You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

144 lines
4.4 KiB

from __future__ import annotations
from datetime import time
import math
from typing import TYPE_CHECKING
import numpy as np
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import doc
from pandas.core.shared_docs import _shared_docs
from pandas.io.excel._base import BaseExcelReader
if TYPE_CHECKING:
from xlrd import Book
from pandas._typing import (
Scalar,
StorageOptions,
)
class XlrdReader(BaseExcelReader["Book"]):
@doc(storage_options=_shared_docs["storage_options"])
def __init__(
self,
filepath_or_buffer,
storage_options: StorageOptions | None = None,
engine_kwargs: dict | None = None,
) -> None:
"""
Reader using xlrd engine.
Parameters
----------
filepath_or_buffer : str, path object or Workbook
Object to be parsed.
{storage_options}
engine_kwargs : dict, optional
Arbitrary keyword arguments passed to excel engine.
"""
err_msg = "Install xlrd >= 2.0.1 for xls Excel support"
import_optional_dependency("xlrd", extra=err_msg)
super().__init__(
filepath_or_buffer,
storage_options=storage_options,
engine_kwargs=engine_kwargs,
)
@property
def _workbook_class(self) -> type[Book]:
from xlrd import Book
return Book
def load_workbook(self, filepath_or_buffer, engine_kwargs) -> Book:
from xlrd import open_workbook
if hasattr(filepath_or_buffer, "read"):
data = filepath_or_buffer.read()
return open_workbook(file_contents=data, **engine_kwargs)
else:
return open_workbook(filepath_or_buffer, **engine_kwargs)
@property
def sheet_names(self):
return self.book.sheet_names()
def get_sheet_by_name(self, name):
self.raise_if_bad_sheet_by_name(name)
return self.book.sheet_by_name(name)
def get_sheet_by_index(self, index):
self.raise_if_bad_sheet_by_index(index)
return self.book.sheet_by_index(index)
def get_sheet_data(
self, sheet, file_rows_needed: int | None = None
) -> list[list[Scalar]]:
from xlrd import (
XL_CELL_BOOLEAN,
XL_CELL_DATE,
XL_CELL_ERROR,
XL_CELL_NUMBER,
xldate,
)
epoch1904 = self.book.datemode
def _parse_cell(cell_contents, cell_typ):
"""
converts the contents of the cell into a pandas appropriate object
"""
if cell_typ == XL_CELL_DATE:
# Use the newer xlrd datetime handling.
try:
cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
except OverflowError:
return cell_contents
# Excel doesn't distinguish between dates and time,
# so we treat dates on the epoch as times only.
# Also, Excel supports 1900 and 1904 epochs.
year = (cell_contents.timetuple())[0:3]
if (not epoch1904 and year == (1899, 12, 31)) or (
epoch1904 and year == (1904, 1, 1)
):
cell_contents = time(
cell_contents.hour,
cell_contents.minute,
cell_contents.second,
cell_contents.microsecond,
)
elif cell_typ == XL_CELL_ERROR:
cell_contents = np.nan
elif cell_typ == XL_CELL_BOOLEAN:
cell_contents = bool(cell_contents)
elif cell_typ == XL_CELL_NUMBER:
# GH5394 - Excel 'numbers' are always floats
# it's a minimal perf hit and less surprising
if math.isfinite(cell_contents):
# GH54564 - don't attempt to convert NaN/Inf
val = int(cell_contents)
if val == cell_contents:
cell_contents = val
return cell_contents
data = []
nrows = sheet.nrows
if file_rows_needed is not None:
nrows = min(nrows, file_rows_needed)
for i in range(nrows):
row = [
_parse_cell(value, typ)
for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
]
data.append(row)
return data