from datetime import datetime import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.compat import ( is_ci_environment, is_platform_windows, ) from pandas.compat.numpy import np_version_lt1p23 import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.core.interchange.column import PandasColumn from pandas.core.interchange.dataframe_protocol import ( ColumnNullType, DtypeKind, ) from pandas.core.interchange.from_dataframe import from_dataframe from pandas.core.interchange.utils import ArrowCTypes @pytest.fixture def data_categorical(): return { "ordered": pd.Categorical(list("testdata") * 30, ordered=True), "unordered": pd.Categorical(list("testdata") * 30, ordered=False), } @pytest.fixture def string_data(): return { "separator data": [ "abC|DeF,Hik", "234,3245.67", "gSaf,qWer|Gre", "asd3,4sad|", np.nan, ] } @pytest.mark.parametrize("data", [("ordered", True), ("unordered", False)]) def test_categorical_dtype(data, data_categorical): df = pd.DataFrame({"A": (data_categorical[data[0]])}) col = df.__dataframe__().get_column_by_name("A") assert col.dtype[0] == DtypeKind.CATEGORICAL assert col.null_count == 0 assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1) assert col.num_chunks() == 1 desc_cat = col.describe_categorical assert desc_cat["is_ordered"] == data[1] assert desc_cat["is_dictionary"] is True assert isinstance(desc_cat["categories"], PandasColumn) tm.assert_series_equal( desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"]) ) tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) def test_categorical_pyarrow(): # GH 49889 pa = pytest.importorskip("pyarrow", "11.0.0") arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"] table = pa.table({"weekday": pa.array(arr).dictionary_encode()}) exchange_df = table.__dataframe__() result = from_dataframe(exchange_df) weekday = pd.Categorical( arr, categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] ) expected = pd.DataFrame({"weekday": weekday}) tm.assert_frame_equal(result, expected) def test_empty_categorical_pyarrow(): # https://github.com/pandas-dev/pandas/issues/53077 pa = pytest.importorskip("pyarrow", "11.0.0") arr = [None] table = pa.table({"arr": pa.array(arr, "float64").dictionary_encode()}) exchange_df = table.__dataframe__() result = pd.api.interchange.from_dataframe(exchange_df) expected = pd.DataFrame({"arr": pd.Categorical([np.nan])}) tm.assert_frame_equal(result, expected) def test_large_string_pyarrow(): # GH 52795 pa = pytest.importorskip("pyarrow", "11.0.0") arr = ["Mon", "Tue"] table = pa.table({"weekday": pa.array(arr, "large_string")}) exchange_df = table.__dataframe__() result = from_dataframe(exchange_df) expected = pd.DataFrame({"weekday": ["Mon", "Tue"]}) tm.assert_frame_equal(result, expected) # check round-trip assert pa.Table.equals(pa.interchange.from_dataframe(result), table) @pytest.mark.parametrize( ("offset", "length", "expected_values"), [ (0, None, [3.3, float("nan"), 2.1]), (1, None, [float("nan"), 2.1]), (2, None, [2.1]), (0, 2, [3.3, float("nan")]), (0, 1, [3.3]), (1, 1, [float("nan")]), ], ) def test_bitmasks_pyarrow(offset, length, expected_values): # GH 52795 pa = pytest.importorskip("pyarrow", "11.0.0") arr = [3.3, None, 2.1] table = pa.table({"arr": arr}).slice(offset, length) exchange_df = table.__dataframe__() result = from_dataframe(exchange_df) expected = pd.DataFrame({"arr": expected_values}) tm.assert_frame_equal(result, expected) # check round-trip assert pa.Table.equals(pa.interchange.from_dataframe(result), table) @pytest.mark.parametrize( "data", [ lambda: np.random.default_rng(2).integers(-100, 100), lambda: np.random.default_rng(2).integers(1, 100), lambda: np.random.default_rng(2).random(), lambda: np.random.default_rng(2).choice([True, False]), lambda: datetime( year=np.random.default_rng(2).integers(1900, 2100), month=np.random.default_rng(2).integers(1, 12), day=np.random.default_rng(2).integers(1, 20), ), ], ) def test_dataframe(data): NCOLS, NROWS = 10, 20 data = { f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [data() for _ in range(NROWS)] for i in range(NCOLS) } df = pd.DataFrame(data) df2 = df.__dataframe__() assert df2.num_columns() == NCOLS assert df2.num_rows() == NROWS assert list(df2.column_names()) == list(data.keys()) indices = (0, 2) names = tuple(list(data.keys())[idx] for idx in indices) result = from_dataframe(df2.select_columns(indices)) expected = from_dataframe(df2.select_columns_by_name(names)) tm.assert_frame_equal(result, expected) assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list) assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list) def test_missing_from_masked(): df = pd.DataFrame( { "x": np.array([1.0, 2.0, 3.0, 4.0, 0.0]), "y": np.array([1.5, 2.5, 3.5, 4.5, 0]), "z": np.array([1.0, 0.0, 1.0, 1.0, 1.0]), } ) rng = np.random.default_rng(2) dict_null = {col: rng.integers(low=0, high=len(df)) for col in df.columns} for col, num_nulls in dict_null.items(): null_idx = df.index[ rng.choice(np.arange(len(df)), size=num_nulls, replace=False) ] df.loc[null_idx, col] = None df2 = df.__dataframe__() assert df2.get_column_by_name("x").null_count == dict_null["x"] assert df2.get_column_by_name("y").null_count == dict_null["y"] assert df2.get_column_by_name("z").null_count == dict_null["z"] @pytest.mark.parametrize( "data", [ {"x": [1.5, 2.5, 3.5], "y": [9.2, 10.5, 11.8]}, {"x": [1, 2, 0], "y": [9.2, 10.5, 11.8]}, { "x": np.array([True, True, False]), "y": np.array([1, 2, 0]), "z": np.array([9.2, 10.5, 11.8]), }, ], ) def test_mixed_data(data): df = pd.DataFrame(data) df2 = df.__dataframe__() for col_name in df.columns: assert df2.get_column_by_name(col_name).null_count == 0 def test_mixed_missing(): df = pd.DataFrame( { "x": np.array([True, None, False, None, True]), "y": np.array([None, 2, None, 1, 2]), "z": np.array([9.2, 10.5, None, 11.8, None]), } ) df2 = df.__dataframe__() for col_name in df.columns: assert df2.get_column_by_name(col_name).null_count == 2 def test_string(string_data): test_str_data = string_data["separator data"] + [""] df = pd.DataFrame({"A": test_str_data}) col = df.__dataframe__().get_column_by_name("A") assert col.size() == 6 assert col.null_count == 1 assert col.dtype[0] == DtypeKind.STRING assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0) df_sliced = df[1:] col = df_sliced.__dataframe__().get_column_by_name("A") assert col.size() == 5 assert col.null_count == 1 assert col.dtype[0] == DtypeKind.STRING assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0) def test_nonstring_object(): df = pd.DataFrame({"A": ["a", 10, 1.0, ()]}) col = df.__dataframe__().get_column_by_name("A") with pytest.raises(NotImplementedError, match="not supported yet"): col.dtype def test_datetime(): df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]}) col = df.__dataframe__().get_column_by_name("A") assert col.size() == 2 assert col.null_count == 1 assert col.dtype[0] == DtypeKind.DATETIME assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT) tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) @pytest.mark.skipif(np_version_lt1p23, reason="Numpy > 1.23 required") def test_categorical_to_numpy_dlpack(): # https://github.com/pandas-dev/pandas/issues/48393 df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])}) col = df.__dataframe__().get_column_by_name("A") result = np.from_dlpack(col.get_buffers()["data"][0]) expected = np.array([0, 1, 0], dtype="int8") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("data", [{}, {"a": []}]) def test_empty_pyarrow(data): # GH 53155 pytest.importorskip("pyarrow", "11.0.0") from pyarrow.interchange import from_dataframe as pa_from_dataframe expected = pd.DataFrame(data) arrow_df = pa_from_dataframe(expected) result = from_dataframe(arrow_df) tm.assert_frame_equal(result, expected) def test_multi_chunk_pyarrow() -> None: pa = pytest.importorskip("pyarrow", "11.0.0") n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) names = ["n_legs"] table = pa.table([n_legs], names=names) with pytest.raises( RuntimeError, match="To join chunks a copy is required which is " "forbidden by allow_copy=False", ): pd.api.interchange.from_dataframe(table, allow_copy=False) @pytest.mark.parametrize("tz", ["UTC", "US/Pacific"]) @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_datetimetzdtype(tz, unit): # GH 54239 tz_data = ( pd.date_range("2018-01-01", periods=5, freq="D").tz_localize(tz).as_unit(unit) ) df = pd.DataFrame({"ts_tz": tz_data}) tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) def test_interchange_from_non_pandas_tz_aware(request): # GH 54239, 54287 pa = pytest.importorskip("pyarrow", "11.0.0") import pyarrow.compute as pc if is_platform_windows() and is_ci_environment(): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( "TODO: Set ARROW_TIMEZONE_DATABASE environment variable " "on CI to path to the tzdata for pyarrow." ), ) request.applymarker(mark) arr = pa.array([datetime(2020, 1, 1), None, datetime(2020, 1, 2)]) arr = pc.assume_timezone(arr, "Asia/Kathmandu") table = pa.table({"arr": arr}) exchange_df = table.__dataframe__() result = from_dataframe(exchange_df) expected = pd.DataFrame( ["2020-01-01 00:00:00+05:45", "NaT", "2020-01-02 00:00:00+05:45"], columns=["arr"], dtype="datetime64[us, Asia/Kathmandu]", ) tm.assert_frame_equal(expected, result) def test_interchange_from_corrected_buffer_dtypes(monkeypatch) -> None: # https://github.com/pandas-dev/pandas/issues/54781 df = pd.DataFrame({"a": ["foo", "bar"]}).__dataframe__() interchange = df.__dataframe__() column = interchange.get_column_by_name("a") buffers = column.get_buffers() buffers_data = buffers["data"] buffer_dtype = buffers_data[1] buffer_dtype = ( DtypeKind.UINT, 8, ArrowCTypes.UINT8, buffer_dtype[3], ) buffers["data"] = (buffers_data[0], buffer_dtype) column.get_buffers = lambda: buffers interchange.get_column_by_name = lambda _: column monkeypatch.setattr(df, "__dataframe__", lambda allow_copy: interchange) pd.api.interchange.from_dataframe(df) def test_empty_string_column(): # https://github.com/pandas-dev/pandas/issues/56703 df = pd.DataFrame({"a": []}, dtype=str) df2 = df.__dataframe__() result = pd.api.interchange.from_dataframe(df2) tm.assert_frame_equal(df, result) def test_large_string(): # GH#56702 pytest.importorskip("pyarrow") df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]") result = pd.api.interchange.from_dataframe(df.__dataframe__()) expected = pd.DataFrame({"a": ["x"]}, dtype="object") tm.assert_frame_equal(result, expected) def test_non_str_names(): # https://github.com/pandas-dev/pandas/issues/56701 df = pd.Series([1, 2, 3], name=0).to_frame() names = df.__dataframe__().column_names() assert names == ["0"] def test_non_str_names_w_duplicates(): # https://github.com/pandas-dev/pandas/issues/56701 df = pd.DataFrame({"0": [1, 2, 3], 0: [4, 5, 6]}) dfi = df.__dataframe__() with pytest.raises( TypeError, match=( "Expected a Series, got a DataFrame. This likely happened because you " "called __dataframe__ on a DataFrame which, after converting column " r"names to string, resulted in duplicated names: Index\(\['0', '0'\], " r"dtype='object'\). Please rename these columns before using the " "interchange protocol." ), ): pd.api.interchange.from_dataframe(dfi, allow_copy=False) @pytest.mark.parametrize( "dtype", ["Int8", pytest.param("Int8[pyarrow]", marks=td.skip_if_no("pyarrow"))] ) def test_nullable_integers(dtype: str) -> None: # https://github.com/pandas-dev/pandas/issues/55069 df = pd.DataFrame({"a": [1]}, dtype=dtype) expected = pd.DataFrame({"a": [1]}, dtype="int8") result = pd.api.interchange.from_dataframe(df.__dataframe__()) tm.assert_frame_equal(result, expected) def test_empty_dataframe(): # https://github.com/pandas-dev/pandas/issues/56700 df = pd.DataFrame({"a": []}, dtype="int8") dfi = df.__dataframe__() result = pd.api.interchange.from_dataframe(dfi, allow_copy=False) expected = pd.DataFrame({"a": []}, dtype="int8") tm.assert_frame_equal(result, expected)