You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
4.9 KiB
158 lines
4.9 KiB
6 months ago
|
"""
|
||
|
Tests for Series cumulative operations.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
tests.frame.test_cumulative
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
methods = {
|
||
|
"cumsum": np.cumsum,
|
||
|
"cumprod": np.cumprod,
|
||
|
"cummin": np.minimum.accumulate,
|
||
|
"cummax": np.maximum.accumulate,
|
||
|
}
|
||
|
|
||
|
|
||
|
class TestSeriesCumulativeOps:
|
||
|
@pytest.mark.parametrize("func", [np.cumsum, np.cumprod])
|
||
|
def test_datetime_series(self, datetime_series, func):
|
||
|
tm.assert_numpy_array_equal(
|
||
|
func(datetime_series).values,
|
||
|
func(np.array(datetime_series)),
|
||
|
check_dtype=True,
|
||
|
)
|
||
|
|
||
|
# with missing values
|
||
|
ts = datetime_series.copy()
|
||
|
ts[::2] = np.nan
|
||
|
|
||
|
result = func(ts)[1::2]
|
||
|
expected = func(np.array(ts.dropna()))
|
||
|
|
||
|
tm.assert_numpy_array_equal(result.values, expected, check_dtype=False)
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
||
|
def test_cummin_cummax(self, datetime_series, method):
|
||
|
ufunc = methods[method]
|
||
|
|
||
|
result = getattr(datetime_series, method)().values
|
||
|
expected = ufunc(np.array(datetime_series))
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
ts = datetime_series.copy()
|
||
|
ts[::2] = np.nan
|
||
|
result = getattr(ts, method)()[1::2]
|
||
|
expected = ufunc(ts.dropna())
|
||
|
|
||
|
result.index = result.index._with_freq(None)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ts",
|
||
|
[
|
||
|
pd.Timedelta(0),
|
||
|
pd.Timestamp("1999-12-31"),
|
||
|
pd.Timestamp("1999-12-31").tz_localize("US/Pacific"),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"method, skipna, exp_tdi",
|
||
|
[
|
||
|
["cummax", True, ["NaT", "2 days", "NaT", "2 days", "NaT", "3 days"]],
|
||
|
["cummin", True, ["NaT", "2 days", "NaT", "1 days", "NaT", "1 days"]],
|
||
|
[
|
||
|
"cummax",
|
||
|
False,
|
||
|
["NaT", "NaT", "NaT", "NaT", "NaT", "NaT"],
|
||
|
],
|
||
|
[
|
||
|
"cummin",
|
||
|
False,
|
||
|
["NaT", "NaT", "NaT", "NaT", "NaT", "NaT"],
|
||
|
],
|
||
|
],
|
||
|
)
|
||
|
def test_cummin_cummax_datetimelike(self, ts, method, skipna, exp_tdi):
|
||
|
# with ts==pd.Timedelta(0), we are testing td64; with naive Timestamp
|
||
|
# we are testing datetime64[ns]; with Timestamp[US/Pacific]
|
||
|
# we are testing dt64tz
|
||
|
tdi = pd.to_timedelta(["NaT", "2 days", "NaT", "1 days", "NaT", "3 days"])
|
||
|
ser = pd.Series(tdi + ts)
|
||
|
|
||
|
exp_tdi = pd.to_timedelta(exp_tdi)
|
||
|
expected = pd.Series(exp_tdi + ts)
|
||
|
result = getattr(ser, method)(skipna=skipna)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"func, exp",
|
||
|
[
|
||
|
("cummin", pd.Period("2012-1-1", freq="D")),
|
||
|
("cummax", pd.Period("2012-1-2", freq="D")),
|
||
|
],
|
||
|
)
|
||
|
def test_cummin_cummax_period(self, func, exp):
|
||
|
# GH#28385
|
||
|
ser = pd.Series(
|
||
|
[pd.Period("2012-1-1", freq="D"), pd.NaT, pd.Period("2012-1-2", freq="D")]
|
||
|
)
|
||
|
result = getattr(ser, func)(skipna=False)
|
||
|
expected = pd.Series([pd.Period("2012-1-1", freq="D"), pd.NaT, pd.NaT])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = getattr(ser, func)(skipna=True)
|
||
|
expected = pd.Series([pd.Period("2012-1-1", freq="D"), pd.NaT, exp])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"arg",
|
||
|
[
|
||
|
[False, False, False, True, True, False, False],
|
||
|
[False, False, False, False, False, False, False],
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"func", [lambda x: x, lambda x: ~x], ids=["identity", "inverse"]
|
||
|
)
|
||
|
@pytest.mark.parametrize("method", methods.keys())
|
||
|
def test_cummethods_bool(self, arg, func, method):
|
||
|
# GH#6270
|
||
|
# checking Series method vs the ufunc applied to the values
|
||
|
|
||
|
ser = func(pd.Series(arg))
|
||
|
ufunc = methods[method]
|
||
|
|
||
|
exp_vals = ufunc(ser.values)
|
||
|
expected = pd.Series(exp_vals)
|
||
|
|
||
|
result = getattr(ser, method)()
|
||
|
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method, expected",
|
||
|
[
|
||
|
["cumsum", pd.Series([0, 1, np.nan, 1], dtype=object)],
|
||
|
["cumprod", pd.Series([False, 0, np.nan, 0])],
|
||
|
["cummin", pd.Series([False, False, np.nan, False])],
|
||
|
["cummax", pd.Series([False, True, np.nan, True])],
|
||
|
],
|
||
|
)
|
||
|
def test_cummethods_bool_in_object_dtype(self, method, expected):
|
||
|
ser = pd.Series([False, True, np.nan, False])
|
||
|
result = getattr(ser, method)()
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_cumprod_timedelta(self):
|
||
|
# GH#48111
|
||
|
ser = pd.Series([pd.Timedelta(days=1), pd.Timedelta(days=3)])
|
||
|
with pytest.raises(TypeError, match="cumprod not supported for Timedelta"):
|
||
|
ser.cumprod()
|