You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
549 lines
20 KiB
549 lines
20 KiB
6 months ago
|
from datetime import datetime
|
||
|
import operator
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
Series,
|
||
|
bdate_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core import ops
|
||
|
|
||
|
|
||
|
class TestSeriesLogicalOps:
|
||
|
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
|
||
|
@pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor])
|
||
|
def test_bool_operators_with_nas(self, bool_op):
|
||
|
# boolean &, |, ^ should work with object arrays and propagate NAs
|
||
|
ser = Series(bdate_range("1/1/2000", periods=10), dtype=object)
|
||
|
ser[::2] = np.nan
|
||
|
|
||
|
mask = ser.isna()
|
||
|
filled = ser.fillna(ser[0])
|
||
|
|
||
|
result = bool_op(ser < ser[9], ser > ser[3])
|
||
|
|
||
|
expected = bool_op(filled < filled[9], filled > filled[3])
|
||
|
expected[mask] = False
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_logical_operators_bool_dtype_with_empty(self):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
index = list("bca")
|
||
|
|
||
|
s_tft = Series([True, False, True], index=index)
|
||
|
s_fff = Series([False, False, False], index=index)
|
||
|
s_empty = Series([], dtype=object)
|
||
|
|
||
|
res = s_tft & s_empty
|
||
|
expected = s_fff.sort_index()
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
res = s_tft | s_empty
|
||
|
expected = s_tft.sort_index()
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_int_dtype(self):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
|
||
|
s_0123 = Series(range(4), dtype="int64")
|
||
|
s_3333 = Series([3] * 4)
|
||
|
s_4444 = Series([4] * 4)
|
||
|
|
||
|
res = s_0123 & s_3333
|
||
|
expected = Series(range(4), dtype="int64")
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
res = s_0123 | s_4444
|
||
|
expected = Series(range(4, 8), dtype="int64")
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
s_1111 = Series([1] * 4, dtype="int8")
|
||
|
res = s_0123 & s_1111
|
||
|
expected = Series([0, 1, 0, 1], dtype="int64")
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
res = s_0123.astype(np.int16) | s_1111.astype(np.int32)
|
||
|
expected = Series([1, 1, 3, 3], dtype="int32")
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_int_scalar(self):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
s_0123 = Series(range(4), dtype="int64")
|
||
|
|
||
|
res = s_0123 & 0
|
||
|
expected = Series([0] * 4)
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
res = s_0123 & 1
|
||
|
expected = Series([0, 1, 0, 1])
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_float(self):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
s_0123 = Series(range(4), dtype="int64")
|
||
|
|
||
|
warn_msg = (
|
||
|
r"Logical ops \(and, or, xor\) between Pandas objects and "
|
||
|
"dtype-less sequences"
|
||
|
)
|
||
|
|
||
|
msg = "Cannot perform.+with a dtyped.+array and scalar of type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s_0123 & np.nan
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s_0123 & 3.14
|
||
|
msg = "unsupported operand type.+for &:"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
||
|
s_0123 & [0.1, 4, 3.14, 2]
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s_0123 & np.array([0.1, 4, 3.14, 2])
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s_0123 & Series([0.1, 4, -3.14, 2])
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_str(self):
|
||
|
s_1111 = Series([1] * 4, dtype="int8")
|
||
|
|
||
|
warn_msg = (
|
||
|
r"Logical ops \(and, or, xor\) between Pandas objects and "
|
||
|
"dtype-less sequences"
|
||
|
)
|
||
|
|
||
|
msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s_1111 & "a"
|
||
|
with pytest.raises(TypeError, match="unsupported operand.+for &"):
|
||
|
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
||
|
s_1111 & ["a", "b", "c", "d"]
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_bool(self):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
s_0123 = Series(range(4), dtype="int64")
|
||
|
|
||
|
expected = Series([False] * 4)
|
||
|
|
||
|
result = s_0123 & False
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
warn_msg = (
|
||
|
r"Logical ops \(and, or, xor\) between Pandas objects and "
|
||
|
"dtype-less sequences"
|
||
|
)
|
||
|
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
||
|
result = s_0123 & [False]
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
||
|
result = s_0123 & (False,)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s_0123 ^ False
|
||
|
expected = Series([False, True, True, True])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_object(self, using_infer_string):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
s_0123 = Series(range(4), dtype="int64")
|
||
|
|
||
|
result = s_0123 & Series([False, np.nan, False, False])
|
||
|
expected = Series([False] * 4)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
s_abNd = Series(["a", "b", np.nan, "d"])
|
||
|
if using_infer_string:
|
||
|
import pyarrow as pa
|
||
|
|
||
|
with pytest.raises(pa.lib.ArrowNotImplementedError, match="has no kernel"):
|
||
|
s_0123 & s_abNd
|
||
|
else:
|
||
|
with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"):
|
||
|
s_0123 & s_abNd
|
||
|
|
||
|
def test_logical_operators_bool_dtype_with_int(self):
|
||
|
index = list("bca")
|
||
|
|
||
|
s_tft = Series([True, False, True], index=index)
|
||
|
s_fff = Series([False, False, False], index=index)
|
||
|
|
||
|
res = s_tft & 0
|
||
|
expected = s_fff
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
res = s_tft & 1
|
||
|
expected = s_tft
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
def test_logical_ops_bool_dtype_with_ndarray(self):
|
||
|
# make sure we operate on ndarray the same as Series
|
||
|
left = Series([True, True, True, False, True])
|
||
|
right = [True, False, None, True, np.nan]
|
||
|
|
||
|
msg = (
|
||
|
r"Logical ops \(and, or, xor\) between Pandas objects and "
|
||
|
"dtype-less sequences"
|
||
|
)
|
||
|
|
||
|
expected = Series([True, False, False, False, False])
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = left & right
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left & np.array(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left & Index(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left & Series(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series([True, True, True, True, True])
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = left | right
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left | np.array(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left | Index(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left | Series(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series([False, True, True, True, True])
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = left ^ right
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left ^ np.array(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left ^ Index(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = left ^ Series(right)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self):
|
||
|
# GH#9016: support bitwise op for integer types
|
||
|
|
||
|
index = list("bca")
|
||
|
|
||
|
s_tft = Series([True, False, True], index=index)
|
||
|
s_tft = Series([True, False, True], index=index)
|
||
|
s_tff = Series([True, False, False], index=index)
|
||
|
|
||
|
s_0123 = Series(range(4), dtype="int64")
|
||
|
|
||
|
# s_0123 will be all false now because of reindexing like s_tft
|
||
|
expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"])
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
result = s_tft & s_0123
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# GH 52538: Deprecate casting to object type when reindex is needed;
|
||
|
# matches DataFrame behavior
|
||
|
expected = Series([False] * 7, index=[0, 1, 2, 3, "a", "b", "c"])
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
result = s_0123 & s_tft
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
s_a0b1c0 = Series([1], list("b"))
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
res = s_tft & s_a0b1c0
|
||
|
expected = s_tff.reindex(list("abc"))
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
res = s_tft | s_a0b1c0
|
||
|
expected = s_tft.reindex(list("abc"))
|
||
|
tm.assert_series_equal(res, expected)
|
||
|
|
||
|
def test_scalar_na_logical_ops_corners(self):
|
||
|
s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10])
|
||
|
|
||
|
msg = "Cannot perform.+with a dtyped.+array and scalar of type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s & datetime(2005, 1, 1)
|
||
|
|
||
|
s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)])
|
||
|
s[::2] = np.nan
|
||
|
|
||
|
expected = Series(True, index=s.index)
|
||
|
expected[::2] = False
|
||
|
|
||
|
msg = (
|
||
|
r"Logical ops \(and, or, xor\) between Pandas objects and "
|
||
|
"dtype-less sequences"
|
||
|
)
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = s & list(s)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_scalar_na_logical_ops_corners_aligns(self):
|
||
|
s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)])
|
||
|
s[::2] = np.nan
|
||
|
d = DataFrame({"A": s})
|
||
|
|
||
|
expected = DataFrame(False, index=range(9), columns=["A"] + list(range(9)))
|
||
|
|
||
|
result = s & d
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = d & s
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("op", [operator.and_, operator.or_, operator.xor])
|
||
|
def test_logical_ops_with_index(self, op):
|
||
|
# GH#22092, GH#19792
|
||
|
ser = Series([True, True, False, False])
|
||
|
idx1 = Index([True, False, True, False])
|
||
|
idx2 = Index([1, 0, 1, 0])
|
||
|
|
||
|
expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))])
|
||
|
|
||
|
result = op(ser, idx1)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool)
|
||
|
|
||
|
result = op(ser, idx2)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_reversed_xor_with_index_returns_series(self):
|
||
|
# GH#22092, GH#19792 pre-2.0 these were aliased to setops
|
||
|
ser = Series([True, True, False, False])
|
||
|
idx1 = Index([True, False, True, False], dtype=bool)
|
||
|
idx2 = Index([1, 0, 1, 0])
|
||
|
|
||
|
expected = Series([False, True, True, False])
|
||
|
result = idx1 ^ ser
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = idx2 ^ ser
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"op",
|
||
|
[
|
||
|
ops.rand_,
|
||
|
ops.ror_,
|
||
|
],
|
||
|
)
|
||
|
def test_reversed_logical_op_with_index_returns_series(self, op):
|
||
|
# GH#22092, GH#19792
|
||
|
ser = Series([True, True, False, False])
|
||
|
idx1 = Index([True, False, True, False])
|
||
|
idx2 = Index([1, 0, 1, 0])
|
||
|
|
||
|
expected = Series(op(idx1.values, ser.values))
|
||
|
result = op(ser, idx1)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = op(ser, Series(idx2))
|
||
|
result = op(ser, idx2)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"op, expected",
|
||
|
[
|
||
|
(ops.rand_, Series([False, False])),
|
||
|
(ops.ror_, Series([True, True])),
|
||
|
(ops.rxor, Series([True, True])),
|
||
|
],
|
||
|
)
|
||
|
def test_reverse_ops_with_index(self, op, expected):
|
||
|
# https://github.com/pandas-dev/pandas/pull/23628
|
||
|
# multi-set Index ops are buggy, so let's avoid duplicates...
|
||
|
# GH#49503
|
||
|
ser = Series([True, False])
|
||
|
idx = Index([False, True])
|
||
|
|
||
|
result = op(ser, idx)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_logical_ops_label_based(self, using_infer_string):
|
||
|
# GH#4947
|
||
|
# logical ops should be label based
|
||
|
|
||
|
a = Series([True, False, True], list("bca"))
|
||
|
b = Series([False, True, False], list("abc"))
|
||
|
|
||
|
expected = Series([False, True, False], list("abc"))
|
||
|
result = a & b
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series([True, True, False], list("abc"))
|
||
|
result = a | b
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series([True, False, False], list("abc"))
|
||
|
result = a ^ b
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# rhs is bigger
|
||
|
a = Series([True, False, True], list("bca"))
|
||
|
b = Series([False, True, False, True], list("abcd"))
|
||
|
|
||
|
expected = Series([False, True, False, False], list("abcd"))
|
||
|
result = a & b
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series([True, True, False, False], list("abcd"))
|
||
|
result = a | b
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# filling
|
||
|
|
||
|
# vs empty
|
||
|
empty = Series([], dtype=object)
|
||
|
|
||
|
result = a & empty.copy()
|
||
|
expected = Series([False, False, False], list("abc"))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = a | empty.copy()
|
||
|
expected = Series([True, True, False], list("abc"))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# vs non-matching
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
result = a & Series([1], ["z"])
|
||
|
expected = Series([False, False, False, False], list("abcz"))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
result = a | Series([1], ["z"])
|
||
|
expected = Series([True, True, False, False], list("abcz"))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# identity
|
||
|
# we would like s[s|e] == s to hold for any e, whether empty or not
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
for e in [
|
||
|
empty.copy(),
|
||
|
Series([1], ["z"]),
|
||
|
Series(np.nan, b.index),
|
||
|
Series(np.nan, a.index),
|
||
|
]:
|
||
|
result = a[a | e]
|
||
|
tm.assert_series_equal(result, a[a])
|
||
|
|
||
|
for e in [Series(["z"])]:
|
||
|
warn = FutureWarning if using_infer_string else None
|
||
|
if using_infer_string:
|
||
|
import pyarrow as pa
|
||
|
|
||
|
with tm.assert_produces_warning(warn, match="Operation between non"):
|
||
|
with pytest.raises(
|
||
|
pa.lib.ArrowNotImplementedError, match="has no kernel"
|
||
|
):
|
||
|
result = a[a | e]
|
||
|
else:
|
||
|
result = a[a | e]
|
||
|
tm.assert_series_equal(result, a[a])
|
||
|
|
||
|
# vs scalars
|
||
|
index = list("bca")
|
||
|
t = Series([True, False, True])
|
||
|
|
||
|
for v in [True, 1, 2]:
|
||
|
result = Series([True, False, True], index=index) | v
|
||
|
expected = Series([True, True, True], index=index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
msg = "Cannot perform.+with a dtyped.+array and scalar of type"
|
||
|
for v in [np.nan, "foo"]:
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
t | v
|
||
|
|
||
|
for v in [False, 0]:
|
||
|
result = Series([True, False, True], index=index) | v
|
||
|
expected = Series([True, False, True], index=index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
for v in [True, 1]:
|
||
|
result = Series([True, False, True], index=index) & v
|
||
|
expected = Series([True, False, True], index=index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
for v in [False, 0]:
|
||
|
result = Series([True, False, True], index=index) & v
|
||
|
expected = Series([False, False, False], index=index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
msg = "Cannot perform.+with a dtyped.+array and scalar of type"
|
||
|
for v in [np.nan]:
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
t & v
|
||
|
|
||
|
def test_logical_ops_df_compat(self):
|
||
|
# GH#1134
|
||
|
s1 = Series([True, False, True], index=list("ABC"), name="x")
|
||
|
s2 = Series([True, True, False], index=list("ABD"), name="x")
|
||
|
|
||
|
exp = Series([True, False, False, False], index=list("ABCD"), name="x")
|
||
|
tm.assert_series_equal(s1 & s2, exp)
|
||
|
tm.assert_series_equal(s2 & s1, exp)
|
||
|
|
||
|
# True | np.nan => True
|
||
|
exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x")
|
||
|
tm.assert_series_equal(s1 | s2, exp_or1)
|
||
|
# np.nan | True => np.nan, filled with False
|
||
|
exp_or = Series([True, True, False, False], index=list("ABCD"), name="x")
|
||
|
tm.assert_series_equal(s2 | s1, exp_or)
|
||
|
|
||
|
# DataFrame doesn't fill nan with False
|
||
|
tm.assert_frame_equal(s1.to_frame() & s2.to_frame(), exp.to_frame())
|
||
|
tm.assert_frame_equal(s2.to_frame() & s1.to_frame(), exp.to_frame())
|
||
|
|
||
|
exp = DataFrame({"x": [True, True, np.nan, np.nan]}, index=list("ABCD"))
|
||
|
tm.assert_frame_equal(s1.to_frame() | s2.to_frame(), exp_or1.to_frame())
|
||
|
tm.assert_frame_equal(s2.to_frame() | s1.to_frame(), exp_or.to_frame())
|
||
|
|
||
|
# different length
|
||
|
s3 = Series([True, False, True], index=list("ABC"), name="x")
|
||
|
s4 = Series([True, True, True, True], index=list("ABCD"), name="x")
|
||
|
|
||
|
exp = Series([True, False, True, False], index=list("ABCD"), name="x")
|
||
|
tm.assert_series_equal(s3 & s4, exp)
|
||
|
tm.assert_series_equal(s4 & s3, exp)
|
||
|
|
||
|
# np.nan | True => np.nan, filled with False
|
||
|
exp_or1 = Series([True, True, True, False], index=list("ABCD"), name="x")
|
||
|
tm.assert_series_equal(s3 | s4, exp_or1)
|
||
|
# True | np.nan => True
|
||
|
exp_or = Series([True, True, True, True], index=list("ABCD"), name="x")
|
||
|
tm.assert_series_equal(s4 | s3, exp_or)
|
||
|
|
||
|
tm.assert_frame_equal(s3.to_frame() & s4.to_frame(), exp.to_frame())
|
||
|
tm.assert_frame_equal(s4.to_frame() & s3.to_frame(), exp.to_frame())
|
||
|
|
||
|
tm.assert_frame_equal(s3.to_frame() | s4.to_frame(), exp_or1.to_frame())
|
||
|
tm.assert_frame_equal(s4.to_frame() | s3.to_frame(), exp_or.to_frame())
|
||
|
|
||
|
@pytest.mark.xfail(reason="Will pass once #52839 deprecation is enforced")
|
||
|
def test_int_dtype_different_index_not_bool(self):
|
||
|
# GH 52500
|
||
|
ser1 = Series([1, 2, 3], index=[10, 11, 23], name="a")
|
||
|
ser2 = Series([10, 20, 30], index=[11, 10, 23], name="a")
|
||
|
result = np.bitwise_xor(ser1, ser2)
|
||
|
expected = Series([21, 8, 29], index=[10, 11, 23], name="a")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = ser1 ^ ser2
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_pyarrow_numpy_string_invalid(self):
|
||
|
# GH#56008
|
||
|
pytest.importorskip("pyarrow")
|
||
|
ser = Series([False, True])
|
||
|
ser2 = Series(["a", "b"], dtype="string[pyarrow_numpy]")
|
||
|
result = ser == ser2
|
||
|
expected = Series(False, index=ser.index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = ser != ser2
|
||
|
expected = Series(True, index=ser.index)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match="Invalid comparison"):
|
||
|
ser > ser2
|