)
# ------------------------------------------------------------------
# Unsorted
# These arithmetic tests were previously in other files, eventually
# should be parametrized and put into tests.arithmetic
class TestTimeSeriesArithmetic:
def test_series_add_tz_mismatch_converts_to_utc(self):
rng = date_range("1/1/2011", periods=100, freq="h", tz="utc")
perm = np.random.default_rng(2).permutation(100)[:90]
ser1 = Series(
np.random.default_rng(2).standard_normal(90),
index=rng.take(perm).tz_convert("US/Eastern"),
)
perm = np.random.default_rng(2).permutation(100)[:90]
ser2 = Series(
np.random.default_rng(2).standard_normal(90),
index=rng.take(perm).tz_convert("Europe/Berlin"),
)
result = ser1 + ser2
uts1 = ser1.tz_convert("utc")
uts2 = ser2.tz_convert("utc")
expected = uts1 + uts2
# sort since input indexes are not equal
expected = expected.sort_index()
assert result.index.tz is timezone.utc
tm.assert_series_equal(result, expected)
def test_series_add_aware_naive_raises(self):
rng = date_range("1/1/2011", periods=10, freq="h")
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
ser_utc = ser.tz_localize("utc")
msg = "Cannot join tz-naive with tz-aware DatetimeIndex"
with pytest.raises(Exception, match=msg):
ser + ser_utc
with pytest.raises(Exception, match=msg):
ser_utc + ser
# TODO: belongs in tests/arithmetic?
def test_datetime_understood(self, unit):
# Ensures it doesn't fail to create the right series
# reported in issue#16726
series = Series(date_range("2012-01-01", periods=3, unit=unit))
offset = pd.offsets.DateOffset(days=6)
result = series - offset
exp_dti = pd.to_datetime(["2011-12-26", "2011-12-27", "2011-12-28"]).as_unit(
unit
)
expected = Series(exp_dti)
tm.assert_series_equal(result, expected)
def test_align_date_objects_with_datetimeindex(self):
rng = date_range("1/1/2000", periods=20)
ts = Series(np.random.default_rng(2).standard_normal(20), index=rng)
ts_slice = ts[5:]
ts2 = ts_slice.copy()
ts2.index = [x.date() for x in ts2.index]
result = ts + ts2
result2 = ts2 + ts
expected = ts + ts[5:]
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
class TestNamePreservation:
@pytest.mark.parametrize("box", [list, tuple, np.array, Index, Series, pd.array])
@pytest.mark.parametrize("flex", [True, False])
def test_series_ops_name_retention(self, flex, box, names, all_binary_operators):
# GH#33930 consistent name-retention
op = all_binary_operators
left = Series(range(10), name=names[0])
right = Series(range(10), name=names[1])
name = op.__name__.strip("_")
is_logical = name in ["and", "rand", "xor", "rxor", "or", "ror"]
msg = (
r"Logical ops \(and, or, xor\) between Pandas objects and "
"dtype-less sequences"
)
warn = None
if box in [list, tuple] and is_logical:
warn = FutureWarning
right = box(right)
if flex:
if is_logical:
# Series doesn't have these as flex methods
return
result = getattr(left, name)(right)
else:
# GH#37374 logical ops behaving as set ops deprecated
with tm.assert_produces_warning(warn, match=msg):
result = op(left, right)
assert isinstance(result, Series)
if box in [Index, Series]:
assert result.name is names[2] or result.name == names[2]
else:
assert result.name is names[0] or result.name == names[0]
def test_binop_maybe_preserve_name(self, datetime_series):
# names match, preserve
result = datetime_series * datetime_series
assert result.name == datetime_series.name
result = datetime_series.mul(datetime_series)
assert result.name == datetime_series.name
result = datetime_series * datetime_series[:-2]
assert result.name == datetime_series.name
# names don't match, don't preserve
cp = datetime_series.copy()
cp.name = "something else"
result = datetime_series + cp
assert result.name is None
result = datetime_series.add(cp)
assert result.name is None
ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"]
ops = ops + ["r" + op for op in ops]
for op in ops:
# names match, preserve
ser = datetime_series.copy()
result = getattr(ser, op)(ser)
assert result.name == datetime_series.name
# names don't match, don't preserve
cp = datetime_series.copy()
cp.name = "changed"
result = getattr(ser, op)(cp)
assert result.name is None
def test_scalarop_preserve_name(self, datetime_series):
result = datetime_series * 2
assert result.name == datetime_series.name
class TestInplaceOperations:
@pytest.mark.parametrize(
"dtype1, dtype2, dtype_expected, dtype_mul",
(
("Int64", "Int64", "Int64", "Int64"),
("float", "float", "float", "float"),
("Int64", "float", "Float64", "Float64"),
("Int64", "Float64", "Float64", "Float64"),
),
)
def test_series_inplace_ops(self, dtype1, dtype2, dtype_expected, dtype_mul):
# GH 37910
ser1 = Series([1], dtype=dtype1)
ser2 = Series([2], dtype=dtype2)
ser1 += ser2
expected = Series([3], dtype=dtype_expected)
tm.assert_series_equal(ser1, expected)
ser1 -= ser2
expected = Series([1], dtype=dtype_expected)
tm.assert_series_equal(ser1, expected)
ser1 *= ser2
expected = Series([2], dtype=dtype_mul)
tm.assert_series_equal(ser1, expected)
def test_none_comparison(request, series_with_simple_index):
series = series_with_simple_index
if len(series) < 1:
request.applymarker(
pytest.mark.xfail(reason="Test doesn't make sense on empty data")
)
# bug brought up by #1079
# changed from TypeError in 0.17.0
series.iloc[0] = np.nan
# noinspection PyComparisonWithNone
result = series == None # noqa: E711
assert not result.iat[0]
assert not result.iat[1]
# noinspection PyComparisonWithNone
result = series != None # noqa: E711
assert result.iat[0]
assert result.iat[1]
result = None == series # noqa: E711
assert not result.iat[0]
assert not result.iat[1]
result = None != series # noqa: E711
assert result.iat[0]
assert result.iat[1]
if lib.is_np_dtype(series.dtype, "M") or isinstance(series.dtype, DatetimeTZDtype):
# Following DatetimeIndex (and Timestamp) convention,
# inequality comparisons with Series[datetime64] raise
msg = "Invalid comparison"
with pytest.raises(TypeError, match=msg):
None > series
with pytest.raises(TypeError, match=msg):
series > None
else:
result = None > series
assert not result.iat[0]
assert not result.iat[1]
result = series < None
assert not result.iat[0]
assert not result.iat[1]
def test_series_varied_multiindex_alignment():
# GH 20414
s1 = Series(
range(8),
index=pd.MultiIndex.from_product(
[list("ab"), list("xy"), [1, 2]], names=["ab", "xy", "num"]
),
)
s2 = Series(
[1000 * i for i in range(1, 5)],
index=pd.MultiIndex.from_product([list("xy"), [1, 2]], names=["xy", "num"]),
)
result = s1.loc[pd.IndexSlice[["a"], :, :]] + s2
expected = Series(
[1000, 2001, 3002, 4003],
index=pd.MultiIndex.from_tuples(
[("a", "x", 1), ("a", "x", 2), ("a", "y", 1), ("a", "y", 2)],
names=["ab", "xy", "num"],
),
)
tm.assert_series_equal(result, expected)
def test_rmod_consistent_large_series():
# GH 29602
result = Series([2] * 10001).rmod(-1)
expected = Series([1] * 10001)
tm.assert_series_equal(result, expected)