You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
17 KiB
461 lines
17 KiB
# pylint: disable-msg=W0611, W0612, W0511,R0201
|
|
"""Tests suite for MaskedArray & subclassing.
|
|
|
|
:author: Pierre Gerard-Marchant
|
|
:contact: pierregm_at_uga_dot_edu
|
|
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
|
|
|
|
"""
|
|
import numpy as np
|
|
from numpy.lib.mixins import NDArrayOperatorsMixin
|
|
from numpy.testing import assert_, assert_raises
|
|
from numpy.ma.testutils import assert_equal
|
|
from numpy.ma.core import (
|
|
array, arange, masked, MaskedArray, masked_array, log, add, hypot,
|
|
divide, asarray, asanyarray, nomask
|
|
)
|
|
# from numpy.ma.core import (
|
|
|
|
def assert_startswith(a, b):
|
|
# produces a better error message than assert_(a.startswith(b))
|
|
assert_equal(a[:len(b)], b)
|
|
|
|
class SubArray(np.ndarray):
|
|
# Defines a generic np.ndarray subclass, that stores some metadata
|
|
# in the dictionary `info`.
|
|
def __new__(cls,arr,info={}):
|
|
x = np.asanyarray(arr).view(cls)
|
|
x.info = info.copy()
|
|
return x
|
|
|
|
def __array_finalize__(self, obj):
|
|
super().__array_finalize__(obj)
|
|
self.info = getattr(obj, 'info', {}).copy()
|
|
return
|
|
|
|
def __add__(self, other):
|
|
result = super().__add__(other)
|
|
result.info['added'] = result.info.get('added', 0) + 1
|
|
return result
|
|
|
|
def __iadd__(self, other):
|
|
result = super().__iadd__(other)
|
|
result.info['iadded'] = result.info.get('iadded', 0) + 1
|
|
return result
|
|
|
|
|
|
subarray = SubArray
|
|
|
|
|
|
class SubMaskedArray(MaskedArray):
|
|
"""Pure subclass of MaskedArray, keeping some info on subclass."""
|
|
def __new__(cls, info=None, **kwargs):
|
|
obj = super().__new__(cls, **kwargs)
|
|
obj._optinfo['info'] = info
|
|
return obj
|
|
|
|
|
|
class MSubArray(SubArray, MaskedArray):
|
|
|
|
def __new__(cls, data, info={}, mask=nomask):
|
|
subarr = SubArray(data, info)
|
|
_data = MaskedArray.__new__(cls, data=subarr, mask=mask)
|
|
_data.info = subarr.info
|
|
return _data
|
|
|
|
@property
|
|
def _series(self):
|
|
_view = self.view(MaskedArray)
|
|
_view._sharedmask = False
|
|
return _view
|
|
|
|
msubarray = MSubArray
|
|
|
|
|
|
# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
|
|
# setting to non-class values (and thus np.ma.core.masked_print_option)
|
|
# and overrides __array_wrap__, updating the info dict, to check that this
|
|
# doesn't get destroyed by MaskedArray._update_from. But this one also needs
|
|
# its own iterator...
|
|
class CSAIterator:
|
|
"""
|
|
Flat iterator object that uses its own setter/getter
|
|
(works around ndarray.flat not propagating subclass setters/getters
|
|
see https://github.com/numpy/numpy/issues/4564)
|
|
roughly following MaskedIterator
|
|
"""
|
|
def __init__(self, a):
|
|
self._original = a
|
|
self._dataiter = a.view(np.ndarray).flat
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __getitem__(self, indx):
|
|
out = self._dataiter.__getitem__(indx)
|
|
if not isinstance(out, np.ndarray):
|
|
out = out.__array__()
|
|
out = out.view(type(self._original))
|
|
return out
|
|
|
|
def __setitem__(self, index, value):
|
|
self._dataiter[index] = self._original._validate_input(value)
|
|
|
|
def __next__(self):
|
|
return next(self._dataiter).__array__().view(type(self._original))
|
|
|
|
|
|
class ComplicatedSubArray(SubArray):
|
|
|
|
def __str__(self):
|
|
return f'myprefix {self.view(SubArray)} mypostfix'
|
|
|
|
def __repr__(self):
|
|
# Return a repr that does not start with 'name('
|
|
return f'<{self.__class__.__name__} {self}>'
|
|
|
|
def _validate_input(self, value):
|
|
if not isinstance(value, ComplicatedSubArray):
|
|
raise ValueError("Can only set to MySubArray values")
|
|
return value
|
|
|
|
def __setitem__(self, item, value):
|
|
# validation ensures direct assignment with ndarray or
|
|
# masked_print_option will fail
|
|
super().__setitem__(item, self._validate_input(value))
|
|
|
|
def __getitem__(self, item):
|
|
# ensure getter returns our own class also for scalars
|
|
value = super().__getitem__(item)
|
|
if not isinstance(value, np.ndarray): # scalar
|
|
value = value.__array__().view(ComplicatedSubArray)
|
|
return value
|
|
|
|
@property
|
|
def flat(self):
|
|
return CSAIterator(self)
|
|
|
|
@flat.setter
|
|
def flat(self, value):
|
|
y = self.ravel()
|
|
y[:] = value
|
|
|
|
def __array_wrap__(self, obj, context=None):
|
|
obj = super().__array_wrap__(obj, context)
|
|
if context is not None and context[0] is np.multiply:
|
|
obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
|
|
|
|
return obj
|
|
|
|
|
|
class WrappedArray(NDArrayOperatorsMixin):
|
|
"""
|
|
Wrapping a MaskedArray rather than subclassing to test that
|
|
ufunc deferrals are commutative.
|
|
See: https://github.com/numpy/numpy/issues/15200)
|
|
"""
|
|
__slots__ = ('_array', 'attrs')
|
|
__array_priority__ = 20
|
|
|
|
def __init__(self, array, **attrs):
|
|
self._array = array
|
|
self.attrs = attrs
|
|
|
|
def __repr__(self):
|
|
return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
|
|
|
|
def __array__(self):
|
|
return np.asarray(self._array)
|
|
|
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
|
if method == '__call__':
|
|
inputs = [arg._array if isinstance(arg, self.__class__) else arg
|
|
for arg in inputs]
|
|
return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
|
|
else:
|
|
return NotImplemented
|
|
|
|
|
|
class TestSubclassing:
|
|
# Test suite for masked subclasses of ndarray.
|
|
|
|
def setup_method(self):
|
|
x = np.arange(5, dtype='float')
|
|
mx = msubarray(x, mask=[0, 1, 0, 0, 0])
|
|
self.data = (x, mx)
|
|
|
|
def test_data_subclassing(self):
|
|
# Tests whether the subclass is kept.
|
|
x = np.arange(5)
|
|
m = [0, 0, 1, 0, 0]
|
|
xsub = SubArray(x)
|
|
xmsub = masked_array(xsub, mask=m)
|
|
assert_(isinstance(xmsub, MaskedArray))
|
|
assert_equal(xmsub._data, xsub)
|
|
assert_(isinstance(xmsub._data, SubArray))
|
|
|
|
def test_maskedarray_subclassing(self):
|
|
# Tests subclassing MaskedArray
|
|
(x, mx) = self.data
|
|
assert_(isinstance(mx._data, subarray))
|
|
|
|
def test_masked_unary_operations(self):
|
|
# Tests masked_unary_operation
|
|
(x, mx) = self.data
|
|
with np.errstate(divide='ignore'):
|
|
assert_(isinstance(log(mx), msubarray))
|
|
assert_equal(log(x), np.log(x))
|
|
|
|
def test_masked_binary_operations(self):
|
|
# Tests masked_binary_operation
|
|
(x, mx) = self.data
|
|
# Result should be a msubarray
|
|
assert_(isinstance(add(mx, mx), msubarray))
|
|
assert_(isinstance(add(mx, x), msubarray))
|
|
# Result should work
|
|
assert_equal(add(mx, x), mx+x)
|
|
assert_(isinstance(add(mx, mx)._data, subarray))
|
|
assert_(isinstance(add.outer(mx, mx), msubarray))
|
|
assert_(isinstance(hypot(mx, mx), msubarray))
|
|
assert_(isinstance(hypot(mx, x), msubarray))
|
|
|
|
def test_masked_binary_operations2(self):
|
|
# Tests domained_masked_binary_operation
|
|
(x, mx) = self.data
|
|
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
|
|
assert_(isinstance(divide(mx, mx), msubarray))
|
|
assert_(isinstance(divide(mx, x), msubarray))
|
|
assert_equal(divide(mx, mx), divide(xmx, xmx))
|
|
|
|
def test_attributepropagation(self):
|
|
x = array(arange(5), mask=[0]+[1]*4)
|
|
my = masked_array(subarray(x))
|
|
ym = msubarray(x)
|
|
#
|
|
z = (my+1)
|
|
assert_(isinstance(z, MaskedArray))
|
|
assert_(not isinstance(z, MSubArray))
|
|
assert_(isinstance(z._data, SubArray))
|
|
assert_equal(z._data.info, {})
|
|
#
|
|
z = (ym+1)
|
|
assert_(isinstance(z, MaskedArray))
|
|
assert_(isinstance(z, MSubArray))
|
|
assert_(isinstance(z._data, SubArray))
|
|
assert_(z._data.info['added'] > 0)
|
|
# Test that inplace methods from data get used (gh-4617)
|
|
ym += 1
|
|
assert_(isinstance(ym, MaskedArray))
|
|
assert_(isinstance(ym, MSubArray))
|
|
assert_(isinstance(ym._data, SubArray))
|
|
assert_(ym._data.info['iadded'] > 0)
|
|
#
|
|
ym._set_mask([1, 0, 0, 0, 1])
|
|
assert_equal(ym._mask, [1, 0, 0, 0, 1])
|
|
ym._series._set_mask([0, 0, 0, 0, 1])
|
|
assert_equal(ym._mask, [0, 0, 0, 0, 1])
|
|
#
|
|
xsub = subarray(x, info={'name':'x'})
|
|
mxsub = masked_array(xsub)
|
|
assert_(hasattr(mxsub, 'info'))
|
|
assert_equal(mxsub.info, xsub.info)
|
|
|
|
def test_subclasspreservation(self):
|
|
# Checks that masked_array(...,subok=True) preserves the class.
|
|
x = np.arange(5)
|
|
m = [0, 0, 1, 0, 0]
|
|
xinfo = [(i, j) for (i, j) in zip(x, m)]
|
|
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
|
|
#
|
|
mxsub = masked_array(xsub, subok=False)
|
|
assert_(not isinstance(mxsub, MSubArray))
|
|
assert_(isinstance(mxsub, MaskedArray))
|
|
assert_equal(mxsub._mask, m)
|
|
#
|
|
mxsub = asarray(xsub)
|
|
assert_(not isinstance(mxsub, MSubArray))
|
|
assert_(isinstance(mxsub, MaskedArray))
|
|
assert_equal(mxsub._mask, m)
|
|
#
|
|
mxsub = masked_array(xsub, subok=True)
|
|
assert_(isinstance(mxsub, MSubArray))
|
|
assert_equal(mxsub.info, xsub.info)
|
|
assert_equal(mxsub._mask, xsub._mask)
|
|
#
|
|
mxsub = asanyarray(xsub)
|
|
assert_(isinstance(mxsub, MSubArray))
|
|
assert_equal(mxsub.info, xsub.info)
|
|
assert_equal(mxsub._mask, m)
|
|
|
|
def test_subclass_items(self):
|
|
"""test that getter and setter go via baseclass"""
|
|
x = np.arange(5)
|
|
xcsub = ComplicatedSubArray(x)
|
|
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
|
|
# getter should return a ComplicatedSubArray, even for single item
|
|
# first check we wrote ComplicatedSubArray correctly
|
|
assert_(isinstance(xcsub[1], ComplicatedSubArray))
|
|
assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
|
|
assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
|
|
|
|
# now that it propagates inside the MaskedArray
|
|
assert_(isinstance(mxcsub[1], ComplicatedSubArray))
|
|
assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
|
|
assert_(mxcsub[0] is masked)
|
|
assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
|
|
assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
|
|
|
|
# also for flattened version (which goes via MaskedIterator)
|
|
assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
|
|
assert_(mxcsub.flat[0] is masked)
|
|
assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
|
|
|
|
# setter should only work with ComplicatedSubArray input
|
|
# first check we wrote ComplicatedSubArray correctly
|
|
assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
|
|
# now that it propagates inside the MaskedArray
|
|
assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
|
|
assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
|
|
mxcsub[1] = xcsub[4]
|
|
mxcsub[1:4] = xcsub[1:4]
|
|
# also for flattened version (which goes via MaskedIterator)
|
|
assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
|
|
assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
|
|
mxcsub.flat[1] = xcsub[4]
|
|
mxcsub.flat[1:4] = xcsub[1:4]
|
|
|
|
def test_subclass_nomask_items(self):
|
|
x = np.arange(5)
|
|
xcsub = ComplicatedSubArray(x)
|
|
mxcsub_nomask = masked_array(xcsub)
|
|
|
|
assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
|
|
assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
|
|
|
|
assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
|
|
assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
|
|
|
|
def test_subclass_repr(self):
|
|
"""test that repr uses the name of the subclass
|
|
and 'array' for np.ndarray"""
|
|
x = np.arange(5)
|
|
mx = masked_array(x, mask=[True, False, True, False, False])
|
|
assert_startswith(repr(mx), 'masked_array')
|
|
xsub = SubArray(x)
|
|
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
|
|
assert_startswith(repr(mxsub),
|
|
f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
|
|
|
|
def test_subclass_str(self):
|
|
"""test str with subclass that has overridden str, setitem"""
|
|
# first without override
|
|
x = np.arange(5)
|
|
xsub = SubArray(x)
|
|
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
|
|
assert_equal(str(mxsub), '[-- 1 -- 3 4]')
|
|
|
|
xcsub = ComplicatedSubArray(x)
|
|
assert_raises(ValueError, xcsub.__setitem__, 0,
|
|
np.ma.core.masked_print_option)
|
|
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
|
|
assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
|
|
|
|
def test_pure_subclass_info_preservation(self):
|
|
# Test that ufuncs and methods conserve extra information consistently;
|
|
# see gh-7122.
|
|
arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
|
|
arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
|
|
diff1 = np.subtract(arr1, arr2)
|
|
assert_('info' in diff1._optinfo)
|
|
assert_(diff1._optinfo['info'] == 'test')
|
|
diff2 = arr1 - arr2
|
|
assert_('info' in diff2._optinfo)
|
|
assert_(diff2._optinfo['info'] == 'test')
|
|
|
|
|
|
class ArrayNoInheritance:
|
|
"""Quantity-like class that does not inherit from ndarray"""
|
|
def __init__(self, data, units):
|
|
self.magnitude = data
|
|
self.units = units
|
|
|
|
def __getattr__(self, attr):
|
|
return getattr(self.magnitude, attr)
|
|
|
|
|
|
def test_array_no_inheritance():
|
|
data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
|
|
data_masked_units = ArrayNoInheritance(data_masked, 'meters')
|
|
|
|
# Get the masked representation of the Quantity-like class
|
|
new_array = np.ma.array(data_masked_units)
|
|
assert_equal(data_masked.data, new_array.data)
|
|
assert_equal(data_masked.mask, new_array.mask)
|
|
# Test sharing the mask
|
|
data_masked.mask = [True, False, False]
|
|
assert_equal(data_masked.mask, new_array.mask)
|
|
assert_(new_array.sharedmask)
|
|
|
|
# Get the masked representation of the Quantity-like class
|
|
new_array = np.ma.array(data_masked_units, copy=True)
|
|
assert_equal(data_masked.data, new_array.data)
|
|
assert_equal(data_masked.mask, new_array.mask)
|
|
# Test that the mask is not shared when copy=True
|
|
data_masked.mask = [True, False, True]
|
|
assert_equal([True, False, False], new_array.mask)
|
|
assert_(not new_array.sharedmask)
|
|
|
|
# Get the masked representation of the Quantity-like class
|
|
new_array = np.ma.array(data_masked_units, keep_mask=False)
|
|
assert_equal(data_masked.data, new_array.data)
|
|
# The change did not affect the original mask
|
|
assert_equal(data_masked.mask, [True, False, True])
|
|
# Test that the mask is False and not shared when keep_mask=False
|
|
assert_(not new_array.mask)
|
|
assert_(not new_array.sharedmask)
|
|
|
|
|
|
class TestClassWrapping:
|
|
# Test suite for classes that wrap MaskedArrays
|
|
|
|
def setup_method(self):
|
|
m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
|
|
wm = WrappedArray(m)
|
|
self.data = (m, wm)
|
|
|
|
def test_masked_unary_operations(self):
|
|
# Tests masked_unary_operation
|
|
(m, wm) = self.data
|
|
with np.errstate(divide='ignore'):
|
|
assert_(isinstance(np.log(wm), WrappedArray))
|
|
|
|
def test_masked_binary_operations(self):
|
|
# Tests masked_binary_operation
|
|
(m, wm) = self.data
|
|
# Result should be a WrappedArray
|
|
assert_(isinstance(np.add(wm, wm), WrappedArray))
|
|
assert_(isinstance(np.add(m, wm), WrappedArray))
|
|
assert_(isinstance(np.add(wm, m), WrappedArray))
|
|
# add and '+' should call the same ufunc
|
|
assert_equal(np.add(m, wm), m + wm)
|
|
assert_(isinstance(np.hypot(m, wm), WrappedArray))
|
|
assert_(isinstance(np.hypot(wm, m), WrappedArray))
|
|
# Test domained binary operations
|
|
assert_(isinstance(np.divide(wm, m), WrappedArray))
|
|
assert_(isinstance(np.divide(m, wm), WrappedArray))
|
|
assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
|
|
# Test broadcasting
|
|
m2 = np.stack([m, m])
|
|
assert_(isinstance(np.divide(wm, m2), WrappedArray))
|
|
assert_(isinstance(np.divide(m2, wm), WrappedArray))
|
|
assert_equal(np.divide(m2, wm), np.divide(wm, m2))
|
|
|
|
def test_mixins_have_slots(self):
|
|
mixin = NDArrayOperatorsMixin()
|
|
# Should raise an error
|
|
assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
|
|
|
|
m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
|
|
wm = WrappedArray(m)
|
|
assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)
|