You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
7.1 KiB
217 lines
7.1 KiB
import numbers
|
|
import operator
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_, assert_equal, assert_raises
|
|
|
|
|
|
# NOTE: This class should be kept as an exact copy of the example from the
|
|
# docstring for NDArrayOperatorsMixin.
|
|
|
|
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
|
|
def __init__(self, value):
|
|
self.value = np.asarray(value)
|
|
|
|
# One might also consider adding the built-in list type to this
|
|
# list, to support operations like np.add(array_like, list)
|
|
_HANDLED_TYPES = (np.ndarray, numbers.Number)
|
|
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
|
out = kwargs.get('out', ())
|
|
for x in inputs + out:
|
|
# Only support operations with instances of _HANDLED_TYPES.
|
|
# Use ArrayLike instead of type(self) for isinstance to
|
|
# allow subclasses that don't override __array_ufunc__ to
|
|
# handle ArrayLike objects.
|
|
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
|
|
return NotImplemented
|
|
|
|
# Defer to the implementation of the ufunc on unwrapped values.
|
|
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
|
|
for x in inputs)
|
|
if out:
|
|
kwargs['out'] = tuple(
|
|
x.value if isinstance(x, ArrayLike) else x
|
|
for x in out)
|
|
result = getattr(ufunc, method)(*inputs, **kwargs)
|
|
|
|
if type(result) is tuple:
|
|
# multiple return values
|
|
return tuple(type(self)(x) for x in result)
|
|
elif method == 'at':
|
|
# no return value
|
|
return None
|
|
else:
|
|
# one return value
|
|
return type(self)(result)
|
|
|
|
def __repr__(self):
|
|
return '%s(%r)' % (type(self).__name__, self.value)
|
|
|
|
|
|
def wrap_array_like(result):
|
|
if type(result) is tuple:
|
|
return tuple(ArrayLike(r) for r in result)
|
|
else:
|
|
return ArrayLike(result)
|
|
|
|
|
|
def _assert_equal_type_and_value(result, expected, err_msg=None):
|
|
assert_equal(type(result), type(expected), err_msg=err_msg)
|
|
if isinstance(result, tuple):
|
|
assert_equal(len(result), len(expected), err_msg=err_msg)
|
|
for result_item, expected_item in zip(result, expected):
|
|
_assert_equal_type_and_value(result_item, expected_item, err_msg)
|
|
else:
|
|
assert_equal(result.value, expected.value, err_msg=err_msg)
|
|
assert_equal(getattr(result.value, 'dtype', None),
|
|
getattr(expected.value, 'dtype', None), err_msg=err_msg)
|
|
|
|
|
|
_ALL_BINARY_OPERATORS = [
|
|
operator.lt,
|
|
operator.le,
|
|
operator.eq,
|
|
operator.ne,
|
|
operator.gt,
|
|
operator.ge,
|
|
operator.add,
|
|
operator.sub,
|
|
operator.mul,
|
|
operator.truediv,
|
|
operator.floordiv,
|
|
operator.mod,
|
|
divmod,
|
|
pow,
|
|
operator.lshift,
|
|
operator.rshift,
|
|
operator.and_,
|
|
operator.xor,
|
|
operator.or_,
|
|
]
|
|
|
|
|
|
class TestNDArrayOperatorsMixin:
|
|
|
|
def test_array_like_add(self):
|
|
|
|
def check(result):
|
|
_assert_equal_type_and_value(result, ArrayLike(0))
|
|
|
|
check(ArrayLike(0) + 0)
|
|
check(0 + ArrayLike(0))
|
|
|
|
check(ArrayLike(0) + np.array(0))
|
|
check(np.array(0) + ArrayLike(0))
|
|
|
|
check(ArrayLike(np.array(0)) + 0)
|
|
check(0 + ArrayLike(np.array(0)))
|
|
|
|
check(ArrayLike(np.array(0)) + np.array(0))
|
|
check(np.array(0) + ArrayLike(np.array(0)))
|
|
|
|
def test_inplace(self):
|
|
array_like = ArrayLike(np.array([0]))
|
|
array_like += 1
|
|
_assert_equal_type_and_value(array_like, ArrayLike(np.array([1])))
|
|
|
|
array = np.array([0])
|
|
array += ArrayLike(1)
|
|
_assert_equal_type_and_value(array, ArrayLike(np.array([1])))
|
|
|
|
def test_opt_out(self):
|
|
|
|
class OptOut:
|
|
"""Object that opts out of __array_ufunc__."""
|
|
__array_ufunc__ = None
|
|
|
|
def __add__(self, other):
|
|
return self
|
|
|
|
def __radd__(self, other):
|
|
return self
|
|
|
|
array_like = ArrayLike(1)
|
|
opt_out = OptOut()
|
|
|
|
# supported operations
|
|
assert_(array_like + opt_out is opt_out)
|
|
assert_(opt_out + array_like is opt_out)
|
|
|
|
# not supported
|
|
with assert_raises(TypeError):
|
|
# don't use the Python default, array_like = array_like + opt_out
|
|
array_like += opt_out
|
|
with assert_raises(TypeError):
|
|
array_like - opt_out
|
|
with assert_raises(TypeError):
|
|
opt_out - array_like
|
|
|
|
def test_subclass(self):
|
|
|
|
class SubArrayLike(ArrayLike):
|
|
"""Should take precedence over ArrayLike."""
|
|
|
|
x = ArrayLike(0)
|
|
y = SubArrayLike(1)
|
|
_assert_equal_type_and_value(x + y, y)
|
|
_assert_equal_type_and_value(y + x, y)
|
|
|
|
def test_object(self):
|
|
x = ArrayLike(0)
|
|
obj = object()
|
|
with assert_raises(TypeError):
|
|
x + obj
|
|
with assert_raises(TypeError):
|
|
obj + x
|
|
with assert_raises(TypeError):
|
|
x += obj
|
|
|
|
def test_unary_methods(self):
|
|
array = np.array([-1, 0, 1, 2])
|
|
array_like = ArrayLike(array)
|
|
for op in [operator.neg,
|
|
operator.pos,
|
|
abs,
|
|
operator.invert]:
|
|
_assert_equal_type_and_value(op(array_like), ArrayLike(op(array)))
|
|
|
|
def test_forward_binary_methods(self):
|
|
array = np.array([-1, 0, 1, 2])
|
|
array_like = ArrayLike(array)
|
|
for op in _ALL_BINARY_OPERATORS:
|
|
expected = wrap_array_like(op(array, 1))
|
|
actual = op(array_like, 1)
|
|
err_msg = 'failed for operator {}'.format(op)
|
|
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
|
|
|
|
def test_reflected_binary_methods(self):
|
|
for op in _ALL_BINARY_OPERATORS:
|
|
expected = wrap_array_like(op(2, 1))
|
|
actual = op(2, ArrayLike(1))
|
|
err_msg = 'failed for operator {}'.format(op)
|
|
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
|
|
|
|
def test_matmul(self):
|
|
array = np.array([1, 2], dtype=np.float64)
|
|
array_like = ArrayLike(array)
|
|
expected = ArrayLike(np.float64(5))
|
|
_assert_equal_type_and_value(expected, np.matmul(array_like, array))
|
|
_assert_equal_type_and_value(
|
|
expected, operator.matmul(array_like, array))
|
|
_assert_equal_type_and_value(
|
|
expected, operator.matmul(array, array_like))
|
|
|
|
def test_ufunc_at(self):
|
|
array = ArrayLike(np.array([1, 2, 3, 4]))
|
|
assert_(np.negative.at(array, np.array([0, 1])) is None)
|
|
_assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4]))
|
|
|
|
def test_ufunc_two_outputs(self):
|
|
mantissa, exponent = np.frexp(2 ** -3)
|
|
expected = (ArrayLike(mantissa), ArrayLike(exponent))
|
|
_assert_equal_type_and_value(
|
|
np.frexp(ArrayLike(2 ** -3)), expected)
|
|
_assert_equal_type_and_value(
|
|
np.frexp(ArrayLike(np.array(2 ** -3))), expected)
|