You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5422 lines
173 KiB
5422 lines
173 KiB
"""
|
|
High level interface to PyTables for reading and writing pandas data structures
|
|
to disk
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from contextlib import suppress
|
|
import copy
|
|
from datetime import (
|
|
date,
|
|
tzinfo,
|
|
)
|
|
import itertools
|
|
import os
|
|
import re
|
|
from textwrap import dedent
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Final,
|
|
Literal,
|
|
cast,
|
|
overload,
|
|
)
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from pandas._config import (
|
|
config,
|
|
get_option,
|
|
using_copy_on_write,
|
|
using_pyarrow_string_dtype,
|
|
)
|
|
|
|
from pandas._libs import (
|
|
lib,
|
|
writers as libwriters,
|
|
)
|
|
from pandas._libs.lib import is_string_array
|
|
from pandas._libs.tslibs import timezones
|
|
from pandas.compat._optional import import_optional_dependency
|
|
from pandas.compat.pickle_compat import patch_pickle
|
|
from pandas.errors import (
|
|
AttributeConflictWarning,
|
|
ClosedFileError,
|
|
IncompatibilityWarning,
|
|
PerformanceWarning,
|
|
PossibleDataLossError,
|
|
)
|
|
from pandas.util._decorators import cache_readonly
|
|
from pandas.util._exceptions import find_stack_level
|
|
|
|
from pandas.core.dtypes.common import (
|
|
ensure_object,
|
|
is_bool_dtype,
|
|
is_complex_dtype,
|
|
is_list_like,
|
|
is_string_dtype,
|
|
needs_i8_conversion,
|
|
)
|
|
from pandas.core.dtypes.dtypes import (
|
|
CategoricalDtype,
|
|
DatetimeTZDtype,
|
|
ExtensionDtype,
|
|
PeriodDtype,
|
|
)
|
|
from pandas.core.dtypes.missing import array_equivalent
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
DatetimeIndex,
|
|
Index,
|
|
MultiIndex,
|
|
PeriodIndex,
|
|
RangeIndex,
|
|
Series,
|
|
TimedeltaIndex,
|
|
concat,
|
|
isna,
|
|
)
|
|
from pandas.core.arrays import (
|
|
Categorical,
|
|
DatetimeArray,
|
|
PeriodArray,
|
|
)
|
|
import pandas.core.common as com
|
|
from pandas.core.computation.pytables import (
|
|
PyTablesExpr,
|
|
maybe_expression,
|
|
)
|
|
from pandas.core.construction import extract_array
|
|
from pandas.core.indexes.api import ensure_index
|
|
from pandas.core.internals import (
|
|
ArrayManager,
|
|
BlockManager,
|
|
)
|
|
|
|
from pandas.io.common import stringify_path
|
|
from pandas.io.formats.printing import (
|
|
adjoin,
|
|
pprint_thing,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import (
|
|
Hashable,
|
|
Iterator,
|
|
Sequence,
|
|
)
|
|
from types import TracebackType
|
|
|
|
from tables import (
|
|
Col,
|
|
File,
|
|
Node,
|
|
)
|
|
|
|
from pandas._typing import (
|
|
AnyArrayLike,
|
|
ArrayLike,
|
|
AxisInt,
|
|
DtypeArg,
|
|
FilePath,
|
|
Self,
|
|
Shape,
|
|
npt,
|
|
)
|
|
|
|
from pandas.core.internals import Block
|
|
|
|
# versioning attribute
|
|
_version = "0.15.2"
|
|
|
|
# encoding
|
|
_default_encoding = "UTF-8"
|
|
|
|
|
|
def _ensure_decoded(s):
|
|
"""if we have bytes, decode them to unicode"""
|
|
if isinstance(s, np.bytes_):
|
|
s = s.decode("UTF-8")
|
|
return s
|
|
|
|
|
|
def _ensure_encoding(encoding: str | None) -> str:
|
|
# set the encoding if we need
|
|
if encoding is None:
|
|
encoding = _default_encoding
|
|
|
|
return encoding
|
|
|
|
|
|
def _ensure_str(name):
|
|
"""
|
|
Ensure that an index / column name is a str (python 3); otherwise they
|
|
may be np.string dtype. Non-string dtypes are passed through unchanged.
|
|
|
|
https://github.com/pandas-dev/pandas/issues/13492
|
|
"""
|
|
if isinstance(name, str):
|
|
name = str(name)
|
|
return name
|
|
|
|
|
|
Term = PyTablesExpr
|
|
|
|
|
|
def _ensure_term(where, scope_level: int):
|
|
"""
|
|
Ensure that the where is a Term or a list of Term.
|
|
|
|
This makes sure that we are capturing the scope of variables that are
|
|
passed create the terms here with a frame_level=2 (we are 2 levels down)
|
|
"""
|
|
# only consider list/tuple here as an ndarray is automatically a coordinate
|
|
# list
|
|
level = scope_level + 1
|
|
if isinstance(where, (list, tuple)):
|
|
where = [
|
|
Term(term, scope_level=level + 1) if maybe_expression(term) else term
|
|
for term in where
|
|
if term is not None
|
|
]
|
|
elif maybe_expression(where):
|
|
where = Term(where, scope_level=level)
|
|
return where if where is None or len(where) else None
|
|
|
|
|
|
incompatibility_doc: Final = """
|
|
where criteria is being ignored as this version [%s] is too old (or
|
|
not-defined), read the file in and write it out to a new file to upgrade (with
|
|
the copy_to method)
|
|
"""
|
|
|
|
attribute_conflict_doc: Final = """
|
|
the [%s] attribute of the existing index is [%s] which conflicts with the new
|
|
[%s], resetting the attribute to None
|
|
"""
|
|
|
|
performance_doc: Final = """
|
|
your performance may suffer as PyTables will pickle object types that it cannot
|
|
map directly to c-types [inferred_type->%s,key->%s] [items->%s]
|
|
"""
|
|
|
|
# formats
|
|
_FORMAT_MAP = {"f": "fixed", "fixed": "fixed", "t": "table", "table": "table"}
|
|
|
|
# axes map
|
|
_AXES_MAP = {DataFrame: [0]}
|
|
|
|
# register our configuration options
|
|
dropna_doc: Final = """
|
|
: boolean
|
|
drop ALL nan rows when appending to a table
|
|
"""
|
|
format_doc: Final = """
|
|
: format
|
|
default format writing format, if None, then
|
|
put will default to 'fixed' and append will default to 'table'
|
|
"""
|
|
|
|
with config.config_prefix("io.hdf"):
|
|
config.register_option("dropna_table", False, dropna_doc, validator=config.is_bool)
|
|
config.register_option(
|
|
"default_format",
|
|
None,
|
|
format_doc,
|
|
validator=config.is_one_of_factory(["fixed", "table", None]),
|
|
)
|
|
|
|
# oh the troubles to reduce import time
|
|
_table_mod = None
|
|
_table_file_open_policy_is_strict = False
|
|
|
|
|
|
def _tables():
|
|
global _table_mod
|
|
global _table_file_open_policy_is_strict
|
|
if _table_mod is None:
|
|
import tables
|
|
|
|
_table_mod = tables
|
|
|
|
# set the file open policy
|
|
# return the file open policy; this changes as of pytables 3.1
|
|
# depending on the HDF5 version
|
|
with suppress(AttributeError):
|
|
_table_file_open_policy_is_strict = (
|
|
tables.file._FILE_OPEN_POLICY == "strict"
|
|
)
|
|
|
|
return _table_mod
|
|
|
|
|
|
# interface to/from ###
|
|
|
|
|
|
def to_hdf(
|
|
path_or_buf: FilePath | HDFStore,
|
|
key: str,
|
|
value: DataFrame | Series,
|
|
mode: str = "a",
|
|
complevel: int | None = None,
|
|
complib: str | None = None,
|
|
append: bool = False,
|
|
format: str | None = None,
|
|
index: bool = True,
|
|
min_itemsize: int | dict[str, int] | None = None,
|
|
nan_rep=None,
|
|
dropna: bool | None = None,
|
|
data_columns: Literal[True] | list[str] | None = None,
|
|
errors: str = "strict",
|
|
encoding: str = "UTF-8",
|
|
) -> None:
|
|
"""store this object, close it if we opened it"""
|
|
if append:
|
|
f = lambda store: store.append(
|
|
key,
|
|
value,
|
|
format=format,
|
|
index=index,
|
|
min_itemsize=min_itemsize,
|
|
nan_rep=nan_rep,
|
|
dropna=dropna,
|
|
data_columns=data_columns,
|
|
errors=errors,
|
|
encoding=encoding,
|
|
)
|
|
else:
|
|
# NB: dropna is not passed to `put`
|
|
f = lambda store: store.put(
|
|
key,
|
|
value,
|
|
format=format,
|
|
index=index,
|
|
min_itemsize=min_itemsize,
|
|
nan_rep=nan_rep,
|
|
data_columns=data_columns,
|
|
errors=errors,
|
|
encoding=encoding,
|
|
dropna=dropna,
|
|
)
|
|
|
|
path_or_buf = stringify_path(path_or_buf)
|
|
if isinstance(path_or_buf, str):
|
|
with HDFStore(
|
|
path_or_buf, mode=mode, complevel=complevel, complib=complib
|
|
) as store:
|
|
f(store)
|
|
else:
|
|
f(path_or_buf)
|
|
|
|
|
|
def read_hdf(
|
|
path_or_buf: FilePath | HDFStore,
|
|
key=None,
|
|
mode: str = "r",
|
|
errors: str = "strict",
|
|
where: str | list | None = None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
columns: list[str] | None = None,
|
|
iterator: bool = False,
|
|
chunksize: int | None = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Read from the store, close it if we opened it.
|
|
|
|
Retrieve pandas object stored in file, optionally based on where
|
|
criteria.
|
|
|
|
.. warning::
|
|
|
|
Pandas uses PyTables for reading and writing HDF5 files, which allows
|
|
serializing object-dtype data with pickle when using the "fixed" format.
|
|
Loading pickled data received from untrusted sources can be unsafe.
|
|
|
|
See: https://docs.python.org/3/library/pickle.html for more.
|
|
|
|
Parameters
|
|
----------
|
|
path_or_buf : str, path object, pandas.HDFStore
|
|
Any valid string path is acceptable. Only supports the local file system,
|
|
remote URLs and file-like objects are not supported.
|
|
|
|
If you want to pass in a path object, pandas accepts any
|
|
``os.PathLike``.
|
|
|
|
Alternatively, pandas accepts an open :class:`pandas.HDFStore` object.
|
|
|
|
key : object, optional
|
|
The group identifier in the store. Can be omitted if the HDF file
|
|
contains a single pandas object.
|
|
mode : {'r', 'r+', 'a'}, default 'r'
|
|
Mode to use when opening the file. Ignored if path_or_buf is a
|
|
:class:`pandas.HDFStore`. Default is 'r'.
|
|
errors : str, default 'strict'
|
|
Specifies how encoding and decoding errors are to be handled.
|
|
See the errors argument for :func:`open` for a full list
|
|
of options.
|
|
where : list, optional
|
|
A list of Term (or convertible) objects.
|
|
start : int, optional
|
|
Row number to start selection.
|
|
stop : int, optional
|
|
Row number to stop selection.
|
|
columns : list, optional
|
|
A list of columns names to return.
|
|
iterator : bool, optional
|
|
Return an iterator object.
|
|
chunksize : int, optional
|
|
Number of rows to include in an iteration when using an iterator.
|
|
**kwargs
|
|
Additional keyword arguments passed to HDFStore.
|
|
|
|
Returns
|
|
-------
|
|
object
|
|
The selected object. Return type depends on the object stored.
|
|
|
|
See Also
|
|
--------
|
|
DataFrame.to_hdf : Write a HDF file from a DataFrame.
|
|
HDFStore : Low-level access to HDF files.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z']) # doctest: +SKIP
|
|
>>> df.to_hdf('./store.h5', 'data') # doctest: +SKIP
|
|
>>> reread = pd.read_hdf('./store.h5') # doctest: +SKIP
|
|
"""
|
|
if mode not in ["r", "r+", "a"]:
|
|
raise ValueError(
|
|
f"mode {mode} is not allowed while performing a read. "
|
|
f"Allowed modes are r, r+ and a."
|
|
)
|
|
# grab the scope
|
|
if where is not None:
|
|
where = _ensure_term(where, scope_level=1)
|
|
|
|
if isinstance(path_or_buf, HDFStore):
|
|
if not path_or_buf.is_open:
|
|
raise OSError("The HDFStore must be open for reading.")
|
|
|
|
store = path_or_buf
|
|
auto_close = False
|
|
else:
|
|
path_or_buf = stringify_path(path_or_buf)
|
|
if not isinstance(path_or_buf, str):
|
|
raise NotImplementedError(
|
|
"Support for generic buffers has not been implemented."
|
|
)
|
|
try:
|
|
exists = os.path.exists(path_or_buf)
|
|
|
|
# if filepath is too long
|
|
except (TypeError, ValueError):
|
|
exists = False
|
|
|
|
if not exists:
|
|
raise FileNotFoundError(f"File {path_or_buf} does not exist")
|
|
|
|
store = HDFStore(path_or_buf, mode=mode, errors=errors, **kwargs)
|
|
# can't auto open/close if we are using an iterator
|
|
# so delegate to the iterator
|
|
auto_close = True
|
|
|
|
try:
|
|
if key is None:
|
|
groups = store.groups()
|
|
if len(groups) == 0:
|
|
raise ValueError(
|
|
"Dataset(s) incompatible with Pandas data types, "
|
|
"not table, or no datasets found in HDF5 file."
|
|
)
|
|
candidate_only_group = groups[0]
|
|
|
|
# For the HDF file to have only one dataset, all other groups
|
|
# should then be metadata groups for that candidate group. (This
|
|
# assumes that the groups() method enumerates parent groups
|
|
# before their children.)
|
|
for group_to_check in groups[1:]:
|
|
if not _is_metadata_of(group_to_check, candidate_only_group):
|
|
raise ValueError(
|
|
"key must be provided when HDF5 "
|
|
"file contains multiple datasets."
|
|
)
|
|
key = candidate_only_group._v_pathname
|
|
return store.select(
|
|
key,
|
|
where=where,
|
|
start=start,
|
|
stop=stop,
|
|
columns=columns,
|
|
iterator=iterator,
|
|
chunksize=chunksize,
|
|
auto_close=auto_close,
|
|
)
|
|
except (ValueError, TypeError, LookupError):
|
|
if not isinstance(path_or_buf, HDFStore):
|
|
# if there is an error, close the store if we opened it.
|
|
with suppress(AttributeError):
|
|
store.close()
|
|
|
|
raise
|
|
|
|
|
|
def _is_metadata_of(group: Node, parent_group: Node) -> bool:
|
|
"""Check if a given group is a metadata group for a given parent_group."""
|
|
if group._v_depth <= parent_group._v_depth:
|
|
return False
|
|
|
|
current = group
|
|
while current._v_depth > 1:
|
|
parent = current._v_parent
|
|
if parent == parent_group and current._v_name == "meta":
|
|
return True
|
|
current = current._v_parent
|
|
return False
|
|
|
|
|
|
class HDFStore:
|
|
"""
|
|
Dict-like IO interface for storing pandas objects in PyTables.
|
|
|
|
Either Fixed or Table format.
|
|
|
|
.. warning::
|
|
|
|
Pandas uses PyTables for reading and writing HDF5 files, which allows
|
|
serializing object-dtype data with pickle when using the "fixed" format.
|
|
Loading pickled data received from untrusted sources can be unsafe.
|
|
|
|
See: https://docs.python.org/3/library/pickle.html for more.
|
|
|
|
Parameters
|
|
----------
|
|
path : str
|
|
File path to HDF5 file.
|
|
mode : {'a', 'w', 'r', 'r+'}, default 'a'
|
|
|
|
``'r'``
|
|
Read-only; no data can be modified.
|
|
``'w'``
|
|
Write; a new file is created (an existing file with the same
|
|
name would be deleted).
|
|
``'a'``
|
|
Append; an existing file is opened for reading and writing,
|
|
and if the file does not exist it is created.
|
|
``'r+'``
|
|
It is similar to ``'a'``, but the file must already exist.
|
|
complevel : int, 0-9, default None
|
|
Specifies a compression level for data.
|
|
A value of 0 or None disables compression.
|
|
complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib'
|
|
Specifies the compression library to be used.
|
|
These additional compressors for Blosc are supported
|
|
(default if no compressor specified: 'blosc:blosclz'):
|
|
{'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy',
|
|
'blosc:zlib', 'blosc:zstd'}.
|
|
Specifying a compression library which is not available issues
|
|
a ValueError.
|
|
fletcher32 : bool, default False
|
|
If applying compression use the fletcher32 checksum.
|
|
**kwargs
|
|
These parameters will be passed to the PyTables open_file method.
|
|
|
|
Examples
|
|
--------
|
|
>>> bar = pd.DataFrame(np.random.randn(10, 4))
|
|
>>> store = pd.HDFStore('test.h5')
|
|
>>> store['foo'] = bar # write to HDF5
|
|
>>> bar = store['foo'] # retrieve
|
|
>>> store.close()
|
|
|
|
**Create or load HDF5 file in-memory**
|
|
|
|
When passing the `driver` option to the PyTables open_file method through
|
|
**kwargs, the HDF5 file is loaded or created in-memory and will only be
|
|
written when closed:
|
|
|
|
>>> bar = pd.DataFrame(np.random.randn(10, 4))
|
|
>>> store = pd.HDFStore('test.h5', driver='H5FD_CORE')
|
|
>>> store['foo'] = bar
|
|
>>> store.close() # only now, data is written to disk
|
|
"""
|
|
|
|
_handle: File | None
|
|
_mode: str
|
|
|
|
def __init__(
|
|
self,
|
|
path,
|
|
mode: str = "a",
|
|
complevel: int | None = None,
|
|
complib=None,
|
|
fletcher32: bool = False,
|
|
**kwargs,
|
|
) -> None:
|
|
if "format" in kwargs:
|
|
raise ValueError("format is not a defined argument for HDFStore")
|
|
|
|
tables = import_optional_dependency("tables")
|
|
|
|
if complib is not None and complib not in tables.filters.all_complibs:
|
|
raise ValueError(
|
|
f"complib only supports {tables.filters.all_complibs} compression."
|
|
)
|
|
|
|
if complib is None and complevel is not None:
|
|
complib = tables.filters.default_complib
|
|
|
|
self._path = stringify_path(path)
|
|
if mode is None:
|
|
mode = "a"
|
|
self._mode = mode
|
|
self._handle = None
|
|
self._complevel = complevel if complevel else 0
|
|
self._complib = complib
|
|
self._fletcher32 = fletcher32
|
|
self._filters = None
|
|
self.open(mode=mode, **kwargs)
|
|
|
|
def __fspath__(self) -> str:
|
|
return self._path
|
|
|
|
@property
|
|
def root(self):
|
|
"""return the root node"""
|
|
self._check_if_open()
|
|
assert self._handle is not None # for mypy
|
|
return self._handle.root
|
|
|
|
@property
|
|
def filename(self) -> str:
|
|
return self._path
|
|
|
|
def __getitem__(self, key: str):
|
|
return self.get(key)
|
|
|
|
def __setitem__(self, key: str, value) -> None:
|
|
self.put(key, value)
|
|
|
|
def __delitem__(self, key: str) -> None:
|
|
return self.remove(key)
|
|
|
|
def __getattr__(self, name: str):
|
|
"""allow attribute access to get stores"""
|
|
try:
|
|
return self.get(name)
|
|
except (KeyError, ClosedFileError):
|
|
pass
|
|
raise AttributeError(
|
|
f"'{type(self).__name__}' object has no attribute '{name}'"
|
|
)
|
|
|
|
def __contains__(self, key: str) -> bool:
|
|
"""
|
|
check for existence of this key
|
|
can match the exact pathname or the pathnm w/o the leading '/'
|
|
"""
|
|
node = self.get_node(key)
|
|
if node is not None:
|
|
name = node._v_pathname
|
|
if key in (name, name[1:]):
|
|
return True
|
|
return False
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.groups())
|
|
|
|
def __repr__(self) -> str:
|
|
pstr = pprint_thing(self._path)
|
|
return f"{type(self)}\nFile path: {pstr}\n"
|
|
|
|
def __enter__(self) -> Self:
|
|
return self
|
|
|
|
def __exit__(
|
|
self,
|
|
exc_type: type[BaseException] | None,
|
|
exc_value: BaseException | None,
|
|
traceback: TracebackType | None,
|
|
) -> None:
|
|
self.close()
|
|
|
|
def keys(self, include: str = "pandas") -> list[str]:
|
|
"""
|
|
Return a list of keys corresponding to objects stored in HDFStore.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
include : str, default 'pandas'
|
|
When kind equals 'pandas' return pandas objects.
|
|
When kind equals 'native' return native HDF5 Table objects.
|
|
|
|
Returns
|
|
-------
|
|
list
|
|
List of ABSOLUTE path-names (e.g. have the leading '/').
|
|
|
|
Raises
|
|
------
|
|
raises ValueError if kind has an illegal value
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df) # doctest: +SKIP
|
|
>>> store.get('data') # doctest: +SKIP
|
|
>>> print(store.keys()) # doctest: +SKIP
|
|
['/data1', '/data2']
|
|
>>> store.close() # doctest: +SKIP
|
|
"""
|
|
if include == "pandas":
|
|
return [n._v_pathname for n in self.groups()]
|
|
|
|
elif include == "native":
|
|
assert self._handle is not None # mypy
|
|
return [
|
|
n._v_pathname for n in self._handle.walk_nodes("/", classname="Table")
|
|
]
|
|
raise ValueError(
|
|
f"`include` should be either 'pandas' or 'native' but is '{include}'"
|
|
)
|
|
|
|
def __iter__(self) -> Iterator[str]:
|
|
return iter(self.keys())
|
|
|
|
def items(self) -> Iterator[tuple[str, list]]:
|
|
"""
|
|
iterate on key->group
|
|
"""
|
|
for g in self.groups():
|
|
yield g._v_pathname, g
|
|
|
|
def open(self, mode: str = "a", **kwargs) -> None:
|
|
"""
|
|
Open the file in the specified mode
|
|
|
|
Parameters
|
|
----------
|
|
mode : {'a', 'w', 'r', 'r+'}, default 'a'
|
|
See HDFStore docstring or tables.open_file for info about modes
|
|
**kwargs
|
|
These parameters will be passed to the PyTables open_file method.
|
|
"""
|
|
tables = _tables()
|
|
|
|
if self._mode != mode:
|
|
# if we are changing a write mode to read, ok
|
|
if self._mode in ["a", "w"] and mode in ["r", "r+"]:
|
|
pass
|
|
elif mode in ["w"]:
|
|
# this would truncate, raise here
|
|
if self.is_open:
|
|
raise PossibleDataLossError(
|
|
f"Re-opening the file [{self._path}] with mode [{self._mode}] "
|
|
"will delete the current file!"
|
|
)
|
|
|
|
self._mode = mode
|
|
|
|
# close and reopen the handle
|
|
if self.is_open:
|
|
self.close()
|
|
|
|
if self._complevel and self._complevel > 0:
|
|
self._filters = _tables().Filters(
|
|
self._complevel, self._complib, fletcher32=self._fletcher32
|
|
)
|
|
|
|
if _table_file_open_policy_is_strict and self.is_open:
|
|
msg = (
|
|
"Cannot open HDF5 file, which is already opened, "
|
|
"even in read-only mode."
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
self._handle = tables.open_file(self._path, self._mode, **kwargs)
|
|
|
|
def close(self) -> None:
|
|
"""
|
|
Close the PyTables file handle
|
|
"""
|
|
if self._handle is not None:
|
|
self._handle.close()
|
|
self._handle = None
|
|
|
|
@property
|
|
def is_open(self) -> bool:
|
|
"""
|
|
return a boolean indicating whether the file is open
|
|
"""
|
|
if self._handle is None:
|
|
return False
|
|
return bool(self._handle.isopen)
|
|
|
|
def flush(self, fsync: bool = False) -> None:
|
|
"""
|
|
Force all buffered modifications to be written to disk.
|
|
|
|
Parameters
|
|
----------
|
|
fsync : bool (default False)
|
|
call ``os.fsync()`` on the file handle to force writing to disk.
|
|
|
|
Notes
|
|
-----
|
|
Without ``fsync=True``, flushing may not guarantee that the OS writes
|
|
to disk. With fsync, the operation will block until the OS claims the
|
|
file has been written; however, other caching layers may still
|
|
interfere.
|
|
"""
|
|
if self._handle is not None:
|
|
self._handle.flush()
|
|
if fsync:
|
|
with suppress(OSError):
|
|
os.fsync(self._handle.fileno())
|
|
|
|
def get(self, key: str):
|
|
"""
|
|
Retrieve pandas object stored in file.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
|
|
Returns
|
|
-------
|
|
object
|
|
Same type as object stored in file.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df) # doctest: +SKIP
|
|
>>> store.get('data') # doctest: +SKIP
|
|
>>> store.close() # doctest: +SKIP
|
|
"""
|
|
with patch_pickle():
|
|
# GH#31167 Without this patch, pickle doesn't know how to unpickle
|
|
# old DateOffset objects now that they are cdef classes.
|
|
group = self.get_node(key)
|
|
if group is None:
|
|
raise KeyError(f"No object named {key} in the file")
|
|
return self._read_group(group)
|
|
|
|
def select(
|
|
self,
|
|
key: str,
|
|
where=None,
|
|
start=None,
|
|
stop=None,
|
|
columns=None,
|
|
iterator: bool = False,
|
|
chunksize: int | None = None,
|
|
auto_close: bool = False,
|
|
):
|
|
"""
|
|
Retrieve pandas object stored in file, optionally based on where criteria.
|
|
|
|
.. warning::
|
|
|
|
Pandas uses PyTables for reading and writing HDF5 files, which allows
|
|
serializing object-dtype data with pickle when using the "fixed" format.
|
|
Loading pickled data received from untrusted sources can be unsafe.
|
|
|
|
See: https://docs.python.org/3/library/pickle.html for more.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
Object being retrieved from file.
|
|
where : list or None
|
|
List of Term (or convertible) objects, optional.
|
|
start : int or None
|
|
Row number to start selection.
|
|
stop : int, default None
|
|
Row number to stop selection.
|
|
columns : list or None
|
|
A list of columns that if not None, will limit the return columns.
|
|
iterator : bool or False
|
|
Returns an iterator.
|
|
chunksize : int or None
|
|
Number or rows to include in iteration, return an iterator.
|
|
auto_close : bool or False
|
|
Should automatically close the store when finished.
|
|
|
|
Returns
|
|
-------
|
|
object
|
|
Retrieved object from file.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df) # doctest: +SKIP
|
|
>>> store.get('data') # doctest: +SKIP
|
|
>>> print(store.keys()) # doctest: +SKIP
|
|
['/data1', '/data2']
|
|
>>> store.select('/data1') # doctest: +SKIP
|
|
A B
|
|
0 1 2
|
|
1 3 4
|
|
>>> store.select('/data1', where='columns == A') # doctest: +SKIP
|
|
A
|
|
0 1
|
|
1 3
|
|
>>> store.close() # doctest: +SKIP
|
|
"""
|
|
group = self.get_node(key)
|
|
if group is None:
|
|
raise KeyError(f"No object named {key} in the file")
|
|
|
|
# create the storer and axes
|
|
where = _ensure_term(where, scope_level=1)
|
|
s = self._create_storer(group)
|
|
s.infer_axes()
|
|
|
|
# function to call on iteration
|
|
def func(_start, _stop, _where):
|
|
return s.read(start=_start, stop=_stop, where=_where, columns=columns)
|
|
|
|
# create the iterator
|
|
it = TableIterator(
|
|
self,
|
|
s,
|
|
func,
|
|
where=where,
|
|
nrows=s.nrows,
|
|
start=start,
|
|
stop=stop,
|
|
iterator=iterator,
|
|
chunksize=chunksize,
|
|
auto_close=auto_close,
|
|
)
|
|
|
|
return it.get_result()
|
|
|
|
def select_as_coordinates(
|
|
self,
|
|
key: str,
|
|
where=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
"""
|
|
return the selection as an Index
|
|
|
|
.. warning::
|
|
|
|
Pandas uses PyTables for reading and writing HDF5 files, which allows
|
|
serializing object-dtype data with pickle when using the "fixed" format.
|
|
Loading pickled data received from untrusted sources can be unsafe.
|
|
|
|
See: https://docs.python.org/3/library/pickle.html for more.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
where : list of Term (or convertible) objects, optional
|
|
start : integer (defaults to None), row number to start selection
|
|
stop : integer (defaults to None), row number to stop selection
|
|
"""
|
|
where = _ensure_term(where, scope_level=1)
|
|
tbl = self.get_storer(key)
|
|
if not isinstance(tbl, Table):
|
|
raise TypeError("can only read_coordinates with a table")
|
|
return tbl.read_coordinates(where=where, start=start, stop=stop)
|
|
|
|
def select_column(
|
|
self,
|
|
key: str,
|
|
column: str,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
"""
|
|
return a single column from the table. This is generally only useful to
|
|
select an indexable
|
|
|
|
.. warning::
|
|
|
|
Pandas uses PyTables for reading and writing HDF5 files, which allows
|
|
serializing object-dtype data with pickle when using the "fixed" format.
|
|
Loading pickled data received from untrusted sources can be unsafe.
|
|
|
|
See: https://docs.python.org/3/library/pickle.html for more.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
column : str
|
|
The column of interest.
|
|
start : int or None, default None
|
|
stop : int or None, default None
|
|
|
|
Raises
|
|
------
|
|
raises KeyError if the column is not found (or key is not a valid
|
|
store)
|
|
raises ValueError if the column can not be extracted individually (it
|
|
is part of a data block)
|
|
|
|
"""
|
|
tbl = self.get_storer(key)
|
|
if not isinstance(tbl, Table):
|
|
raise TypeError("can only read_column with a table")
|
|
return tbl.read_column(column=column, start=start, stop=stop)
|
|
|
|
def select_as_multiple(
|
|
self,
|
|
keys,
|
|
where=None,
|
|
selector=None,
|
|
columns=None,
|
|
start=None,
|
|
stop=None,
|
|
iterator: bool = False,
|
|
chunksize: int | None = None,
|
|
auto_close: bool = False,
|
|
):
|
|
"""
|
|
Retrieve pandas objects from multiple tables.
|
|
|
|
.. warning::
|
|
|
|
Pandas uses PyTables for reading and writing HDF5 files, which allows
|
|
serializing object-dtype data with pickle when using the "fixed" format.
|
|
Loading pickled data received from untrusted sources can be unsafe.
|
|
|
|
See: https://docs.python.org/3/library/pickle.html for more.
|
|
|
|
Parameters
|
|
----------
|
|
keys : a list of the tables
|
|
selector : the table to apply the where criteria (defaults to keys[0]
|
|
if not supplied)
|
|
columns : the columns I want back
|
|
start : integer (defaults to None), row number to start selection
|
|
stop : integer (defaults to None), row number to stop selection
|
|
iterator : bool, return an iterator, default False
|
|
chunksize : nrows to include in iteration, return an iterator
|
|
auto_close : bool, default False
|
|
Should automatically close the store when finished.
|
|
|
|
Raises
|
|
------
|
|
raises KeyError if keys or selector is not found or keys is empty
|
|
raises TypeError if keys is not a list or tuple
|
|
raises ValueError if the tables are not ALL THE SAME DIMENSIONS
|
|
"""
|
|
# default to single select
|
|
where = _ensure_term(where, scope_level=1)
|
|
if isinstance(keys, (list, tuple)) and len(keys) == 1:
|
|
keys = keys[0]
|
|
if isinstance(keys, str):
|
|
return self.select(
|
|
key=keys,
|
|
where=where,
|
|
columns=columns,
|
|
start=start,
|
|
stop=stop,
|
|
iterator=iterator,
|
|
chunksize=chunksize,
|
|
auto_close=auto_close,
|
|
)
|
|
|
|
if not isinstance(keys, (list, tuple)):
|
|
raise TypeError("keys must be a list/tuple")
|
|
|
|
if not len(keys):
|
|
raise ValueError("keys must have a non-zero length")
|
|
|
|
if selector is None:
|
|
selector = keys[0]
|
|
|
|
# collect the tables
|
|
tbls = [self.get_storer(k) for k in keys]
|
|
s = self.get_storer(selector)
|
|
|
|
# validate rows
|
|
nrows = None
|
|
for t, k in itertools.chain([(s, selector)], zip(tbls, keys)):
|
|
if t is None:
|
|
raise KeyError(f"Invalid table [{k}]")
|
|
if not t.is_table:
|
|
raise TypeError(
|
|
f"object [{t.pathname}] is not a table, and cannot be used in all "
|
|
"select as multiple"
|
|
)
|
|
|
|
if nrows is None:
|
|
nrows = t.nrows
|
|
elif t.nrows != nrows:
|
|
raise ValueError("all tables must have exactly the same nrows!")
|
|
|
|
# The isinstance checks here are redundant with the check above,
|
|
# but necessary for mypy; see GH#29757
|
|
_tbls = [x for x in tbls if isinstance(x, Table)]
|
|
|
|
# axis is the concentration axes
|
|
axis = {t.non_index_axes[0][0] for t in _tbls}.pop()
|
|
|
|
def func(_start, _stop, _where):
|
|
# retrieve the objs, _where is always passed as a set of
|
|
# coordinates here
|
|
objs = [
|
|
t.read(where=_where, columns=columns, start=_start, stop=_stop)
|
|
for t in tbls
|
|
]
|
|
|
|
# concat and return
|
|
return concat(objs, axis=axis, verify_integrity=False)._consolidate()
|
|
|
|
# create the iterator
|
|
it = TableIterator(
|
|
self,
|
|
s,
|
|
func,
|
|
where=where,
|
|
nrows=nrows,
|
|
start=start,
|
|
stop=stop,
|
|
iterator=iterator,
|
|
chunksize=chunksize,
|
|
auto_close=auto_close,
|
|
)
|
|
|
|
return it.get_result(coordinates=True)
|
|
|
|
def put(
|
|
self,
|
|
key: str,
|
|
value: DataFrame | Series,
|
|
format=None,
|
|
index: bool = True,
|
|
append: bool = False,
|
|
complib=None,
|
|
complevel: int | None = None,
|
|
min_itemsize: int | dict[str, int] | None = None,
|
|
nan_rep=None,
|
|
data_columns: Literal[True] | list[str] | None = None,
|
|
encoding=None,
|
|
errors: str = "strict",
|
|
track_times: bool = True,
|
|
dropna: bool = False,
|
|
) -> None:
|
|
"""
|
|
Store object in HDFStore.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
value : {Series, DataFrame}
|
|
format : 'fixed(f)|table(t)', default is 'fixed'
|
|
Format to use when storing object in HDFStore. Value can be one of:
|
|
|
|
``'fixed'``
|
|
Fixed format. Fast writing/reading. Not-appendable, nor searchable.
|
|
``'table'``
|
|
Table format. Write as a PyTables Table structure which may perform
|
|
worse but allow more flexible operations like searching / selecting
|
|
subsets of the data.
|
|
index : bool, default True
|
|
Write DataFrame index as a column.
|
|
append : bool, default False
|
|
This will force Table format, append the input data to the existing.
|
|
data_columns : list of columns or True, default None
|
|
List of columns to create as data columns, or True to use all columns.
|
|
See `here
|
|
<https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
|
|
encoding : str, default None
|
|
Provide an encoding for strings.
|
|
track_times : bool, default True
|
|
Parameter is propagated to 'create_table' method of 'PyTables'.
|
|
If set to False it enables to have the same h5 files (same hashes)
|
|
independent on creation time.
|
|
dropna : bool, default False, optional
|
|
Remove missing values.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df) # doctest: +SKIP
|
|
"""
|
|
if format is None:
|
|
format = get_option("io.hdf.default_format") or "fixed"
|
|
format = self._validate_format(format)
|
|
self._write_to_group(
|
|
key,
|
|
value,
|
|
format=format,
|
|
index=index,
|
|
append=append,
|
|
complib=complib,
|
|
complevel=complevel,
|
|
min_itemsize=min_itemsize,
|
|
nan_rep=nan_rep,
|
|
data_columns=data_columns,
|
|
encoding=encoding,
|
|
errors=errors,
|
|
track_times=track_times,
|
|
dropna=dropna,
|
|
)
|
|
|
|
def remove(self, key: str, where=None, start=None, stop=None) -> None:
|
|
"""
|
|
Remove pandas object partially by specifying the where condition
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
Node to remove or delete rows from
|
|
where : list of Term (or convertible) objects, optional
|
|
start : integer (defaults to None), row number to start selection
|
|
stop : integer (defaults to None), row number to stop selection
|
|
|
|
Returns
|
|
-------
|
|
number of rows removed (or None if not a Table)
|
|
|
|
Raises
|
|
------
|
|
raises KeyError if key is not a valid store
|
|
|
|
"""
|
|
where = _ensure_term(where, scope_level=1)
|
|
try:
|
|
s = self.get_storer(key)
|
|
except KeyError:
|
|
# the key is not a valid store, re-raising KeyError
|
|
raise
|
|
except AssertionError:
|
|
# surface any assertion errors for e.g. debugging
|
|
raise
|
|
except Exception as err:
|
|
# In tests we get here with ClosedFileError, TypeError, and
|
|
# _table_mod.NoSuchNodeError. TODO: Catch only these?
|
|
|
|
if where is not None:
|
|
raise ValueError(
|
|
"trying to remove a node with a non-None where clause!"
|
|
) from err
|
|
|
|
# we are actually trying to remove a node (with children)
|
|
node = self.get_node(key)
|
|
if node is not None:
|
|
node._f_remove(recursive=True)
|
|
return None
|
|
|
|
# remove the node
|
|
if com.all_none(where, start, stop):
|
|
s.group._f_remove(recursive=True)
|
|
|
|
# delete from the table
|
|
else:
|
|
if not s.is_table:
|
|
raise ValueError(
|
|
"can only remove with where on objects written as tables"
|
|
)
|
|
return s.delete(where=where, start=start, stop=stop)
|
|
|
|
def append(
|
|
self,
|
|
key: str,
|
|
value: DataFrame | Series,
|
|
format=None,
|
|
axes=None,
|
|
index: bool | list[str] = True,
|
|
append: bool = True,
|
|
complib=None,
|
|
complevel: int | None = None,
|
|
columns=None,
|
|
min_itemsize: int | dict[str, int] | None = None,
|
|
nan_rep=None,
|
|
chunksize: int | None = None,
|
|
expectedrows=None,
|
|
dropna: bool | None = None,
|
|
data_columns: Literal[True] | list[str] | None = None,
|
|
encoding=None,
|
|
errors: str = "strict",
|
|
) -> None:
|
|
"""
|
|
Append to Table in file.
|
|
|
|
Node must already exist and be Table format.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
value : {Series, DataFrame}
|
|
format : 'table' is the default
|
|
Format to use when storing object in HDFStore. Value can be one of:
|
|
|
|
``'table'``
|
|
Table format. Write as a PyTables Table structure which may perform
|
|
worse but allow more flexible operations like searching / selecting
|
|
subsets of the data.
|
|
index : bool, default True
|
|
Write DataFrame index as a column.
|
|
append : bool, default True
|
|
Append the input data to the existing.
|
|
data_columns : list of columns, or True, default None
|
|
List of columns to create as indexed data columns for on-disk
|
|
queries, or True to use all columns. By default only the axes
|
|
of the object are indexed. See `here
|
|
<https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
|
|
min_itemsize : dict of columns that specify minimum str sizes
|
|
nan_rep : str to use as str nan representation
|
|
chunksize : size to chunk the writing
|
|
expectedrows : expected TOTAL row size of this table
|
|
encoding : default None, provide an encoding for str
|
|
dropna : bool, default False, optional
|
|
Do not write an ALL nan row to the store settable
|
|
by the option 'io.hdf.dropna_table'.
|
|
|
|
Notes
|
|
-----
|
|
Does *not* check if data being appended overlaps with existing
|
|
data in the table, so be careful
|
|
|
|
Examples
|
|
--------
|
|
>>> df1 = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df1, format='table') # doctest: +SKIP
|
|
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['A', 'B'])
|
|
>>> store.append('data', df2) # doctest: +SKIP
|
|
>>> store.close() # doctest: +SKIP
|
|
A B
|
|
0 1 2
|
|
1 3 4
|
|
0 5 6
|
|
1 7 8
|
|
"""
|
|
if columns is not None:
|
|
raise TypeError(
|
|
"columns is not a supported keyword in append, try data_columns"
|
|
)
|
|
|
|
if dropna is None:
|
|
dropna = get_option("io.hdf.dropna_table")
|
|
if format is None:
|
|
format = get_option("io.hdf.default_format") or "table"
|
|
format = self._validate_format(format)
|
|
self._write_to_group(
|
|
key,
|
|
value,
|
|
format=format,
|
|
axes=axes,
|
|
index=index,
|
|
append=append,
|
|
complib=complib,
|
|
complevel=complevel,
|
|
min_itemsize=min_itemsize,
|
|
nan_rep=nan_rep,
|
|
chunksize=chunksize,
|
|
expectedrows=expectedrows,
|
|
dropna=dropna,
|
|
data_columns=data_columns,
|
|
encoding=encoding,
|
|
errors=errors,
|
|
)
|
|
|
|
def append_to_multiple(
|
|
self,
|
|
d: dict,
|
|
value,
|
|
selector,
|
|
data_columns=None,
|
|
axes=None,
|
|
dropna: bool = False,
|
|
**kwargs,
|
|
) -> None:
|
|
"""
|
|
Append to multiple tables
|
|
|
|
Parameters
|
|
----------
|
|
d : a dict of table_name to table_columns, None is acceptable as the
|
|
values of one node (this will get all the remaining columns)
|
|
value : a pandas object
|
|
selector : a string that designates the indexable table; all of its
|
|
columns will be designed as data_columns, unless data_columns is
|
|
passed, in which case these are used
|
|
data_columns : list of columns to create as data columns, or True to
|
|
use all columns
|
|
dropna : if evaluates to True, drop rows from all tables if any single
|
|
row in each table has all NaN. Default False.
|
|
|
|
Notes
|
|
-----
|
|
axes parameter is currently not accepted
|
|
|
|
"""
|
|
if axes is not None:
|
|
raise TypeError(
|
|
"axes is currently not accepted as a parameter to append_to_multiple; "
|
|
"you can create the tables independently instead"
|
|
)
|
|
|
|
if not isinstance(d, dict):
|
|
raise ValueError(
|
|
"append_to_multiple must have a dictionary specified as the "
|
|
"way to split the value"
|
|
)
|
|
|
|
if selector not in d:
|
|
raise ValueError(
|
|
"append_to_multiple requires a selector that is in passed dict"
|
|
)
|
|
|
|
# figure out the splitting axis (the non_index_axis)
|
|
axis = next(iter(set(range(value.ndim)) - set(_AXES_MAP[type(value)])))
|
|
|
|
# figure out how to split the value
|
|
remain_key = None
|
|
remain_values: list = []
|
|
for k, v in d.items():
|
|
if v is None:
|
|
if remain_key is not None:
|
|
raise ValueError(
|
|
"append_to_multiple can only have one value in d that is None"
|
|
)
|
|
remain_key = k
|
|
else:
|
|
remain_values.extend(v)
|
|
if remain_key is not None:
|
|
ordered = value.axes[axis]
|
|
ordd = ordered.difference(Index(remain_values))
|
|
ordd = sorted(ordered.get_indexer(ordd))
|
|
d[remain_key] = ordered.take(ordd)
|
|
|
|
# data_columns
|
|
if data_columns is None:
|
|
data_columns = d[selector]
|
|
|
|
# ensure rows are synchronized across the tables
|
|
if dropna:
|
|
idxs = (value[cols].dropna(how="all").index for cols in d.values())
|
|
valid_index = next(idxs)
|
|
for index in idxs:
|
|
valid_index = valid_index.intersection(index)
|
|
value = value.loc[valid_index]
|
|
|
|
min_itemsize = kwargs.pop("min_itemsize", None)
|
|
|
|
# append
|
|
for k, v in d.items():
|
|
dc = data_columns if k == selector else None
|
|
|
|
# compute the val
|
|
val = value.reindex(v, axis=axis)
|
|
|
|
filtered = (
|
|
{key: value for (key, value) in min_itemsize.items() if key in v}
|
|
if min_itemsize is not None
|
|
else None
|
|
)
|
|
self.append(k, val, data_columns=dc, min_itemsize=filtered, **kwargs)
|
|
|
|
def create_table_index(
|
|
self,
|
|
key: str,
|
|
columns=None,
|
|
optlevel: int | None = None,
|
|
kind: str | None = None,
|
|
) -> None:
|
|
"""
|
|
Create a pytables index on the table.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
columns : None, bool, or listlike[str]
|
|
Indicate which columns to create an index on.
|
|
|
|
* False : Do not create any indexes.
|
|
* True : Create indexes on all columns.
|
|
* None : Create indexes on all columns.
|
|
* listlike : Create indexes on the given columns.
|
|
|
|
optlevel : int or None, default None
|
|
Optimization level, if None, pytables defaults to 6.
|
|
kind : str or None, default None
|
|
Kind of index, if None, pytables defaults to "medium".
|
|
|
|
Raises
|
|
------
|
|
TypeError: raises if the node is not a table
|
|
"""
|
|
# version requirements
|
|
_tables()
|
|
s = self.get_storer(key)
|
|
if s is None:
|
|
return
|
|
|
|
if not isinstance(s, Table):
|
|
raise TypeError("cannot create table index on a Fixed format store")
|
|
s.create_index(columns=columns, optlevel=optlevel, kind=kind)
|
|
|
|
def groups(self) -> list:
|
|
"""
|
|
Return a list of all the top-level nodes.
|
|
|
|
Each node returned is not a pandas storage object.
|
|
|
|
Returns
|
|
-------
|
|
list
|
|
List of objects.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df) # doctest: +SKIP
|
|
>>> print(store.groups()) # doctest: +SKIP
|
|
>>> store.close() # doctest: +SKIP
|
|
[/data (Group) ''
|
|
children := ['axis0' (Array), 'axis1' (Array), 'block0_values' (Array),
|
|
'block0_items' (Array)]]
|
|
"""
|
|
_tables()
|
|
self._check_if_open()
|
|
assert self._handle is not None # for mypy
|
|
assert _table_mod is not None # for mypy
|
|
return [
|
|
g
|
|
for g in self._handle.walk_groups()
|
|
if (
|
|
not isinstance(g, _table_mod.link.Link)
|
|
and (
|
|
getattr(g._v_attrs, "pandas_type", None)
|
|
or getattr(g, "table", None)
|
|
or (isinstance(g, _table_mod.table.Table) and g._v_name != "table")
|
|
)
|
|
)
|
|
]
|
|
|
|
def walk(self, where: str = "/") -> Iterator[tuple[str, list[str], list[str]]]:
|
|
"""
|
|
Walk the pytables group hierarchy for pandas objects.
|
|
|
|
This generator will yield the group path, subgroups and pandas object
|
|
names for each group.
|
|
|
|
Any non-pandas PyTables objects that are not a group will be ignored.
|
|
|
|
The `where` group itself is listed first (preorder), then each of its
|
|
child groups (following an alphanumerical order) is also traversed,
|
|
following the same procedure.
|
|
|
|
Parameters
|
|
----------
|
|
where : str, default "/"
|
|
Group where to start walking.
|
|
|
|
Yields
|
|
------
|
|
path : str
|
|
Full path to a group (without trailing '/').
|
|
groups : list
|
|
Names (strings) of the groups contained in `path`.
|
|
leaves : list
|
|
Names (strings) of the pandas objects contained in `path`.
|
|
|
|
Examples
|
|
--------
|
|
>>> df1 = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df1, format='table') # doctest: +SKIP
|
|
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['A', 'B'])
|
|
>>> store.append('data', df2) # doctest: +SKIP
|
|
>>> store.close() # doctest: +SKIP
|
|
>>> for group in store.walk(): # doctest: +SKIP
|
|
... print(group) # doctest: +SKIP
|
|
>>> store.close() # doctest: +SKIP
|
|
"""
|
|
_tables()
|
|
self._check_if_open()
|
|
assert self._handle is not None # for mypy
|
|
assert _table_mod is not None # for mypy
|
|
|
|
for g in self._handle.walk_groups(where):
|
|
if getattr(g._v_attrs, "pandas_type", None) is not None:
|
|
continue
|
|
|
|
groups = []
|
|
leaves = []
|
|
for child in g._v_children.values():
|
|
pandas_type = getattr(child._v_attrs, "pandas_type", None)
|
|
if pandas_type is None:
|
|
if isinstance(child, _table_mod.group.Group):
|
|
groups.append(child._v_name)
|
|
else:
|
|
leaves.append(child._v_name)
|
|
|
|
yield (g._v_pathname.rstrip("/"), groups, leaves)
|
|
|
|
def get_node(self, key: str) -> Node | None:
|
|
"""return the node with the key or None if it does not exist"""
|
|
self._check_if_open()
|
|
if not key.startswith("/"):
|
|
key = "/" + key
|
|
|
|
assert self._handle is not None
|
|
assert _table_mod is not None # for mypy
|
|
try:
|
|
node = self._handle.get_node(self.root, key)
|
|
except _table_mod.exceptions.NoSuchNodeError:
|
|
return None
|
|
|
|
assert isinstance(node, _table_mod.Node), type(node)
|
|
return node
|
|
|
|
def get_storer(self, key: str) -> GenericFixed | Table:
|
|
"""return the storer object for a key, raise if not in the file"""
|
|
group = self.get_node(key)
|
|
if group is None:
|
|
raise KeyError(f"No object named {key} in the file")
|
|
|
|
s = self._create_storer(group)
|
|
s.infer_axes()
|
|
return s
|
|
|
|
def copy(
|
|
self,
|
|
file,
|
|
mode: str = "w",
|
|
propindexes: bool = True,
|
|
keys=None,
|
|
complib=None,
|
|
complevel: int | None = None,
|
|
fletcher32: bool = False,
|
|
overwrite: bool = True,
|
|
) -> HDFStore:
|
|
"""
|
|
Copy the existing store to a new file, updating in place.
|
|
|
|
Parameters
|
|
----------
|
|
propindexes : bool, default True
|
|
Restore indexes in copied file.
|
|
keys : list, optional
|
|
List of keys to include in the copy (defaults to all).
|
|
overwrite : bool, default True
|
|
Whether to overwrite (remove and replace) existing nodes in the new store.
|
|
mode, complib, complevel, fletcher32 same as in HDFStore.__init__
|
|
|
|
Returns
|
|
-------
|
|
open file handle of the new store
|
|
"""
|
|
new_store = HDFStore(
|
|
file, mode=mode, complib=complib, complevel=complevel, fletcher32=fletcher32
|
|
)
|
|
if keys is None:
|
|
keys = list(self.keys())
|
|
if not isinstance(keys, (tuple, list)):
|
|
keys = [keys]
|
|
for k in keys:
|
|
s = self.get_storer(k)
|
|
if s is not None:
|
|
if k in new_store:
|
|
if overwrite:
|
|
new_store.remove(k)
|
|
|
|
data = self.select(k)
|
|
if isinstance(s, Table):
|
|
index: bool | list[str] = False
|
|
if propindexes:
|
|
index = [a.name for a in s.axes if a.is_indexed]
|
|
new_store.append(
|
|
k,
|
|
data,
|
|
index=index,
|
|
data_columns=getattr(s, "data_columns", None),
|
|
encoding=s.encoding,
|
|
)
|
|
else:
|
|
new_store.put(k, data, encoding=s.encoding)
|
|
|
|
return new_store
|
|
|
|
def info(self) -> str:
|
|
"""
|
|
Print detailed information on the store.
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
|
|
>>> store = pd.HDFStore("store.h5", 'w') # doctest: +SKIP
|
|
>>> store.put('data', df) # doctest: +SKIP
|
|
>>> print(store.info()) # doctest: +SKIP
|
|
>>> store.close() # doctest: +SKIP
|
|
<class 'pandas.io.pytables.HDFStore'>
|
|
File path: store.h5
|
|
/data frame (shape->[2,2])
|
|
"""
|
|
path = pprint_thing(self._path)
|
|
output = f"{type(self)}\nFile path: {path}\n"
|
|
|
|
if self.is_open:
|
|
lkeys = sorted(self.keys())
|
|
if len(lkeys):
|
|
keys = []
|
|
values = []
|
|
|
|
for k in lkeys:
|
|
try:
|
|
s = self.get_storer(k)
|
|
if s is not None:
|
|
keys.append(pprint_thing(s.pathname or k))
|
|
values.append(pprint_thing(s or "invalid_HDFStore node"))
|
|
except AssertionError:
|
|
# surface any assertion errors for e.g. debugging
|
|
raise
|
|
except Exception as detail:
|
|
keys.append(k)
|
|
dstr = pprint_thing(detail)
|
|
values.append(f"[invalid_HDFStore node: {dstr}]")
|
|
|
|
output += adjoin(12, keys, values)
|
|
else:
|
|
output += "Empty"
|
|
else:
|
|
output += "File is CLOSED"
|
|
|
|
return output
|
|
|
|
# ------------------------------------------------------------------------
|
|
# private methods
|
|
|
|
def _check_if_open(self) -> None:
|
|
if not self.is_open:
|
|
raise ClosedFileError(f"{self._path} file is not open!")
|
|
|
|
def _validate_format(self, format: str) -> str:
|
|
"""validate / deprecate formats"""
|
|
# validate
|
|
try:
|
|
format = _FORMAT_MAP[format.lower()]
|
|
except KeyError as err:
|
|
raise TypeError(f"invalid HDFStore format specified [{format}]") from err
|
|
|
|
return format
|
|
|
|
def _create_storer(
|
|
self,
|
|
group,
|
|
format=None,
|
|
value: DataFrame | Series | None = None,
|
|
encoding: str = "UTF-8",
|
|
errors: str = "strict",
|
|
) -> GenericFixed | Table:
|
|
"""return a suitable class to operate"""
|
|
cls: type[GenericFixed | Table]
|
|
|
|
if value is not None and not isinstance(value, (Series, DataFrame)):
|
|
raise TypeError("value must be None, Series, or DataFrame")
|
|
|
|
pt = _ensure_decoded(getattr(group._v_attrs, "pandas_type", None))
|
|
tt = _ensure_decoded(getattr(group._v_attrs, "table_type", None))
|
|
|
|
# infer the pt from the passed value
|
|
if pt is None:
|
|
if value is None:
|
|
_tables()
|
|
assert _table_mod is not None # for mypy
|
|
if getattr(group, "table", None) or isinstance(
|
|
group, _table_mod.table.Table
|
|
):
|
|
pt = "frame_table"
|
|
tt = "generic_table"
|
|
else:
|
|
raise TypeError(
|
|
"cannot create a storer if the object is not existing "
|
|
"nor a value are passed"
|
|
)
|
|
else:
|
|
if isinstance(value, Series):
|
|
pt = "series"
|
|
else:
|
|
pt = "frame"
|
|
|
|
# we are actually a table
|
|
if format == "table":
|
|
pt += "_table"
|
|
|
|
# a storer node
|
|
if "table" not in pt:
|
|
_STORER_MAP = {"series": SeriesFixed, "frame": FrameFixed}
|
|
try:
|
|
cls = _STORER_MAP[pt]
|
|
except KeyError as err:
|
|
raise TypeError(
|
|
f"cannot properly create the storer for: [_STORER_MAP] [group->"
|
|
f"{group},value->{type(value)},format->{format}"
|
|
) from err
|
|
return cls(self, group, encoding=encoding, errors=errors)
|
|
|
|
# existing node (and must be a table)
|
|
if tt is None:
|
|
# if we are a writer, determine the tt
|
|
if value is not None:
|
|
if pt == "series_table":
|
|
index = getattr(value, "index", None)
|
|
if index is not None:
|
|
if index.nlevels == 1:
|
|
tt = "appendable_series"
|
|
elif index.nlevels > 1:
|
|
tt = "appendable_multiseries"
|
|
elif pt == "frame_table":
|
|
index = getattr(value, "index", None)
|
|
if index is not None:
|
|
if index.nlevels == 1:
|
|
tt = "appendable_frame"
|
|
elif index.nlevels > 1:
|
|
tt = "appendable_multiframe"
|
|
|
|
_TABLE_MAP = {
|
|
"generic_table": GenericTable,
|
|
"appendable_series": AppendableSeriesTable,
|
|
"appendable_multiseries": AppendableMultiSeriesTable,
|
|
"appendable_frame": AppendableFrameTable,
|
|
"appendable_multiframe": AppendableMultiFrameTable,
|
|
"worm": WORMTable,
|
|
}
|
|
try:
|
|
cls = _TABLE_MAP[tt]
|
|
except KeyError as err:
|
|
raise TypeError(
|
|
f"cannot properly create the storer for: [_TABLE_MAP] [group->"
|
|
f"{group},value->{type(value)},format->{format}"
|
|
) from err
|
|
|
|
return cls(self, group, encoding=encoding, errors=errors)
|
|
|
|
def _write_to_group(
|
|
self,
|
|
key: str,
|
|
value: DataFrame | Series,
|
|
format,
|
|
axes=None,
|
|
index: bool | list[str] = True,
|
|
append: bool = False,
|
|
complib=None,
|
|
complevel: int | None = None,
|
|
fletcher32=None,
|
|
min_itemsize: int | dict[str, int] | None = None,
|
|
chunksize: int | None = None,
|
|
expectedrows=None,
|
|
dropna: bool = False,
|
|
nan_rep=None,
|
|
data_columns=None,
|
|
encoding=None,
|
|
errors: str = "strict",
|
|
track_times: bool = True,
|
|
) -> None:
|
|
# we don't want to store a table node at all if our object is 0-len
|
|
# as there are not dtypes
|
|
if getattr(value, "empty", None) and (format == "table" or append):
|
|
return
|
|
|
|
group = self._identify_group(key, append)
|
|
|
|
s = self._create_storer(group, format, value, encoding=encoding, errors=errors)
|
|
if append:
|
|
# raise if we are trying to append to a Fixed format,
|
|
# or a table that exists (and we are putting)
|
|
if not s.is_table or (s.is_table and format == "fixed" and s.is_exists):
|
|
raise ValueError("Can only append to Tables")
|
|
if not s.is_exists:
|
|
s.set_object_info()
|
|
else:
|
|
s.set_object_info()
|
|
|
|
if not s.is_table and complib:
|
|
raise ValueError("Compression not supported on Fixed format stores")
|
|
|
|
# write the object
|
|
s.write(
|
|
obj=value,
|
|
axes=axes,
|
|
append=append,
|
|
complib=complib,
|
|
complevel=complevel,
|
|
fletcher32=fletcher32,
|
|
min_itemsize=min_itemsize,
|
|
chunksize=chunksize,
|
|
expectedrows=expectedrows,
|
|
dropna=dropna,
|
|
nan_rep=nan_rep,
|
|
data_columns=data_columns,
|
|
track_times=track_times,
|
|
)
|
|
|
|
if isinstance(s, Table) and index:
|
|
s.create_index(columns=index)
|
|
|
|
def _read_group(self, group: Node):
|
|
s = self._create_storer(group)
|
|
s.infer_axes()
|
|
return s.read()
|
|
|
|
def _identify_group(self, key: str, append: bool) -> Node:
|
|
"""Identify HDF5 group based on key, delete/create group if needed."""
|
|
group = self.get_node(key)
|
|
|
|
# we make this assertion for mypy; the get_node call will already
|
|
# have raised if this is incorrect
|
|
assert self._handle is not None
|
|
|
|
# remove the node if we are not appending
|
|
if group is not None and not append:
|
|
self._handle.remove_node(group, recursive=True)
|
|
group = None
|
|
|
|
if group is None:
|
|
group = self._create_nodes_and_group(key)
|
|
|
|
return group
|
|
|
|
def _create_nodes_and_group(self, key: str) -> Node:
|
|
"""Create nodes from key and return group name."""
|
|
# assertion for mypy
|
|
assert self._handle is not None
|
|
|
|
paths = key.split("/")
|
|
# recursively create the groups
|
|
path = "/"
|
|
for p in paths:
|
|
if not len(p):
|
|
continue
|
|
new_path = path
|
|
if not path.endswith("/"):
|
|
new_path += "/"
|
|
new_path += p
|
|
group = self.get_node(new_path)
|
|
if group is None:
|
|
group = self._handle.create_group(path, p)
|
|
path = new_path
|
|
return group
|
|
|
|
|
|
class TableIterator:
|
|
"""
|
|
Define the iteration interface on a table
|
|
|
|
Parameters
|
|
----------
|
|
store : HDFStore
|
|
s : the referred storer
|
|
func : the function to execute the query
|
|
where : the where of the query
|
|
nrows : the rows to iterate on
|
|
start : the passed start value (default is None)
|
|
stop : the passed stop value (default is None)
|
|
iterator : bool, default False
|
|
Whether to use the default iterator.
|
|
chunksize : the passed chunking value (default is 100000)
|
|
auto_close : bool, default False
|
|
Whether to automatically close the store at the end of iteration.
|
|
"""
|
|
|
|
chunksize: int | None
|
|
store: HDFStore
|
|
s: GenericFixed | Table
|
|
|
|
def __init__(
|
|
self,
|
|
store: HDFStore,
|
|
s: GenericFixed | Table,
|
|
func,
|
|
where,
|
|
nrows,
|
|
start=None,
|
|
stop=None,
|
|
iterator: bool = False,
|
|
chunksize: int | None = None,
|
|
auto_close: bool = False,
|
|
) -> None:
|
|
self.store = store
|
|
self.s = s
|
|
self.func = func
|
|
self.where = where
|
|
|
|
# set start/stop if they are not set if we are a table
|
|
if self.s.is_table:
|
|
if nrows is None:
|
|
nrows = 0
|
|
if start is None:
|
|
start = 0
|
|
if stop is None:
|
|
stop = nrows
|
|
stop = min(nrows, stop)
|
|
|
|
self.nrows = nrows
|
|
self.start = start
|
|
self.stop = stop
|
|
|
|
self.coordinates = None
|
|
if iterator or chunksize is not None:
|
|
if chunksize is None:
|
|
chunksize = 100000
|
|
self.chunksize = int(chunksize)
|
|
else:
|
|
self.chunksize = None
|
|
|
|
self.auto_close = auto_close
|
|
|
|
def __iter__(self) -> Iterator:
|
|
# iterate
|
|
current = self.start
|
|
if self.coordinates is None:
|
|
raise ValueError("Cannot iterate until get_result is called.")
|
|
while current < self.stop:
|
|
stop = min(current + self.chunksize, self.stop)
|
|
value = self.func(None, None, self.coordinates[current:stop])
|
|
current = stop
|
|
if value is None or not len(value):
|
|
continue
|
|
|
|
yield value
|
|
|
|
self.close()
|
|
|
|
def close(self) -> None:
|
|
if self.auto_close:
|
|
self.store.close()
|
|
|
|
def get_result(self, coordinates: bool = False):
|
|
# return the actual iterator
|
|
if self.chunksize is not None:
|
|
if not isinstance(self.s, Table):
|
|
raise TypeError("can only use an iterator or chunksize on a table")
|
|
|
|
self.coordinates = self.s.read_coordinates(where=self.where)
|
|
|
|
return self
|
|
|
|
# if specified read via coordinates (necessary for multiple selections
|
|
if coordinates:
|
|
if not isinstance(self.s, Table):
|
|
raise TypeError("can only read_coordinates on a table")
|
|
where = self.s.read_coordinates(
|
|
where=self.where, start=self.start, stop=self.stop
|
|
)
|
|
else:
|
|
where = self.where
|
|
|
|
# directly return the result
|
|
results = self.func(self.start, self.stop, where)
|
|
self.close()
|
|
return results
|
|
|
|
|
|
class IndexCol:
|
|
"""
|
|
an index column description class
|
|
|
|
Parameters
|
|
----------
|
|
axis : axis which I reference
|
|
values : the ndarray like converted values
|
|
kind : a string description of this type
|
|
typ : the pytables type
|
|
pos : the position in the pytables
|
|
|
|
"""
|
|
|
|
is_an_indexable: bool = True
|
|
is_data_indexable: bool = True
|
|
_info_fields = ["freq", "tz", "index_name"]
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
values=None,
|
|
kind=None,
|
|
typ=None,
|
|
cname: str | None = None,
|
|
axis=None,
|
|
pos=None,
|
|
freq=None,
|
|
tz=None,
|
|
index_name=None,
|
|
ordered=None,
|
|
table=None,
|
|
meta=None,
|
|
metadata=None,
|
|
) -> None:
|
|
if not isinstance(name, str):
|
|
raise ValueError("`name` must be a str.")
|
|
|
|
self.values = values
|
|
self.kind = kind
|
|
self.typ = typ
|
|
self.name = name
|
|
self.cname = cname or name
|
|
self.axis = axis
|
|
self.pos = pos
|
|
self.freq = freq
|
|
self.tz = tz
|
|
self.index_name = index_name
|
|
self.ordered = ordered
|
|
self.table = table
|
|
self.meta = meta
|
|
self.metadata = metadata
|
|
|
|
if pos is not None:
|
|
self.set_pos(pos)
|
|
|
|
# These are ensured as long as the passed arguments match the
|
|
# constructor annotations.
|
|
assert isinstance(self.name, str)
|
|
assert isinstance(self.cname, str)
|
|
|
|
@property
|
|
def itemsize(self) -> int:
|
|
# Assumes self.typ has already been initialized
|
|
return self.typ.itemsize
|
|
|
|
@property
|
|
def kind_attr(self) -> str:
|
|
return f"{self.name}_kind"
|
|
|
|
def set_pos(self, pos: int) -> None:
|
|
"""set the position of this column in the Table"""
|
|
self.pos = pos
|
|
if pos is not None and self.typ is not None:
|
|
self.typ._v_pos = pos
|
|
|
|
def __repr__(self) -> str:
|
|
temp = tuple(
|
|
map(pprint_thing, (self.name, self.cname, self.axis, self.pos, self.kind))
|
|
)
|
|
return ",".join(
|
|
[
|
|
f"{key}->{value}"
|
|
for key, value in zip(["name", "cname", "axis", "pos", "kind"], temp)
|
|
]
|
|
)
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
"""compare 2 col items"""
|
|
return all(
|
|
getattr(self, a, None) == getattr(other, a, None)
|
|
for a in ["name", "cname", "axis", "pos"]
|
|
)
|
|
|
|
def __ne__(self, other) -> bool:
|
|
return not self.__eq__(other)
|
|
|
|
@property
|
|
def is_indexed(self) -> bool:
|
|
"""return whether I am an indexed column"""
|
|
if not hasattr(self.table, "cols"):
|
|
# e.g. if infer hasn't been called yet, self.table will be None.
|
|
return False
|
|
return getattr(self.table.cols, self.cname).is_indexed
|
|
|
|
def convert(
|
|
self, values: np.ndarray, nan_rep, encoding: str, errors: str
|
|
) -> tuple[np.ndarray, np.ndarray] | tuple[Index, Index]:
|
|
"""
|
|
Convert the data from this selection to the appropriate pandas type.
|
|
"""
|
|
assert isinstance(values, np.ndarray), type(values)
|
|
|
|
# values is a recarray
|
|
if values.dtype.fields is not None:
|
|
# Copy, otherwise values will be a view
|
|
# preventing the original recarry from being free'ed
|
|
values = values[self.cname].copy()
|
|
|
|
val_kind = _ensure_decoded(self.kind)
|
|
values = _maybe_convert(values, val_kind, encoding, errors)
|
|
kwargs = {}
|
|
kwargs["name"] = _ensure_decoded(self.index_name)
|
|
|
|
if self.freq is not None:
|
|
kwargs["freq"] = _ensure_decoded(self.freq)
|
|
|
|
factory: type[Index | DatetimeIndex] = Index
|
|
if lib.is_np_dtype(values.dtype, "M") or isinstance(
|
|
values.dtype, DatetimeTZDtype
|
|
):
|
|
factory = DatetimeIndex
|
|
elif values.dtype == "i8" and "freq" in kwargs:
|
|
# PeriodIndex data is stored as i8
|
|
# error: Incompatible types in assignment (expression has type
|
|
# "Callable[[Any, KwArg(Any)], PeriodIndex]", variable has type
|
|
# "Union[Type[Index], Type[DatetimeIndex]]")
|
|
factory = lambda x, **kwds: PeriodIndex.from_ordinals( # type: ignore[assignment]
|
|
x, freq=kwds.get("freq", None)
|
|
)._rename(
|
|
kwds["name"]
|
|
)
|
|
|
|
# making an Index instance could throw a number of different errors
|
|
try:
|
|
new_pd_index = factory(values, **kwargs)
|
|
except ValueError:
|
|
# if the output freq is different that what we recorded,
|
|
# it should be None (see also 'doc example part 2')
|
|
if "freq" in kwargs:
|
|
kwargs["freq"] = None
|
|
new_pd_index = factory(values, **kwargs)
|
|
final_pd_index = _set_tz(new_pd_index, self.tz)
|
|
return final_pd_index, final_pd_index
|
|
|
|
def take_data(self):
|
|
"""return the values"""
|
|
return self.values
|
|
|
|
@property
|
|
def attrs(self):
|
|
return self.table._v_attrs
|
|
|
|
@property
|
|
def description(self):
|
|
return self.table.description
|
|
|
|
@property
|
|
def col(self):
|
|
"""return my current col description"""
|
|
return getattr(self.description, self.cname, None)
|
|
|
|
@property
|
|
def cvalues(self):
|
|
"""return my cython values"""
|
|
return self.values
|
|
|
|
def __iter__(self) -> Iterator:
|
|
return iter(self.values)
|
|
|
|
def maybe_set_size(self, min_itemsize=None) -> None:
|
|
"""
|
|
maybe set a string col itemsize:
|
|
min_itemsize can be an integer or a dict with this columns name
|
|
with an integer size
|
|
"""
|
|
if _ensure_decoded(self.kind) == "string":
|
|
if isinstance(min_itemsize, dict):
|
|
min_itemsize = min_itemsize.get(self.name)
|
|
|
|
if min_itemsize is not None and self.typ.itemsize < min_itemsize:
|
|
self.typ = _tables().StringCol(itemsize=min_itemsize, pos=self.pos)
|
|
|
|
def validate_names(self) -> None:
|
|
pass
|
|
|
|
def validate_and_set(self, handler: AppendableTable, append: bool) -> None:
|
|
self.table = handler.table
|
|
self.validate_col()
|
|
self.validate_attr(append)
|
|
self.validate_metadata(handler)
|
|
self.write_metadata(handler)
|
|
self.set_attr()
|
|
|
|
def validate_col(self, itemsize=None):
|
|
"""validate this column: return the compared against itemsize"""
|
|
# validate this column for string truncation (or reset to the max size)
|
|
if _ensure_decoded(self.kind) == "string":
|
|
c = self.col
|
|
if c is not None:
|
|
if itemsize is None:
|
|
itemsize = self.itemsize
|
|
if c.itemsize < itemsize:
|
|
raise ValueError(
|
|
f"Trying to store a string with len [{itemsize}] in "
|
|
f"[{self.cname}] column but\nthis column has a limit of "
|
|
f"[{c.itemsize}]!\nConsider using min_itemsize to "
|
|
"preset the sizes on these columns"
|
|
)
|
|
return c.itemsize
|
|
|
|
return None
|
|
|
|
def validate_attr(self, append: bool) -> None:
|
|
# check for backwards incompatibility
|
|
if append:
|
|
existing_kind = getattr(self.attrs, self.kind_attr, None)
|
|
if existing_kind is not None and existing_kind != self.kind:
|
|
raise TypeError(
|
|
f"incompatible kind in col [{existing_kind} - {self.kind}]"
|
|
)
|
|
|
|
def update_info(self, info) -> None:
|
|
"""
|
|
set/update the info for this indexable with the key/value
|
|
if there is a conflict raise/warn as needed
|
|
"""
|
|
for key in self._info_fields:
|
|
value = getattr(self, key, None)
|
|
idx = info.setdefault(self.name, {})
|
|
|
|
existing_value = idx.get(key)
|
|
if key in idx and value is not None and existing_value != value:
|
|
# frequency/name just warn
|
|
if key in ["freq", "index_name"]:
|
|
ws = attribute_conflict_doc % (key, existing_value, value)
|
|
warnings.warn(
|
|
ws, AttributeConflictWarning, stacklevel=find_stack_level()
|
|
)
|
|
|
|
# reset
|
|
idx[key] = None
|
|
setattr(self, key, None)
|
|
|
|
else:
|
|
raise ValueError(
|
|
f"invalid info for [{self.name}] for [{key}], "
|
|
f"existing_value [{existing_value}] conflicts with "
|
|
f"new value [{value}]"
|
|
)
|
|
elif value is not None or existing_value is not None:
|
|
idx[key] = value
|
|
|
|
def set_info(self, info) -> None:
|
|
"""set my state from the passed info"""
|
|
idx = info.get(self.name)
|
|
if idx is not None:
|
|
self.__dict__.update(idx)
|
|
|
|
def set_attr(self) -> None:
|
|
"""set the kind for this column"""
|
|
setattr(self.attrs, self.kind_attr, self.kind)
|
|
|
|
def validate_metadata(self, handler: AppendableTable) -> None:
|
|
"""validate that kind=category does not change the categories"""
|
|
if self.meta == "category":
|
|
new_metadata = self.metadata
|
|
cur_metadata = handler.read_metadata(self.cname)
|
|
if (
|
|
new_metadata is not None
|
|
and cur_metadata is not None
|
|
and not array_equivalent(
|
|
new_metadata, cur_metadata, strict_nan=True, dtype_equal=True
|
|
)
|
|
):
|
|
raise ValueError(
|
|
"cannot append a categorical with "
|
|
"different categories to the existing"
|
|
)
|
|
|
|
def write_metadata(self, handler: AppendableTable) -> None:
|
|
"""set the meta data"""
|
|
if self.metadata is not None:
|
|
handler.write_metadata(self.cname, self.metadata)
|
|
|
|
|
|
class GenericIndexCol(IndexCol):
|
|
"""an index which is not represented in the data of the table"""
|
|
|
|
@property
|
|
def is_indexed(self) -> bool:
|
|
return False
|
|
|
|
def convert(
|
|
self, values: np.ndarray, nan_rep, encoding: str, errors: str
|
|
) -> tuple[Index, Index]:
|
|
"""
|
|
Convert the data from this selection to the appropriate pandas type.
|
|
|
|
Parameters
|
|
----------
|
|
values : np.ndarray
|
|
nan_rep : str
|
|
encoding : str
|
|
errors : str
|
|
"""
|
|
assert isinstance(values, np.ndarray), type(values)
|
|
|
|
index = RangeIndex(len(values))
|
|
return index, index
|
|
|
|
def set_attr(self) -> None:
|
|
pass
|
|
|
|
|
|
class DataCol(IndexCol):
|
|
"""
|
|
a data holding column, by definition this is not indexable
|
|
|
|
Parameters
|
|
----------
|
|
data : the actual data
|
|
cname : the column name in the table to hold the data (typically
|
|
values)
|
|
meta : a string description of the metadata
|
|
metadata : the actual metadata
|
|
"""
|
|
|
|
is_an_indexable = False
|
|
is_data_indexable = False
|
|
_info_fields = ["tz", "ordered"]
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
values=None,
|
|
kind=None,
|
|
typ=None,
|
|
cname: str | None = None,
|
|
pos=None,
|
|
tz=None,
|
|
ordered=None,
|
|
table=None,
|
|
meta=None,
|
|
metadata=None,
|
|
dtype: DtypeArg | None = None,
|
|
data=None,
|
|
) -> None:
|
|
super().__init__(
|
|
name=name,
|
|
values=values,
|
|
kind=kind,
|
|
typ=typ,
|
|
pos=pos,
|
|
cname=cname,
|
|
tz=tz,
|
|
ordered=ordered,
|
|
table=table,
|
|
meta=meta,
|
|
metadata=metadata,
|
|
)
|
|
self.dtype = dtype
|
|
self.data = data
|
|
|
|
@property
|
|
def dtype_attr(self) -> str:
|
|
return f"{self.name}_dtype"
|
|
|
|
@property
|
|
def meta_attr(self) -> str:
|
|
return f"{self.name}_meta"
|
|
|
|
def __repr__(self) -> str:
|
|
temp = tuple(
|
|
map(
|
|
pprint_thing, (self.name, self.cname, self.dtype, self.kind, self.shape)
|
|
)
|
|
)
|
|
return ",".join(
|
|
[
|
|
f"{key}->{value}"
|
|
for key, value in zip(["name", "cname", "dtype", "kind", "shape"], temp)
|
|
]
|
|
)
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
"""compare 2 col items"""
|
|
return all(
|
|
getattr(self, a, None) == getattr(other, a, None)
|
|
for a in ["name", "cname", "dtype", "pos"]
|
|
)
|
|
|
|
def set_data(self, data: ArrayLike) -> None:
|
|
assert data is not None
|
|
assert self.dtype is None
|
|
|
|
data, dtype_name = _get_data_and_dtype_name(data)
|
|
|
|
self.data = data
|
|
self.dtype = dtype_name
|
|
self.kind = _dtype_to_kind(dtype_name)
|
|
|
|
def take_data(self):
|
|
"""return the data"""
|
|
return self.data
|
|
|
|
@classmethod
|
|
def _get_atom(cls, values: ArrayLike) -> Col:
|
|
"""
|
|
Get an appropriately typed and shaped pytables.Col object for values.
|
|
"""
|
|
dtype = values.dtype
|
|
# error: Item "ExtensionDtype" of "Union[ExtensionDtype, dtype[Any]]" has no
|
|
# attribute "itemsize"
|
|
itemsize = dtype.itemsize # type: ignore[union-attr]
|
|
|
|
shape = values.shape
|
|
if values.ndim == 1:
|
|
# EA, use block shape pretending it is 2D
|
|
# TODO(EA2D): not necessary with 2D EAs
|
|
shape = (1, values.size)
|
|
|
|
if isinstance(values, Categorical):
|
|
codes = values.codes
|
|
atom = cls.get_atom_data(shape, kind=codes.dtype.name)
|
|
elif lib.is_np_dtype(dtype, "M") or isinstance(dtype, DatetimeTZDtype):
|
|
atom = cls.get_atom_datetime64(shape)
|
|
elif lib.is_np_dtype(dtype, "m"):
|
|
atom = cls.get_atom_timedelta64(shape)
|
|
elif is_complex_dtype(dtype):
|
|
atom = _tables().ComplexCol(itemsize=itemsize, shape=shape[0])
|
|
elif is_string_dtype(dtype):
|
|
atom = cls.get_atom_string(shape, itemsize)
|
|
else:
|
|
atom = cls.get_atom_data(shape, kind=dtype.name)
|
|
|
|
return atom
|
|
|
|
@classmethod
|
|
def get_atom_string(cls, shape, itemsize):
|
|
return _tables().StringCol(itemsize=itemsize, shape=shape[0])
|
|
|
|
@classmethod
|
|
def get_atom_coltype(cls, kind: str) -> type[Col]:
|
|
"""return the PyTables column class for this column"""
|
|
if kind.startswith("uint"):
|
|
k4 = kind[4:]
|
|
col_name = f"UInt{k4}Col"
|
|
elif kind.startswith("period"):
|
|
# we store as integer
|
|
col_name = "Int64Col"
|
|
else:
|
|
kcap = kind.capitalize()
|
|
col_name = f"{kcap}Col"
|
|
|
|
return getattr(_tables(), col_name)
|
|
|
|
@classmethod
|
|
def get_atom_data(cls, shape, kind: str) -> Col:
|
|
return cls.get_atom_coltype(kind=kind)(shape=shape[0])
|
|
|
|
@classmethod
|
|
def get_atom_datetime64(cls, shape):
|
|
return _tables().Int64Col(shape=shape[0])
|
|
|
|
@classmethod
|
|
def get_atom_timedelta64(cls, shape):
|
|
return _tables().Int64Col(shape=shape[0])
|
|
|
|
@property
|
|
def shape(self):
|
|
return getattr(self.data, "shape", None)
|
|
|
|
@property
|
|
def cvalues(self):
|
|
"""return my cython values"""
|
|
return self.data
|
|
|
|
def validate_attr(self, append) -> None:
|
|
"""validate that we have the same order as the existing & same dtype"""
|
|
if append:
|
|
existing_fields = getattr(self.attrs, self.kind_attr, None)
|
|
if existing_fields is not None and existing_fields != list(self.values):
|
|
raise ValueError("appended items do not match existing items in table!")
|
|
|
|
existing_dtype = getattr(self.attrs, self.dtype_attr, None)
|
|
if existing_dtype is not None and existing_dtype != self.dtype:
|
|
raise ValueError(
|
|
"appended items dtype do not match existing items dtype in table!"
|
|
)
|
|
|
|
def convert(self, values: np.ndarray, nan_rep, encoding: str, errors: str):
|
|
"""
|
|
Convert the data from this selection to the appropriate pandas type.
|
|
|
|
Parameters
|
|
----------
|
|
values : np.ndarray
|
|
nan_rep :
|
|
encoding : str
|
|
errors : str
|
|
|
|
Returns
|
|
-------
|
|
index : listlike to become an Index
|
|
data : ndarraylike to become a column
|
|
"""
|
|
assert isinstance(values, np.ndarray), type(values)
|
|
|
|
# values is a recarray
|
|
if values.dtype.fields is not None:
|
|
values = values[self.cname]
|
|
|
|
assert self.typ is not None
|
|
if self.dtype is None:
|
|
# Note: in tests we never have timedelta64 or datetime64,
|
|
# so the _get_data_and_dtype_name may be unnecessary
|
|
converted, dtype_name = _get_data_and_dtype_name(values)
|
|
kind = _dtype_to_kind(dtype_name)
|
|
else:
|
|
converted = values
|
|
dtype_name = self.dtype
|
|
kind = self.kind
|
|
|
|
assert isinstance(converted, np.ndarray) # for mypy
|
|
|
|
# use the meta if needed
|
|
meta = _ensure_decoded(self.meta)
|
|
metadata = self.metadata
|
|
ordered = self.ordered
|
|
tz = self.tz
|
|
|
|
assert dtype_name is not None
|
|
# convert to the correct dtype
|
|
dtype = _ensure_decoded(dtype_name)
|
|
|
|
# reverse converts
|
|
if dtype.startswith("datetime64"):
|
|
# recreate with tz if indicated
|
|
converted = _set_tz(converted, tz, coerce=True)
|
|
|
|
elif dtype == "timedelta64":
|
|
converted = np.asarray(converted, dtype="m8[ns]")
|
|
elif dtype == "date":
|
|
try:
|
|
converted = np.asarray(
|
|
[date.fromordinal(v) for v in converted], dtype=object
|
|
)
|
|
except ValueError:
|
|
converted = np.asarray(
|
|
[date.fromtimestamp(v) for v in converted], dtype=object
|
|
)
|
|
|
|
elif meta == "category":
|
|
# we have a categorical
|
|
categories = metadata
|
|
codes = converted.ravel()
|
|
|
|
# if we have stored a NaN in the categories
|
|
# then strip it; in theory we could have BOTH
|
|
# -1s in the codes and nulls :<
|
|
if categories is None:
|
|
# Handle case of NaN-only categorical columns in which case
|
|
# the categories are an empty array; when this is stored,
|
|
# pytables cannot write a zero-len array, so on readback
|
|
# the categories would be None and `read_hdf()` would fail.
|
|
categories = Index([], dtype=np.float64)
|
|
else:
|
|
mask = isna(categories)
|
|
if mask.any():
|
|
categories = categories[~mask]
|
|
codes[codes != -1] -= mask.astype(int).cumsum()._values
|
|
|
|
converted = Categorical.from_codes(
|
|
codes, categories=categories, ordered=ordered, validate=False
|
|
)
|
|
|
|
else:
|
|
try:
|
|
converted = converted.astype(dtype, copy=False)
|
|
except TypeError:
|
|
converted = converted.astype("O", copy=False)
|
|
|
|
# convert nans / decode
|
|
if _ensure_decoded(kind) == "string":
|
|
converted = _unconvert_string_array(
|
|
converted, nan_rep=nan_rep, encoding=encoding, errors=errors
|
|
)
|
|
|
|
return self.values, converted
|
|
|
|
def set_attr(self) -> None:
|
|
"""set the data for this column"""
|
|
setattr(self.attrs, self.kind_attr, self.values)
|
|
setattr(self.attrs, self.meta_attr, self.meta)
|
|
assert self.dtype is not None
|
|
setattr(self.attrs, self.dtype_attr, self.dtype)
|
|
|
|
|
|
class DataIndexableCol(DataCol):
|
|
"""represent a data column that can be indexed"""
|
|
|
|
is_data_indexable = True
|
|
|
|
def validate_names(self) -> None:
|
|
if not is_string_dtype(Index(self.values).dtype):
|
|
# TODO: should the message here be more specifically non-str?
|
|
raise ValueError("cannot have non-object label DataIndexableCol")
|
|
|
|
@classmethod
|
|
def get_atom_string(cls, shape, itemsize):
|
|
return _tables().StringCol(itemsize=itemsize)
|
|
|
|
@classmethod
|
|
def get_atom_data(cls, shape, kind: str) -> Col:
|
|
return cls.get_atom_coltype(kind=kind)()
|
|
|
|
@classmethod
|
|
def get_atom_datetime64(cls, shape):
|
|
return _tables().Int64Col()
|
|
|
|
@classmethod
|
|
def get_atom_timedelta64(cls, shape):
|
|
return _tables().Int64Col()
|
|
|
|
|
|
class GenericDataIndexableCol(DataIndexableCol):
|
|
"""represent a generic pytables data column"""
|
|
|
|
|
|
class Fixed:
|
|
"""
|
|
represent an object in my store
|
|
facilitate read/write of various types of objects
|
|
this is an abstract base class
|
|
|
|
Parameters
|
|
----------
|
|
parent : HDFStore
|
|
group : Node
|
|
The group node where the table resides.
|
|
"""
|
|
|
|
pandas_kind: str
|
|
format_type: str = "fixed" # GH#30962 needed by dask
|
|
obj_type: type[DataFrame | Series]
|
|
ndim: int
|
|
parent: HDFStore
|
|
is_table: bool = False
|
|
|
|
def __init__(
|
|
self,
|
|
parent: HDFStore,
|
|
group: Node,
|
|
encoding: str | None = "UTF-8",
|
|
errors: str = "strict",
|
|
) -> None:
|
|
assert isinstance(parent, HDFStore), type(parent)
|
|
assert _table_mod is not None # needed for mypy
|
|
assert isinstance(group, _table_mod.Node), type(group)
|
|
self.parent = parent
|
|
self.group = group
|
|
self.encoding = _ensure_encoding(encoding)
|
|
self.errors = errors
|
|
|
|
@property
|
|
def is_old_version(self) -> bool:
|
|
return self.version[0] <= 0 and self.version[1] <= 10 and self.version[2] < 1
|
|
|
|
@property
|
|
def version(self) -> tuple[int, int, int]:
|
|
"""compute and set our version"""
|
|
version = _ensure_decoded(getattr(self.group._v_attrs, "pandas_version", None))
|
|
try:
|
|
version = tuple(int(x) for x in version.split("."))
|
|
if len(version) == 2:
|
|
version = version + (0,)
|
|
except AttributeError:
|
|
version = (0, 0, 0)
|
|
return version
|
|
|
|
@property
|
|
def pandas_type(self):
|
|
return _ensure_decoded(getattr(self.group._v_attrs, "pandas_type", None))
|
|
|
|
def __repr__(self) -> str:
|
|
"""return a pretty representation of myself"""
|
|
self.infer_axes()
|
|
s = self.shape
|
|
if s is not None:
|
|
if isinstance(s, (list, tuple)):
|
|
jshape = ",".join([pprint_thing(x) for x in s])
|
|
s = f"[{jshape}]"
|
|
return f"{self.pandas_type:12.12} (shape->{s})"
|
|
return self.pandas_type
|
|
|
|
def set_object_info(self) -> None:
|
|
"""set my pandas type & version"""
|
|
self.attrs.pandas_type = str(self.pandas_kind)
|
|
self.attrs.pandas_version = str(_version)
|
|
|
|
def copy(self) -> Fixed:
|
|
new_self = copy.copy(self)
|
|
return new_self
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.nrows
|
|
|
|
@property
|
|
def pathname(self):
|
|
return self.group._v_pathname
|
|
|
|
@property
|
|
def _handle(self):
|
|
return self.parent._handle
|
|
|
|
@property
|
|
def _filters(self):
|
|
return self.parent._filters
|
|
|
|
@property
|
|
def _complevel(self) -> int:
|
|
return self.parent._complevel
|
|
|
|
@property
|
|
def _fletcher32(self) -> bool:
|
|
return self.parent._fletcher32
|
|
|
|
@property
|
|
def attrs(self):
|
|
return self.group._v_attrs
|
|
|
|
def set_attrs(self) -> None:
|
|
"""set our object attributes"""
|
|
|
|
def get_attrs(self) -> None:
|
|
"""get our object attributes"""
|
|
|
|
@property
|
|
def storable(self):
|
|
"""return my storable"""
|
|
return self.group
|
|
|
|
@property
|
|
def is_exists(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def nrows(self):
|
|
return getattr(self.storable, "nrows", None)
|
|
|
|
def validate(self, other) -> Literal[True] | None:
|
|
"""validate against an existing storable"""
|
|
if other is None:
|
|
return None
|
|
return True
|
|
|
|
def validate_version(self, where=None) -> None:
|
|
"""are we trying to operate on an old version?"""
|
|
|
|
def infer_axes(self) -> bool:
|
|
"""
|
|
infer the axes of my storer
|
|
return a boolean indicating if we have a valid storer or not
|
|
"""
|
|
s = self.storable
|
|
if s is None:
|
|
return False
|
|
self.get_attrs()
|
|
return True
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
raise NotImplementedError(
|
|
"cannot read on an abstract storer: subclasses should implement"
|
|
)
|
|
|
|
def write(self, obj, **kwargs) -> None:
|
|
raise NotImplementedError(
|
|
"cannot write on an abstract storer: subclasses should implement"
|
|
)
|
|
|
|
def delete(
|
|
self, where=None, start: int | None = None, stop: int | None = None
|
|
) -> None:
|
|
"""
|
|
support fully deleting the node in its entirety (only) - where
|
|
specification must be None
|
|
"""
|
|
if com.all_none(where, start, stop):
|
|
self._handle.remove_node(self.group, recursive=True)
|
|
return None
|
|
|
|
raise TypeError("cannot delete on an abstract storer")
|
|
|
|
|
|
class GenericFixed(Fixed):
|
|
"""a generified fixed version"""
|
|
|
|
_index_type_map = {DatetimeIndex: "datetime", PeriodIndex: "period"}
|
|
_reverse_index_map = {v: k for k, v in _index_type_map.items()}
|
|
attributes: list[str] = []
|
|
|
|
# indexer helpers
|
|
def _class_to_alias(self, cls) -> str:
|
|
return self._index_type_map.get(cls, "")
|
|
|
|
def _alias_to_class(self, alias):
|
|
if isinstance(alias, type): # pragma: no cover
|
|
# compat: for a short period of time master stored types
|
|
return alias
|
|
return self._reverse_index_map.get(alias, Index)
|
|
|
|
def _get_index_factory(self, attrs):
|
|
index_class = self._alias_to_class(
|
|
_ensure_decoded(getattr(attrs, "index_class", ""))
|
|
)
|
|
|
|
factory: Callable
|
|
|
|
if index_class == DatetimeIndex:
|
|
|
|
def f(values, freq=None, tz=None):
|
|
# data are already in UTC, localize and convert if tz present
|
|
dta = DatetimeArray._simple_new(
|
|
values.values, dtype=values.dtype, freq=freq
|
|
)
|
|
result = DatetimeIndex._simple_new(dta, name=None)
|
|
if tz is not None:
|
|
result = result.tz_localize("UTC").tz_convert(tz)
|
|
return result
|
|
|
|
factory = f
|
|
elif index_class == PeriodIndex:
|
|
|
|
def f(values, freq=None, tz=None):
|
|
dtype = PeriodDtype(freq)
|
|
parr = PeriodArray._simple_new(values, dtype=dtype)
|
|
return PeriodIndex._simple_new(parr, name=None)
|
|
|
|
factory = f
|
|
else:
|
|
factory = index_class
|
|
|
|
kwargs = {}
|
|
if "freq" in attrs:
|
|
kwargs["freq"] = attrs["freq"]
|
|
if index_class is Index:
|
|
# DTI/PI would be gotten by _alias_to_class
|
|
factory = TimedeltaIndex
|
|
|
|
if "tz" in attrs:
|
|
if isinstance(attrs["tz"], bytes):
|
|
# created by python2
|
|
kwargs["tz"] = attrs["tz"].decode("utf-8")
|
|
else:
|
|
# created by python3
|
|
kwargs["tz"] = attrs["tz"]
|
|
assert index_class is DatetimeIndex # just checking
|
|
|
|
return factory, kwargs
|
|
|
|
def validate_read(self, columns, where) -> None:
|
|
"""
|
|
raise if any keywords are passed which are not-None
|
|
"""
|
|
if columns is not None:
|
|
raise TypeError(
|
|
"cannot pass a column specification when reading "
|
|
"a Fixed format store. this store must be selected in its entirety"
|
|
)
|
|
if where is not None:
|
|
raise TypeError(
|
|
"cannot pass a where specification when reading "
|
|
"from a Fixed format store. this store must be selected in its entirety"
|
|
)
|
|
|
|
@property
|
|
def is_exists(self) -> bool:
|
|
return True
|
|
|
|
def set_attrs(self) -> None:
|
|
"""set our object attributes"""
|
|
self.attrs.encoding = self.encoding
|
|
self.attrs.errors = self.errors
|
|
|
|
def get_attrs(self) -> None:
|
|
"""retrieve our attributes"""
|
|
self.encoding = _ensure_encoding(getattr(self.attrs, "encoding", None))
|
|
self.errors = _ensure_decoded(getattr(self.attrs, "errors", "strict"))
|
|
for n in self.attributes:
|
|
setattr(self, n, _ensure_decoded(getattr(self.attrs, n, None)))
|
|
|
|
def write(self, obj, **kwargs) -> None:
|
|
self.set_attrs()
|
|
|
|
def read_array(self, key: str, start: int | None = None, stop: int | None = None):
|
|
"""read an array for the specified node (off of group"""
|
|
import tables
|
|
|
|
node = getattr(self.group, key)
|
|
attrs = node._v_attrs
|
|
|
|
transposed = getattr(attrs, "transposed", False)
|
|
|
|
if isinstance(node, tables.VLArray):
|
|
ret = node[0][start:stop]
|
|
else:
|
|
dtype = _ensure_decoded(getattr(attrs, "value_type", None))
|
|
shape = getattr(attrs, "shape", None)
|
|
|
|
if shape is not None:
|
|
# length 0 axis
|
|
ret = np.empty(shape, dtype=dtype)
|
|
else:
|
|
ret = node[start:stop]
|
|
|
|
if dtype and dtype.startswith("datetime64"):
|
|
# reconstruct a timezone if indicated
|
|
tz = getattr(attrs, "tz", None)
|
|
ret = _set_tz(ret, tz, coerce=True)
|
|
|
|
elif dtype == "timedelta64":
|
|
ret = np.asarray(ret, dtype="m8[ns]")
|
|
|
|
if transposed:
|
|
return ret.T
|
|
else:
|
|
return ret
|
|
|
|
def read_index(
|
|
self, key: str, start: int | None = None, stop: int | None = None
|
|
) -> Index:
|
|
variety = _ensure_decoded(getattr(self.attrs, f"{key}_variety"))
|
|
|
|
if variety == "multi":
|
|
return self.read_multi_index(key, start=start, stop=stop)
|
|
elif variety == "regular":
|
|
node = getattr(self.group, key)
|
|
index = self.read_index_node(node, start=start, stop=stop)
|
|
return index
|
|
else: # pragma: no cover
|
|
raise TypeError(f"unrecognized index variety: {variety}")
|
|
|
|
def write_index(self, key: str, index: Index) -> None:
|
|
if isinstance(index, MultiIndex):
|
|
setattr(self.attrs, f"{key}_variety", "multi")
|
|
self.write_multi_index(key, index)
|
|
else:
|
|
setattr(self.attrs, f"{key}_variety", "regular")
|
|
converted = _convert_index("index", index, self.encoding, self.errors)
|
|
|
|
self.write_array(key, converted.values)
|
|
|
|
node = getattr(self.group, key)
|
|
node._v_attrs.kind = converted.kind
|
|
node._v_attrs.name = index.name
|
|
|
|
if isinstance(index, (DatetimeIndex, PeriodIndex)):
|
|
node._v_attrs.index_class = self._class_to_alias(type(index))
|
|
|
|
if isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
|
|
node._v_attrs.freq = index.freq
|
|
|
|
if isinstance(index, DatetimeIndex) and index.tz is not None:
|
|
node._v_attrs.tz = _get_tz(index.tz)
|
|
|
|
def write_multi_index(self, key: str, index: MultiIndex) -> None:
|
|
setattr(self.attrs, f"{key}_nlevels", index.nlevels)
|
|
|
|
for i, (lev, level_codes, name) in enumerate(
|
|
zip(index.levels, index.codes, index.names)
|
|
):
|
|
# write the level
|
|
if isinstance(lev.dtype, ExtensionDtype):
|
|
raise NotImplementedError(
|
|
"Saving a MultiIndex with an extension dtype is not supported."
|
|
)
|
|
level_key = f"{key}_level{i}"
|
|
conv_level = _convert_index(level_key, lev, self.encoding, self.errors)
|
|
self.write_array(level_key, conv_level.values)
|
|
node = getattr(self.group, level_key)
|
|
node._v_attrs.kind = conv_level.kind
|
|
node._v_attrs.name = name
|
|
|
|
# write the name
|
|
setattr(node._v_attrs, f"{key}_name{name}", name)
|
|
|
|
# write the labels
|
|
label_key = f"{key}_label{i}"
|
|
self.write_array(label_key, level_codes)
|
|
|
|
def read_multi_index(
|
|
self, key: str, start: int | None = None, stop: int | None = None
|
|
) -> MultiIndex:
|
|
nlevels = getattr(self.attrs, f"{key}_nlevels")
|
|
|
|
levels = []
|
|
codes = []
|
|
names: list[Hashable] = []
|
|
for i in range(nlevels):
|
|
level_key = f"{key}_level{i}"
|
|
node = getattr(self.group, level_key)
|
|
lev = self.read_index_node(node, start=start, stop=stop)
|
|
levels.append(lev)
|
|
names.append(lev.name)
|
|
|
|
label_key = f"{key}_label{i}"
|
|
level_codes = self.read_array(label_key, start=start, stop=stop)
|
|
codes.append(level_codes)
|
|
|
|
return MultiIndex(
|
|
levels=levels, codes=codes, names=names, verify_integrity=True
|
|
)
|
|
|
|
def read_index_node(
|
|
self, node: Node, start: int | None = None, stop: int | None = None
|
|
) -> Index:
|
|
data = node[start:stop]
|
|
# If the index was an empty array write_array_empty() will
|
|
# have written a sentinel. Here we replace it with the original.
|
|
if "shape" in node._v_attrs and np.prod(node._v_attrs.shape) == 0:
|
|
data = np.empty(node._v_attrs.shape, dtype=node._v_attrs.value_type)
|
|
kind = _ensure_decoded(node._v_attrs.kind)
|
|
name = None
|
|
|
|
if "name" in node._v_attrs:
|
|
name = _ensure_str(node._v_attrs.name)
|
|
name = _ensure_decoded(name)
|
|
|
|
attrs = node._v_attrs
|
|
factory, kwargs = self._get_index_factory(attrs)
|
|
|
|
if kind in ("date", "object"):
|
|
index = factory(
|
|
_unconvert_index(
|
|
data, kind, encoding=self.encoding, errors=self.errors
|
|
),
|
|
dtype=object,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
index = factory(
|
|
_unconvert_index(
|
|
data, kind, encoding=self.encoding, errors=self.errors
|
|
),
|
|
**kwargs,
|
|
)
|
|
|
|
index.name = name
|
|
|
|
return index
|
|
|
|
def write_array_empty(self, key: str, value: ArrayLike) -> None:
|
|
"""write a 0-len array"""
|
|
# ugly hack for length 0 axes
|
|
arr = np.empty((1,) * value.ndim)
|
|
self._handle.create_array(self.group, key, arr)
|
|
node = getattr(self.group, key)
|
|
node._v_attrs.value_type = str(value.dtype)
|
|
node._v_attrs.shape = value.shape
|
|
|
|
def write_array(
|
|
self, key: str, obj: AnyArrayLike, items: Index | None = None
|
|
) -> None:
|
|
# TODO: we only have a few tests that get here, the only EA
|
|
# that gets passed is DatetimeArray, and we never have
|
|
# both self._filters and EA
|
|
|
|
value = extract_array(obj, extract_numpy=True)
|
|
|
|
if key in self.group:
|
|
self._handle.remove_node(self.group, key)
|
|
|
|
# Transform needed to interface with pytables row/col notation
|
|
empty_array = value.size == 0
|
|
transposed = False
|
|
|
|
if isinstance(value.dtype, CategoricalDtype):
|
|
raise NotImplementedError(
|
|
"Cannot store a category dtype in a HDF5 dataset that uses format="
|
|
'"fixed". Use format="table".'
|
|
)
|
|
if not empty_array:
|
|
if hasattr(value, "T"):
|
|
# ExtensionArrays (1d) may not have transpose.
|
|
value = value.T
|
|
transposed = True
|
|
|
|
atom = None
|
|
if self._filters is not None:
|
|
with suppress(ValueError):
|
|
# get the atom for this datatype
|
|
atom = _tables().Atom.from_dtype(value.dtype)
|
|
|
|
if atom is not None:
|
|
# We only get here if self._filters is non-None and
|
|
# the Atom.from_dtype call succeeded
|
|
|
|
# create an empty chunked array and fill it from value
|
|
if not empty_array:
|
|
ca = self._handle.create_carray(
|
|
self.group, key, atom, value.shape, filters=self._filters
|
|
)
|
|
ca[:] = value
|
|
|
|
else:
|
|
self.write_array_empty(key, value)
|
|
|
|
elif value.dtype.type == np.object_:
|
|
# infer the type, warn if we have a non-string type here (for
|
|
# performance)
|
|
inferred_type = lib.infer_dtype(value, skipna=False)
|
|
if empty_array:
|
|
pass
|
|
elif inferred_type == "string":
|
|
pass
|
|
else:
|
|
ws = performance_doc % (inferred_type, key, items)
|
|
warnings.warn(ws, PerformanceWarning, stacklevel=find_stack_level())
|
|
|
|
vlarr = self._handle.create_vlarray(self.group, key, _tables().ObjectAtom())
|
|
vlarr.append(value)
|
|
|
|
elif lib.is_np_dtype(value.dtype, "M"):
|
|
self._handle.create_array(self.group, key, value.view("i8"))
|
|
getattr(self.group, key)._v_attrs.value_type = str(value.dtype)
|
|
elif isinstance(value.dtype, DatetimeTZDtype):
|
|
# store as UTC
|
|
# with a zone
|
|
|
|
# error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no
|
|
# attribute "asi8"
|
|
self._handle.create_array(
|
|
self.group, key, value.asi8 # type: ignore[union-attr]
|
|
)
|
|
|
|
node = getattr(self.group, key)
|
|
# error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no
|
|
# attribute "tz"
|
|
node._v_attrs.tz = _get_tz(value.tz) # type: ignore[union-attr]
|
|
node._v_attrs.value_type = f"datetime64[{value.dtype.unit}]"
|
|
elif lib.is_np_dtype(value.dtype, "m"):
|
|
self._handle.create_array(self.group, key, value.view("i8"))
|
|
getattr(self.group, key)._v_attrs.value_type = "timedelta64"
|
|
elif empty_array:
|
|
self.write_array_empty(key, value)
|
|
else:
|
|
self._handle.create_array(self.group, key, value)
|
|
|
|
getattr(self.group, key)._v_attrs.transposed = transposed
|
|
|
|
|
|
class SeriesFixed(GenericFixed):
|
|
pandas_kind = "series"
|
|
attributes = ["name"]
|
|
|
|
name: Hashable
|
|
|
|
@property
|
|
def shape(self):
|
|
try:
|
|
return (len(self.group.values),)
|
|
except (TypeError, AttributeError):
|
|
return None
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
) -> Series:
|
|
self.validate_read(columns, where)
|
|
index = self.read_index("index", start=start, stop=stop)
|
|
values = self.read_array("values", start=start, stop=stop)
|
|
result = Series(values, index=index, name=self.name, copy=False)
|
|
if using_pyarrow_string_dtype() and is_string_array(values, skipna=True):
|
|
result = result.astype("string[pyarrow_numpy]")
|
|
return result
|
|
|
|
def write(self, obj, **kwargs) -> None:
|
|
super().write(obj, **kwargs)
|
|
self.write_index("index", obj.index)
|
|
self.write_array("values", obj)
|
|
self.attrs.name = obj.name
|
|
|
|
|
|
class BlockManagerFixed(GenericFixed):
|
|
attributes = ["ndim", "nblocks"]
|
|
|
|
nblocks: int
|
|
|
|
@property
|
|
def shape(self) -> Shape | None:
|
|
try:
|
|
ndim = self.ndim
|
|
|
|
# items
|
|
items = 0
|
|
for i in range(self.nblocks):
|
|
node = getattr(self.group, f"block{i}_items")
|
|
shape = getattr(node, "shape", None)
|
|
if shape is not None:
|
|
items += shape[0]
|
|
|
|
# data shape
|
|
node = self.group.block0_values
|
|
shape = getattr(node, "shape", None)
|
|
if shape is not None:
|
|
shape = list(shape[0 : (ndim - 1)])
|
|
else:
|
|
shape = []
|
|
|
|
shape.append(items)
|
|
|
|
return shape
|
|
except AttributeError:
|
|
return None
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
) -> DataFrame:
|
|
# start, stop applied to rows, so 0th axis only
|
|
self.validate_read(columns, where)
|
|
select_axis = self.obj_type()._get_block_manager_axis(0)
|
|
|
|
axes = []
|
|
for i in range(self.ndim):
|
|
_start, _stop = (start, stop) if i == select_axis else (None, None)
|
|
ax = self.read_index(f"axis{i}", start=_start, stop=_stop)
|
|
axes.append(ax)
|
|
|
|
items = axes[0]
|
|
dfs = []
|
|
|
|
for i in range(self.nblocks):
|
|
blk_items = self.read_index(f"block{i}_items")
|
|
values = self.read_array(f"block{i}_values", start=_start, stop=_stop)
|
|
|
|
columns = items[items.get_indexer(blk_items)]
|
|
df = DataFrame(values.T, columns=columns, index=axes[1], copy=False)
|
|
if using_pyarrow_string_dtype() and is_string_array(values, skipna=True):
|
|
df = df.astype("string[pyarrow_numpy]")
|
|
dfs.append(df)
|
|
|
|
if len(dfs) > 0:
|
|
out = concat(dfs, axis=1, copy=True)
|
|
if using_copy_on_write():
|
|
# with CoW, concat ignores the copy keyword. Here, we still want
|
|
# to copy to enforce optimized column-major layout
|
|
out = out.copy()
|
|
out = out.reindex(columns=items, copy=False)
|
|
return out
|
|
|
|
return DataFrame(columns=axes[0], index=axes[1])
|
|
|
|
def write(self, obj, **kwargs) -> None:
|
|
super().write(obj, **kwargs)
|
|
|
|
# TODO(ArrayManager) HDFStore relies on accessing the blocks
|
|
if isinstance(obj._mgr, ArrayManager):
|
|
obj = obj._as_manager("block")
|
|
|
|
data = obj._mgr
|
|
if not data.is_consolidated():
|
|
data = data.consolidate()
|
|
|
|
self.attrs.ndim = data.ndim
|
|
for i, ax in enumerate(data.axes):
|
|
if i == 0 and (not ax.is_unique):
|
|
raise ValueError("Columns index has to be unique for fixed format")
|
|
self.write_index(f"axis{i}", ax)
|
|
|
|
# Supporting mixed-type DataFrame objects...nontrivial
|
|
self.attrs.nblocks = len(data.blocks)
|
|
for i, blk in enumerate(data.blocks):
|
|
# I have no idea why, but writing values before items fixed #2299
|
|
blk_items = data.items.take(blk.mgr_locs)
|
|
self.write_array(f"block{i}_values", blk.values, items=blk_items)
|
|
self.write_index(f"block{i}_items", blk_items)
|
|
|
|
|
|
class FrameFixed(BlockManagerFixed):
|
|
pandas_kind = "frame"
|
|
obj_type = DataFrame
|
|
|
|
|
|
class Table(Fixed):
|
|
"""
|
|
represent a table:
|
|
facilitate read/write of various types of tables
|
|
|
|
Attrs in Table Node
|
|
-------------------
|
|
These are attributes that are store in the main table node, they are
|
|
necessary to recreate these tables when read back in.
|
|
|
|
index_axes : a list of tuples of the (original indexing axis and
|
|
index column)
|
|
non_index_axes: a list of tuples of the (original index axis and
|
|
columns on a non-indexing axis)
|
|
values_axes : a list of the columns which comprise the data of this
|
|
table
|
|
data_columns : a list of the columns that we are allowing indexing
|
|
(these become single columns in values_axes)
|
|
nan_rep : the string to use for nan representations for string
|
|
objects
|
|
levels : the names of levels
|
|
metadata : the names of the metadata columns
|
|
"""
|
|
|
|
pandas_kind = "wide_table"
|
|
format_type: str = "table" # GH#30962 needed by dask
|
|
table_type: str
|
|
levels: int | list[Hashable] = 1
|
|
is_table = True
|
|
|
|
metadata: list
|
|
|
|
def __init__(
|
|
self,
|
|
parent: HDFStore,
|
|
group: Node,
|
|
encoding: str | None = None,
|
|
errors: str = "strict",
|
|
index_axes: list[IndexCol] | None = None,
|
|
non_index_axes: list[tuple[AxisInt, Any]] | None = None,
|
|
values_axes: list[DataCol] | None = None,
|
|
data_columns: list | None = None,
|
|
info: dict | None = None,
|
|
nan_rep=None,
|
|
) -> None:
|
|
super().__init__(parent, group, encoding=encoding, errors=errors)
|
|
self.index_axes = index_axes or []
|
|
self.non_index_axes = non_index_axes or []
|
|
self.values_axes = values_axes or []
|
|
self.data_columns = data_columns or []
|
|
self.info = info or {}
|
|
self.nan_rep = nan_rep
|
|
|
|
@property
|
|
def table_type_short(self) -> str:
|
|
return self.table_type.split("_")[0]
|
|
|
|
def __repr__(self) -> str:
|
|
"""return a pretty representation of myself"""
|
|
self.infer_axes()
|
|
jdc = ",".join(self.data_columns) if len(self.data_columns) else ""
|
|
dc = f",dc->[{jdc}]"
|
|
|
|
ver = ""
|
|
if self.is_old_version:
|
|
jver = ".".join([str(x) for x in self.version])
|
|
ver = f"[{jver}]"
|
|
|
|
jindex_axes = ",".join([a.name for a in self.index_axes])
|
|
return (
|
|
f"{self.pandas_type:12.12}{ver} "
|
|
f"(typ->{self.table_type_short},nrows->{self.nrows},"
|
|
f"ncols->{self.ncols},indexers->[{jindex_axes}]{dc})"
|
|
)
|
|
|
|
def __getitem__(self, c: str):
|
|
"""return the axis for c"""
|
|
for a in self.axes:
|
|
if c == a.name:
|
|
return a
|
|
return None
|
|
|
|
def validate(self, other) -> None:
|
|
"""validate against an existing table"""
|
|
if other is None:
|
|
return
|
|
|
|
if other.table_type != self.table_type:
|
|
raise TypeError(
|
|
"incompatible table_type with existing "
|
|
f"[{other.table_type} - {self.table_type}]"
|
|
)
|
|
|
|
for c in ["index_axes", "non_index_axes", "values_axes"]:
|
|
sv = getattr(self, c, None)
|
|
ov = getattr(other, c, None)
|
|
if sv != ov:
|
|
# show the error for the specific axes
|
|
# Argument 1 to "enumerate" has incompatible type
|
|
# "Optional[Any]"; expected "Iterable[Any]" [arg-type]
|
|
for i, sax in enumerate(sv): # type: ignore[arg-type]
|
|
# Value of type "Optional[Any]" is not indexable [index]
|
|
oax = ov[i] # type: ignore[index]
|
|
if sax != oax:
|
|
raise ValueError(
|
|
f"invalid combination of [{c}] on appending data "
|
|
f"[{sax}] vs current table [{oax}]"
|
|
)
|
|
|
|
# should never get here
|
|
raise Exception(
|
|
f"invalid combination of [{c}] on appending data [{sv}] vs "
|
|
f"current table [{ov}]"
|
|
)
|
|
|
|
@property
|
|
def is_multi_index(self) -> bool:
|
|
"""the levels attribute is 1 or a list in the case of a multi-index"""
|
|
return isinstance(self.levels, list)
|
|
|
|
def validate_multiindex(
|
|
self, obj: DataFrame | Series
|
|
) -> tuple[DataFrame, list[Hashable]]:
|
|
"""
|
|
validate that we can store the multi-index; reset and return the
|
|
new object
|
|
"""
|
|
levels = com.fill_missing_names(obj.index.names)
|
|
try:
|
|
reset_obj = obj.reset_index()
|
|
except ValueError as err:
|
|
raise ValueError(
|
|
"duplicate names/columns in the multi-index when storing as a table"
|
|
) from err
|
|
assert isinstance(reset_obj, DataFrame) # for mypy
|
|
return reset_obj, levels
|
|
|
|
@property
|
|
def nrows_expected(self) -> int:
|
|
"""based on our axes, compute the expected nrows"""
|
|
return np.prod([i.cvalues.shape[0] for i in self.index_axes])
|
|
|
|
@property
|
|
def is_exists(self) -> bool:
|
|
"""has this table been created"""
|
|
return "table" in self.group
|
|
|
|
@property
|
|
def storable(self):
|
|
return getattr(self.group, "table", None)
|
|
|
|
@property
|
|
def table(self):
|
|
"""return the table group (this is my storable)"""
|
|
return self.storable
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.table.dtype
|
|
|
|
@property
|
|
def description(self):
|
|
return self.table.description
|
|
|
|
@property
|
|
def axes(self) -> itertools.chain[IndexCol]:
|
|
return itertools.chain(self.index_axes, self.values_axes)
|
|
|
|
@property
|
|
def ncols(self) -> int:
|
|
"""the number of total columns in the values axes"""
|
|
return sum(len(a.values) for a in self.values_axes)
|
|
|
|
@property
|
|
def is_transposed(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def data_orientation(self) -> tuple[int, ...]:
|
|
"""return a tuple of my permutated axes, non_indexable at the front"""
|
|
return tuple(
|
|
itertools.chain(
|
|
[int(a[0]) for a in self.non_index_axes],
|
|
[int(a.axis) for a in self.index_axes],
|
|
)
|
|
)
|
|
|
|
def queryables(self) -> dict[str, Any]:
|
|
"""return a dict of the kinds allowable columns for this object"""
|
|
# mypy doesn't recognize DataFrame._AXIS_NAMES, so we re-write it here
|
|
axis_names = {0: "index", 1: "columns"}
|
|
|
|
# compute the values_axes queryables
|
|
d1 = [(a.cname, a) for a in self.index_axes]
|
|
d2 = [(axis_names[axis], None) for axis, values in self.non_index_axes]
|
|
d3 = [
|
|
(v.cname, v) for v in self.values_axes if v.name in set(self.data_columns)
|
|
]
|
|
|
|
return dict(d1 + d2 + d3)
|
|
|
|
def index_cols(self):
|
|
"""return a list of my index cols"""
|
|
# Note: each `i.cname` below is assured to be a str.
|
|
return [(i.axis, i.cname) for i in self.index_axes]
|
|
|
|
def values_cols(self) -> list[str]:
|
|
"""return a list of my values cols"""
|
|
return [i.cname for i in self.values_axes]
|
|
|
|
def _get_metadata_path(self, key: str) -> str:
|
|
"""return the metadata pathname for this key"""
|
|
group = self.group._v_pathname
|
|
return f"{group}/meta/{key}/meta"
|
|
|
|
def write_metadata(self, key: str, values: np.ndarray) -> None:
|
|
"""
|
|
Write out a metadata array to the key as a fixed-format Series.
|
|
|
|
Parameters
|
|
----------
|
|
key : str
|
|
values : ndarray
|
|
"""
|
|
self.parent.put(
|
|
self._get_metadata_path(key),
|
|
Series(values, copy=False),
|
|
format="table",
|
|
encoding=self.encoding,
|
|
errors=self.errors,
|
|
nan_rep=self.nan_rep,
|
|
)
|
|
|
|
def read_metadata(self, key: str):
|
|
"""return the meta data array for this key"""
|
|
if getattr(getattr(self.group, "meta", None), key, None) is not None:
|
|
return self.parent.select(self._get_metadata_path(key))
|
|
return None
|
|
|
|
def set_attrs(self) -> None:
|
|
"""set our table type & indexables"""
|
|
self.attrs.table_type = str(self.table_type)
|
|
self.attrs.index_cols = self.index_cols()
|
|
self.attrs.values_cols = self.values_cols()
|
|
self.attrs.non_index_axes = self.non_index_axes
|
|
self.attrs.data_columns = self.data_columns
|
|
self.attrs.nan_rep = self.nan_rep
|
|
self.attrs.encoding = self.encoding
|
|
self.attrs.errors = self.errors
|
|
self.attrs.levels = self.levels
|
|
self.attrs.info = self.info
|
|
|
|
def get_attrs(self) -> None:
|
|
"""retrieve our attributes"""
|
|
self.non_index_axes = getattr(self.attrs, "non_index_axes", None) or []
|
|
self.data_columns = getattr(self.attrs, "data_columns", None) or []
|
|
self.info = getattr(self.attrs, "info", None) or {}
|
|
self.nan_rep = getattr(self.attrs, "nan_rep", None)
|
|
self.encoding = _ensure_encoding(getattr(self.attrs, "encoding", None))
|
|
self.errors = _ensure_decoded(getattr(self.attrs, "errors", "strict"))
|
|
self.levels: list[Hashable] = getattr(self.attrs, "levels", None) or []
|
|
self.index_axes = [a for a in self.indexables if a.is_an_indexable]
|
|
self.values_axes = [a for a in self.indexables if not a.is_an_indexable]
|
|
|
|
def validate_version(self, where=None) -> None:
|
|
"""are we trying to operate on an old version?"""
|
|
if where is not None:
|
|
if self.is_old_version:
|
|
ws = incompatibility_doc % ".".join([str(x) for x in self.version])
|
|
warnings.warn(
|
|
ws,
|
|
IncompatibilityWarning,
|
|
stacklevel=find_stack_level(),
|
|
)
|
|
|
|
def validate_min_itemsize(self, min_itemsize) -> None:
|
|
"""
|
|
validate the min_itemsize doesn't contain items that are not in the
|
|
axes this needs data_columns to be defined
|
|
"""
|
|
if min_itemsize is None:
|
|
return
|
|
if not isinstance(min_itemsize, dict):
|
|
return
|
|
|
|
q = self.queryables()
|
|
for k in min_itemsize:
|
|
# ok, apply generally
|
|
if k == "values":
|
|
continue
|
|
if k not in q:
|
|
raise ValueError(
|
|
f"min_itemsize has the key [{k}] which is not an axis or "
|
|
"data_column"
|
|
)
|
|
|
|
@cache_readonly
|
|
def indexables(self):
|
|
"""create/cache the indexables if they don't exist"""
|
|
_indexables = []
|
|
|
|
desc = self.description
|
|
table_attrs = self.table.attrs
|
|
|
|
# Note: each of the `name` kwargs below are str, ensured
|
|
# by the definition in index_cols.
|
|
# index columns
|
|
for i, (axis, name) in enumerate(self.attrs.index_cols):
|
|
atom = getattr(desc, name)
|
|
md = self.read_metadata(name)
|
|
meta = "category" if md is not None else None
|
|
|
|
kind_attr = f"{name}_kind"
|
|
kind = getattr(table_attrs, kind_attr, None)
|
|
|
|
index_col = IndexCol(
|
|
name=name,
|
|
axis=axis,
|
|
pos=i,
|
|
kind=kind,
|
|
typ=atom,
|
|
table=self.table,
|
|
meta=meta,
|
|
metadata=md,
|
|
)
|
|
_indexables.append(index_col)
|
|
|
|
# values columns
|
|
dc = set(self.data_columns)
|
|
base_pos = len(_indexables)
|
|
|
|
def f(i, c):
|
|
assert isinstance(c, str)
|
|
klass = DataCol
|
|
if c in dc:
|
|
klass = DataIndexableCol
|
|
|
|
atom = getattr(desc, c)
|
|
adj_name = _maybe_adjust_name(c, self.version)
|
|
|
|
# TODO: why kind_attr here?
|
|
values = getattr(table_attrs, f"{adj_name}_kind", None)
|
|
dtype = getattr(table_attrs, f"{adj_name}_dtype", None)
|
|
# Argument 1 to "_dtype_to_kind" has incompatible type
|
|
# "Optional[Any]"; expected "str" [arg-type]
|
|
kind = _dtype_to_kind(dtype) # type: ignore[arg-type]
|
|
|
|
md = self.read_metadata(c)
|
|
# TODO: figure out why these two versions of `meta` dont always match.
|
|
# meta = "category" if md is not None else None
|
|
meta = getattr(table_attrs, f"{adj_name}_meta", None)
|
|
|
|
obj = klass(
|
|
name=adj_name,
|
|
cname=c,
|
|
values=values,
|
|
kind=kind,
|
|
pos=base_pos + i,
|
|
typ=atom,
|
|
table=self.table,
|
|
meta=meta,
|
|
metadata=md,
|
|
dtype=dtype,
|
|
)
|
|
return obj
|
|
|
|
# Note: the definition of `values_cols` ensures that each
|
|
# `c` below is a str.
|
|
_indexables.extend([f(i, c) for i, c in enumerate(self.attrs.values_cols)])
|
|
|
|
return _indexables
|
|
|
|
def create_index(
|
|
self, columns=None, optlevel=None, kind: str | None = None
|
|
) -> None:
|
|
"""
|
|
Create a pytables index on the specified columns.
|
|
|
|
Parameters
|
|
----------
|
|
columns : None, bool, or listlike[str]
|
|
Indicate which columns to create an index on.
|
|
|
|
* False : Do not create any indexes.
|
|
* True : Create indexes on all columns.
|
|
* None : Create indexes on all columns.
|
|
* listlike : Create indexes on the given columns.
|
|
|
|
optlevel : int or None, default None
|
|
Optimization level, if None, pytables defaults to 6.
|
|
kind : str or None, default None
|
|
Kind of index, if None, pytables defaults to "medium".
|
|
|
|
Raises
|
|
------
|
|
TypeError if trying to create an index on a complex-type column.
|
|
|
|
Notes
|
|
-----
|
|
Cannot index Time64Col or ComplexCol.
|
|
Pytables must be >= 3.0.
|
|
"""
|
|
if not self.infer_axes():
|
|
return
|
|
if columns is False:
|
|
return
|
|
|
|
# index all indexables and data_columns
|
|
if columns is None or columns is True:
|
|
columns = [a.cname for a in self.axes if a.is_data_indexable]
|
|
if not isinstance(columns, (tuple, list)):
|
|
columns = [columns]
|
|
|
|
kw = {}
|
|
if optlevel is not None:
|
|
kw["optlevel"] = optlevel
|
|
if kind is not None:
|
|
kw["kind"] = kind
|
|
|
|
table = self.table
|
|
for c in columns:
|
|
v = getattr(table.cols, c, None)
|
|
if v is not None:
|
|
# remove the index if the kind/optlevel have changed
|
|
if v.is_indexed:
|
|
index = v.index
|
|
cur_optlevel = index.optlevel
|
|
cur_kind = index.kind
|
|
|
|
if kind is not None and cur_kind != kind:
|
|
v.remove_index()
|
|
else:
|
|
kw["kind"] = cur_kind
|
|
|
|
if optlevel is not None and cur_optlevel != optlevel:
|
|
v.remove_index()
|
|
else:
|
|
kw["optlevel"] = cur_optlevel
|
|
|
|
# create the index
|
|
if not v.is_indexed:
|
|
if v.type.startswith("complex"):
|
|
raise TypeError(
|
|
"Columns containing complex values can be stored but "
|
|
"cannot be indexed when using table format. Either use "
|
|
"fixed format, set index=False, or do not include "
|
|
"the columns containing complex values to "
|
|
"data_columns when initializing the table."
|
|
)
|
|
v.create_index(**kw)
|
|
elif c in self.non_index_axes[0][1]:
|
|
# GH 28156
|
|
raise AttributeError(
|
|
f"column {c} is not a data_column.\n"
|
|
f"In order to read column {c} you must reload the dataframe \n"
|
|
f"into HDFStore and include {c} with the data_columns argument."
|
|
)
|
|
|
|
def _read_axes(
|
|
self, where, start: int | None = None, stop: int | None = None
|
|
) -> list[tuple[np.ndarray, np.ndarray] | tuple[Index, Index]]:
|
|
"""
|
|
Create the axes sniffed from the table.
|
|
|
|
Parameters
|
|
----------
|
|
where : ???
|
|
start : int or None, default None
|
|
stop : int or None, default None
|
|
|
|
Returns
|
|
-------
|
|
List[Tuple[index_values, column_values]]
|
|
"""
|
|
# create the selection
|
|
selection = Selection(self, where=where, start=start, stop=stop)
|
|
values = selection.select()
|
|
|
|
results = []
|
|
# convert the data
|
|
for a in self.axes:
|
|
a.set_info(self.info)
|
|
res = a.convert(
|
|
values,
|
|
nan_rep=self.nan_rep,
|
|
encoding=self.encoding,
|
|
errors=self.errors,
|
|
)
|
|
results.append(res)
|
|
|
|
return results
|
|
|
|
@classmethod
|
|
def get_object(cls, obj, transposed: bool):
|
|
"""return the data for this obj"""
|
|
return obj
|
|
|
|
def validate_data_columns(self, data_columns, min_itemsize, non_index_axes):
|
|
"""
|
|
take the input data_columns and min_itemize and create a data
|
|
columns spec
|
|
"""
|
|
if not len(non_index_axes):
|
|
return []
|
|
|
|
axis, axis_labels = non_index_axes[0]
|
|
info = self.info.get(axis, {})
|
|
if info.get("type") == "MultiIndex" and data_columns:
|
|
raise ValueError(
|
|
f"cannot use a multi-index on axis [{axis}] with "
|
|
f"data_columns {data_columns}"
|
|
)
|
|
|
|
# evaluate the passed data_columns, True == use all columns
|
|
# take only valid axis labels
|
|
if data_columns is True:
|
|
data_columns = list(axis_labels)
|
|
elif data_columns is None:
|
|
data_columns = []
|
|
|
|
# if min_itemsize is a dict, add the keys (exclude 'values')
|
|
if isinstance(min_itemsize, dict):
|
|
existing_data_columns = set(data_columns)
|
|
data_columns = list(data_columns) # ensure we do not modify
|
|
data_columns.extend(
|
|
[
|
|
k
|
|
for k in min_itemsize.keys()
|
|
if k != "values" and k not in existing_data_columns
|
|
]
|
|
)
|
|
|
|
# return valid columns in the order of our axis
|
|
return [c for c in data_columns if c in axis_labels]
|
|
|
|
def _create_axes(
|
|
self,
|
|
axes,
|
|
obj: DataFrame,
|
|
validate: bool = True,
|
|
nan_rep=None,
|
|
data_columns=None,
|
|
min_itemsize=None,
|
|
):
|
|
"""
|
|
Create and return the axes.
|
|
|
|
Parameters
|
|
----------
|
|
axes: list or None
|
|
The names or numbers of the axes to create.
|
|
obj : DataFrame
|
|
The object to create axes on.
|
|
validate: bool, default True
|
|
Whether to validate the obj against an existing object already written.
|
|
nan_rep :
|
|
A value to use for string column nan_rep.
|
|
data_columns : List[str], True, or None, default None
|
|
Specify the columns that we want to create to allow indexing on.
|
|
|
|
* True : Use all available columns.
|
|
* None : Use no columns.
|
|
* List[str] : Use the specified columns.
|
|
|
|
min_itemsize: Dict[str, int] or None, default None
|
|
The min itemsize for a column in bytes.
|
|
"""
|
|
if not isinstance(obj, DataFrame):
|
|
group = self.group._v_name
|
|
raise TypeError(
|
|
f"cannot properly create the storer for: [group->{group},"
|
|
f"value->{type(obj)}]"
|
|
)
|
|
|
|
# set the default axes if needed
|
|
if axes is None:
|
|
axes = [0]
|
|
|
|
# map axes to numbers
|
|
axes = [obj._get_axis_number(a) for a in axes]
|
|
|
|
# do we have an existing table (if so, use its axes & data_columns)
|
|
if self.infer_axes():
|
|
table_exists = True
|
|
axes = [a.axis for a in self.index_axes]
|
|
data_columns = list(self.data_columns)
|
|
nan_rep = self.nan_rep
|
|
# TODO: do we always have validate=True here?
|
|
else:
|
|
table_exists = False
|
|
|
|
new_info = self.info
|
|
|
|
assert self.ndim == 2 # with next check, we must have len(axes) == 1
|
|
# currently support on ndim-1 axes
|
|
if len(axes) != self.ndim - 1:
|
|
raise ValueError(
|
|
"currently only support ndim-1 indexers in an AppendableTable"
|
|
)
|
|
|
|
# create according to the new data
|
|
new_non_index_axes: list = []
|
|
|
|
# nan_representation
|
|
if nan_rep is None:
|
|
nan_rep = "nan"
|
|
|
|
# We construct the non-index-axis first, since that alters new_info
|
|
idx = next(x for x in [0, 1] if x not in axes)
|
|
|
|
a = obj.axes[idx]
|
|
# we might be able to change the axes on the appending data if necessary
|
|
append_axis = list(a)
|
|
if table_exists:
|
|
indexer = len(new_non_index_axes) # i.e. 0
|
|
exist_axis = self.non_index_axes[indexer][1]
|
|
if not array_equivalent(
|
|
np.array(append_axis),
|
|
np.array(exist_axis),
|
|
strict_nan=True,
|
|
dtype_equal=True,
|
|
):
|
|
# ahah! -> reindex
|
|
if array_equivalent(
|
|
np.array(sorted(append_axis)),
|
|
np.array(sorted(exist_axis)),
|
|
strict_nan=True,
|
|
dtype_equal=True,
|
|
):
|
|
append_axis = exist_axis
|
|
|
|
# the non_index_axes info
|
|
info = new_info.setdefault(idx, {})
|
|
info["names"] = list(a.names)
|
|
info["type"] = type(a).__name__
|
|
|
|
new_non_index_axes.append((idx, append_axis))
|
|
|
|
# Now we can construct our new index axis
|
|
idx = axes[0]
|
|
a = obj.axes[idx]
|
|
axis_name = obj._get_axis_name(idx)
|
|
new_index = _convert_index(axis_name, a, self.encoding, self.errors)
|
|
new_index.axis = idx
|
|
|
|
# Because we are always 2D, there is only one new_index, so
|
|
# we know it will have pos=0
|
|
new_index.set_pos(0)
|
|
new_index.update_info(new_info)
|
|
new_index.maybe_set_size(min_itemsize) # check for column conflicts
|
|
|
|
new_index_axes = [new_index]
|
|
j = len(new_index_axes) # i.e. 1
|
|
assert j == 1
|
|
|
|
# reindex by our non_index_axes & compute data_columns
|
|
assert len(new_non_index_axes) == 1
|
|
for a in new_non_index_axes:
|
|
obj = _reindex_axis(obj, a[0], a[1])
|
|
|
|
transposed = new_index.axis == 1
|
|
|
|
# figure out data_columns and get out blocks
|
|
data_columns = self.validate_data_columns(
|
|
data_columns, min_itemsize, new_non_index_axes
|
|
)
|
|
|
|
frame = self.get_object(obj, transposed)._consolidate()
|
|
|
|
blocks, blk_items = self._get_blocks_and_items(
|
|
frame, table_exists, new_non_index_axes, self.values_axes, data_columns
|
|
)
|
|
|
|
# add my values
|
|
vaxes = []
|
|
for i, (blk, b_items) in enumerate(zip(blocks, blk_items)):
|
|
# shape of the data column are the indexable axes
|
|
klass = DataCol
|
|
name = None
|
|
|
|
# we have a data_column
|
|
if data_columns and len(b_items) == 1 and b_items[0] in data_columns:
|
|
klass = DataIndexableCol
|
|
name = b_items[0]
|
|
if not (name is None or isinstance(name, str)):
|
|
# TODO: should the message here be more specifically non-str?
|
|
raise ValueError("cannot have non-object label DataIndexableCol")
|
|
|
|
# make sure that we match up the existing columns
|
|
# if we have an existing table
|
|
existing_col: DataCol | None
|
|
|
|
if table_exists and validate:
|
|
try:
|
|
existing_col = self.values_axes[i]
|
|
except (IndexError, KeyError) as err:
|
|
raise ValueError(
|
|
f"Incompatible appended table [{blocks}]"
|
|
f"with existing table [{self.values_axes}]"
|
|
) from err
|
|
else:
|
|
existing_col = None
|
|
|
|
new_name = name or f"values_block_{i}"
|
|
data_converted = _maybe_convert_for_string_atom(
|
|
new_name,
|
|
blk.values,
|
|
existing_col=existing_col,
|
|
min_itemsize=min_itemsize,
|
|
nan_rep=nan_rep,
|
|
encoding=self.encoding,
|
|
errors=self.errors,
|
|
columns=b_items,
|
|
)
|
|
adj_name = _maybe_adjust_name(new_name, self.version)
|
|
|
|
typ = klass._get_atom(data_converted)
|
|
kind = _dtype_to_kind(data_converted.dtype.name)
|
|
tz = None
|
|
if getattr(data_converted, "tz", None) is not None:
|
|
tz = _get_tz(data_converted.tz)
|
|
|
|
meta = metadata = ordered = None
|
|
if isinstance(data_converted.dtype, CategoricalDtype):
|
|
ordered = data_converted.ordered
|
|
meta = "category"
|
|
metadata = np.array(data_converted.categories, copy=False).ravel()
|
|
|
|
data, dtype_name = _get_data_and_dtype_name(data_converted)
|
|
|
|
col = klass(
|
|
name=adj_name,
|
|
cname=new_name,
|
|
values=list(b_items),
|
|
typ=typ,
|
|
pos=j,
|
|
kind=kind,
|
|
tz=tz,
|
|
ordered=ordered,
|
|
meta=meta,
|
|
metadata=metadata,
|
|
dtype=dtype_name,
|
|
data=data,
|
|
)
|
|
col.update_info(new_info)
|
|
|
|
vaxes.append(col)
|
|
|
|
j += 1
|
|
|
|
dcs = [col.name for col in vaxes if col.is_data_indexable]
|
|
|
|
new_table = type(self)(
|
|
parent=self.parent,
|
|
group=self.group,
|
|
encoding=self.encoding,
|
|
errors=self.errors,
|
|
index_axes=new_index_axes,
|
|
non_index_axes=new_non_index_axes,
|
|
values_axes=vaxes,
|
|
data_columns=dcs,
|
|
info=new_info,
|
|
nan_rep=nan_rep,
|
|
)
|
|
if hasattr(self, "levels"):
|
|
# TODO: get this into constructor, only for appropriate subclass
|
|
new_table.levels = self.levels
|
|
|
|
new_table.validate_min_itemsize(min_itemsize)
|
|
|
|
if validate and table_exists:
|
|
new_table.validate(self)
|
|
|
|
return new_table
|
|
|
|
@staticmethod
|
|
def _get_blocks_and_items(
|
|
frame: DataFrame,
|
|
table_exists: bool,
|
|
new_non_index_axes,
|
|
values_axes,
|
|
data_columns,
|
|
):
|
|
# Helper to clarify non-state-altering parts of _create_axes
|
|
|
|
# TODO(ArrayManager) HDFStore relies on accessing the blocks
|
|
if isinstance(frame._mgr, ArrayManager):
|
|
frame = frame._as_manager("block")
|
|
|
|
def get_blk_items(mgr):
|
|
return [mgr.items.take(blk.mgr_locs) for blk in mgr.blocks]
|
|
|
|
mgr = frame._mgr
|
|
mgr = cast(BlockManager, mgr)
|
|
blocks: list[Block] = list(mgr.blocks)
|
|
blk_items: list[Index] = get_blk_items(mgr)
|
|
|
|
if len(data_columns):
|
|
# TODO: prove that we only get here with axis == 1?
|
|
# It is the case in all extant tests, but NOT the case
|
|
# outside this `if len(data_columns)` check.
|
|
|
|
axis, axis_labels = new_non_index_axes[0]
|
|
new_labels = Index(axis_labels).difference(Index(data_columns))
|
|
mgr = frame.reindex(new_labels, axis=axis)._mgr
|
|
mgr = cast(BlockManager, mgr)
|
|
|
|
blocks = list(mgr.blocks)
|
|
blk_items = get_blk_items(mgr)
|
|
for c in data_columns:
|
|
# This reindex would raise ValueError if we had a duplicate
|
|
# index, so we can infer that (as long as axis==1) we
|
|
# get a single column back, so a single block.
|
|
mgr = frame.reindex([c], axis=axis)._mgr
|
|
mgr = cast(BlockManager, mgr)
|
|
blocks.extend(mgr.blocks)
|
|
blk_items.extend(get_blk_items(mgr))
|
|
|
|
# reorder the blocks in the same order as the existing table if we can
|
|
if table_exists:
|
|
by_items = {
|
|
tuple(b_items.tolist()): (b, b_items)
|
|
for b, b_items in zip(blocks, blk_items)
|
|
}
|
|
new_blocks: list[Block] = []
|
|
new_blk_items = []
|
|
for ea in values_axes:
|
|
items = tuple(ea.values)
|
|
try:
|
|
b, b_items = by_items.pop(items)
|
|
new_blocks.append(b)
|
|
new_blk_items.append(b_items)
|
|
except (IndexError, KeyError) as err:
|
|
jitems = ",".join([pprint_thing(item) for item in items])
|
|
raise ValueError(
|
|
f"cannot match existing table structure for [{jitems}] "
|
|
"on appending data"
|
|
) from err
|
|
blocks = new_blocks
|
|
blk_items = new_blk_items
|
|
|
|
return blocks, blk_items
|
|
|
|
def process_axes(self, obj, selection: Selection, columns=None) -> DataFrame:
|
|
"""process axes filters"""
|
|
# make a copy to avoid side effects
|
|
if columns is not None:
|
|
columns = list(columns)
|
|
|
|
# make sure to include levels if we have them
|
|
if columns is not None and self.is_multi_index:
|
|
assert isinstance(self.levels, list) # assured by is_multi_index
|
|
for n in self.levels:
|
|
if n not in columns:
|
|
columns.insert(0, n)
|
|
|
|
# reorder by any non_index_axes & limit to the select columns
|
|
for axis, labels in self.non_index_axes:
|
|
obj = _reindex_axis(obj, axis, labels, columns)
|
|
|
|
def process_filter(field, filt, op):
|
|
for axis_name in obj._AXIS_ORDERS:
|
|
axis_number = obj._get_axis_number(axis_name)
|
|
axis_values = obj._get_axis(axis_name)
|
|
assert axis_number is not None
|
|
|
|
# see if the field is the name of an axis
|
|
if field == axis_name:
|
|
# if we have a multi-index, then need to include
|
|
# the levels
|
|
if self.is_multi_index:
|
|
filt = filt.union(Index(self.levels))
|
|
|
|
takers = op(axis_values, filt)
|
|
return obj.loc(axis=axis_number)[takers]
|
|
|
|
# this might be the name of a file IN an axis
|
|
elif field in axis_values:
|
|
# we need to filter on this dimension
|
|
values = ensure_index(getattr(obj, field).values)
|
|
filt = ensure_index(filt)
|
|
|
|
# hack until we support reversed dim flags
|
|
if isinstance(obj, DataFrame):
|
|
axis_number = 1 - axis_number
|
|
|
|
takers = op(values, filt)
|
|
return obj.loc(axis=axis_number)[takers]
|
|
|
|
raise ValueError(f"cannot find the field [{field}] for filtering!")
|
|
|
|
# apply the selection filters (but keep in the same order)
|
|
if selection.filter is not None:
|
|
for field, op, filt in selection.filter.format():
|
|
obj = process_filter(field, filt, op)
|
|
|
|
return obj
|
|
|
|
def create_description(
|
|
self,
|
|
complib,
|
|
complevel: int | None,
|
|
fletcher32: bool,
|
|
expectedrows: int | None,
|
|
) -> dict[str, Any]:
|
|
"""create the description of the table from the axes & values"""
|
|
# provided expected rows if its passed
|
|
if expectedrows is None:
|
|
expectedrows = max(self.nrows_expected, 10000)
|
|
|
|
d = {"name": "table", "expectedrows": expectedrows}
|
|
|
|
# description from the axes & values
|
|
d["description"] = {a.cname: a.typ for a in self.axes}
|
|
|
|
if complib:
|
|
if complevel is None:
|
|
complevel = self._complevel or 9
|
|
filters = _tables().Filters(
|
|
complevel=complevel,
|
|
complib=complib,
|
|
fletcher32=fletcher32 or self._fletcher32,
|
|
)
|
|
d["filters"] = filters
|
|
elif self._filters is not None:
|
|
d["filters"] = self._filters
|
|
|
|
return d
|
|
|
|
def read_coordinates(
|
|
self, where=None, start: int | None = None, stop: int | None = None
|
|
):
|
|
"""
|
|
select coordinates (row numbers) from a table; return the
|
|
coordinates object
|
|
"""
|
|
# validate the version
|
|
self.validate_version(where)
|
|
|
|
# infer the data kind
|
|
if not self.infer_axes():
|
|
return False
|
|
|
|
# create the selection
|
|
selection = Selection(self, where=where, start=start, stop=stop)
|
|
coords = selection.select_coords()
|
|
if selection.filter is not None:
|
|
for field, op, filt in selection.filter.format():
|
|
data = self.read_column(
|
|
field, start=coords.min(), stop=coords.max() + 1
|
|
)
|
|
coords = coords[op(data.iloc[coords - coords.min()], filt).values]
|
|
|
|
return Index(coords)
|
|
|
|
def read_column(
|
|
self,
|
|
column: str,
|
|
where=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
"""
|
|
return a single column from the table, generally only indexables
|
|
are interesting
|
|
"""
|
|
# validate the version
|
|
self.validate_version()
|
|
|
|
# infer the data kind
|
|
if not self.infer_axes():
|
|
return False
|
|
|
|
if where is not None:
|
|
raise TypeError("read_column does not currently accept a where clause")
|
|
|
|
# find the axes
|
|
for a in self.axes:
|
|
if column == a.name:
|
|
if not a.is_data_indexable:
|
|
raise ValueError(
|
|
f"column [{column}] can not be extracted individually; "
|
|
"it is not data indexable"
|
|
)
|
|
|
|
# column must be an indexable or a data column
|
|
c = getattr(self.table.cols, column)
|
|
a.set_info(self.info)
|
|
col_values = a.convert(
|
|
c[start:stop],
|
|
nan_rep=self.nan_rep,
|
|
encoding=self.encoding,
|
|
errors=self.errors,
|
|
)
|
|
return Series(_set_tz(col_values[1], a.tz), name=column, copy=False)
|
|
|
|
raise KeyError(f"column [{column}] not found in the table")
|
|
|
|
|
|
class WORMTable(Table):
|
|
"""
|
|
a write-once read-many table: this format DOES NOT ALLOW appending to a
|
|
table. writing is a one-time operation the data are stored in a format
|
|
that allows for searching the data on disk
|
|
"""
|
|
|
|
table_type = "worm"
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
"""
|
|
read the indices and the indexing array, calculate offset rows and return
|
|
"""
|
|
raise NotImplementedError("WORMTable needs to implement read")
|
|
|
|
def write(self, obj, **kwargs) -> None:
|
|
"""
|
|
write in a format that we can search later on (but cannot append
|
|
to): write out the indices and the values using _write_array
|
|
(e.g. a CArray) create an indexing table so that we can search
|
|
"""
|
|
raise NotImplementedError("WORMTable needs to implement write")
|
|
|
|
|
|
class AppendableTable(Table):
|
|
"""support the new appendable table formats"""
|
|
|
|
table_type = "appendable"
|
|
|
|
# error: Signature of "write" incompatible with supertype "Fixed"
|
|
def write( # type: ignore[override]
|
|
self,
|
|
obj,
|
|
axes=None,
|
|
append: bool = False,
|
|
complib=None,
|
|
complevel=None,
|
|
fletcher32=None,
|
|
min_itemsize=None,
|
|
chunksize: int | None = None,
|
|
expectedrows=None,
|
|
dropna: bool = False,
|
|
nan_rep=None,
|
|
data_columns=None,
|
|
track_times: bool = True,
|
|
) -> None:
|
|
if not append and self.is_exists:
|
|
self._handle.remove_node(self.group, "table")
|
|
|
|
# create the axes
|
|
table = self._create_axes(
|
|
axes=axes,
|
|
obj=obj,
|
|
validate=append,
|
|
min_itemsize=min_itemsize,
|
|
nan_rep=nan_rep,
|
|
data_columns=data_columns,
|
|
)
|
|
|
|
for a in table.axes:
|
|
a.validate_names()
|
|
|
|
if not table.is_exists:
|
|
# create the table
|
|
options = table.create_description(
|
|
complib=complib,
|
|
complevel=complevel,
|
|
fletcher32=fletcher32,
|
|
expectedrows=expectedrows,
|
|
)
|
|
|
|
# set the table attributes
|
|
table.set_attrs()
|
|
|
|
options["track_times"] = track_times
|
|
|
|
# create the table
|
|
table._handle.create_table(table.group, **options)
|
|
|
|
# update my info
|
|
table.attrs.info = table.info
|
|
|
|
# validate the axes and set the kinds
|
|
for a in table.axes:
|
|
a.validate_and_set(table, append)
|
|
|
|
# add the rows
|
|
table.write_data(chunksize, dropna=dropna)
|
|
|
|
def write_data(self, chunksize: int | None, dropna: bool = False) -> None:
|
|
"""
|
|
we form the data into a 2-d including indexes,values,mask write chunk-by-chunk
|
|
"""
|
|
names = self.dtype.names
|
|
nrows = self.nrows_expected
|
|
|
|
# if dropna==True, then drop ALL nan rows
|
|
masks = []
|
|
if dropna:
|
|
for a in self.values_axes:
|
|
# figure the mask: only do if we can successfully process this
|
|
# column, otherwise ignore the mask
|
|
mask = isna(a.data).all(axis=0)
|
|
if isinstance(mask, np.ndarray):
|
|
masks.append(mask.astype("u1", copy=False))
|
|
|
|
# consolidate masks
|
|
if len(masks):
|
|
mask = masks[0]
|
|
for m in masks[1:]:
|
|
mask = mask & m
|
|
mask = mask.ravel()
|
|
else:
|
|
mask = None
|
|
|
|
# broadcast the indexes if needed
|
|
indexes = [a.cvalues for a in self.index_axes]
|
|
nindexes = len(indexes)
|
|
assert nindexes == 1, nindexes # ensures we dont need to broadcast
|
|
|
|
# transpose the values so first dimension is last
|
|
# reshape the values if needed
|
|
values = [a.take_data() for a in self.values_axes]
|
|
values = [v.transpose(np.roll(np.arange(v.ndim), v.ndim - 1)) for v in values]
|
|
bvalues = []
|
|
for i, v in enumerate(values):
|
|
new_shape = (nrows,) + self.dtype[names[nindexes + i]].shape
|
|
bvalues.append(v.reshape(new_shape))
|
|
|
|
# write the chunks
|
|
if chunksize is None:
|
|
chunksize = 100000
|
|
|
|
rows = np.empty(min(chunksize, nrows), dtype=self.dtype)
|
|
chunks = nrows // chunksize + 1
|
|
for i in range(chunks):
|
|
start_i = i * chunksize
|
|
end_i = min((i + 1) * chunksize, nrows)
|
|
if start_i >= end_i:
|
|
break
|
|
|
|
self.write_data_chunk(
|
|
rows,
|
|
indexes=[a[start_i:end_i] for a in indexes],
|
|
mask=mask[start_i:end_i] if mask is not None else None,
|
|
values=[v[start_i:end_i] for v in bvalues],
|
|
)
|
|
|
|
def write_data_chunk(
|
|
self,
|
|
rows: np.ndarray,
|
|
indexes: list[np.ndarray],
|
|
mask: npt.NDArray[np.bool_] | None,
|
|
values: list[np.ndarray],
|
|
) -> None:
|
|
"""
|
|
Parameters
|
|
----------
|
|
rows : an empty memory space where we are putting the chunk
|
|
indexes : an array of the indexes
|
|
mask : an array of the masks
|
|
values : an array of the values
|
|
"""
|
|
# 0 len
|
|
for v in values:
|
|
if not np.prod(v.shape):
|
|
return
|
|
|
|
nrows = indexes[0].shape[0]
|
|
if nrows != len(rows):
|
|
rows = np.empty(nrows, dtype=self.dtype)
|
|
names = self.dtype.names
|
|
nindexes = len(indexes)
|
|
|
|
# indexes
|
|
for i, idx in enumerate(indexes):
|
|
rows[names[i]] = idx
|
|
|
|
# values
|
|
for i, v in enumerate(values):
|
|
rows[names[i + nindexes]] = v
|
|
|
|
# mask
|
|
if mask is not None:
|
|
m = ~mask.ravel().astype(bool, copy=False)
|
|
if not m.all():
|
|
rows = rows[m]
|
|
|
|
if len(rows):
|
|
self.table.append(rows)
|
|
self.table.flush()
|
|
|
|
def delete(self, where=None, start: int | None = None, stop: int | None = None):
|
|
# delete all rows (and return the nrows)
|
|
if where is None or not len(where):
|
|
if start is None and stop is None:
|
|
nrows = self.nrows
|
|
self._handle.remove_node(self.group, recursive=True)
|
|
else:
|
|
# pytables<3.0 would remove a single row with stop=None
|
|
if stop is None:
|
|
stop = self.nrows
|
|
nrows = self.table.remove_rows(start=start, stop=stop)
|
|
self.table.flush()
|
|
return nrows
|
|
|
|
# infer the data kind
|
|
if not self.infer_axes():
|
|
return None
|
|
|
|
# create the selection
|
|
table = self.table
|
|
selection = Selection(self, where, start=start, stop=stop)
|
|
values = selection.select_coords()
|
|
|
|
# delete the rows in reverse order
|
|
sorted_series = Series(values, copy=False).sort_values()
|
|
ln = len(sorted_series)
|
|
|
|
if ln:
|
|
# construct groups of consecutive rows
|
|
diff = sorted_series.diff()
|
|
groups = list(diff[diff > 1].index)
|
|
|
|
# 1 group
|
|
if not len(groups):
|
|
groups = [0]
|
|
|
|
# final element
|
|
if groups[-1] != ln:
|
|
groups.append(ln)
|
|
|
|
# initial element
|
|
if groups[0] != 0:
|
|
groups.insert(0, 0)
|
|
|
|
# we must remove in reverse order!
|
|
pg = groups.pop()
|
|
for g in reversed(groups):
|
|
rows = sorted_series.take(range(g, pg))
|
|
table.remove_rows(
|
|
start=rows[rows.index[0]], stop=rows[rows.index[-1]] + 1
|
|
)
|
|
pg = g
|
|
|
|
self.table.flush()
|
|
|
|
# return the number of rows removed
|
|
return ln
|
|
|
|
|
|
class AppendableFrameTable(AppendableTable):
|
|
"""support the new appendable table formats"""
|
|
|
|
pandas_kind = "frame_table"
|
|
table_type = "appendable_frame"
|
|
ndim = 2
|
|
obj_type: type[DataFrame | Series] = DataFrame
|
|
|
|
@property
|
|
def is_transposed(self) -> bool:
|
|
return self.index_axes[0].axis == 1
|
|
|
|
@classmethod
|
|
def get_object(cls, obj, transposed: bool):
|
|
"""these are written transposed"""
|
|
if transposed:
|
|
obj = obj.T
|
|
return obj
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
# validate the version
|
|
self.validate_version(where)
|
|
|
|
# infer the data kind
|
|
if not self.infer_axes():
|
|
return None
|
|
|
|
result = self._read_axes(where=where, start=start, stop=stop)
|
|
|
|
info = (
|
|
self.info.get(self.non_index_axes[0][0], {})
|
|
if len(self.non_index_axes)
|
|
else {}
|
|
)
|
|
|
|
inds = [i for i, ax in enumerate(self.axes) if ax is self.index_axes[0]]
|
|
assert len(inds) == 1
|
|
ind = inds[0]
|
|
|
|
index = result[ind][0]
|
|
|
|
frames = []
|
|
for i, a in enumerate(self.axes):
|
|
if a not in self.values_axes:
|
|
continue
|
|
index_vals, cvalues = result[i]
|
|
|
|
# we could have a multi-index constructor here
|
|
# ensure_index doesn't recognized our list-of-tuples here
|
|
if info.get("type") != "MultiIndex":
|
|
cols = Index(index_vals)
|
|
else:
|
|
cols = MultiIndex.from_tuples(index_vals)
|
|
|
|
names = info.get("names")
|
|
if names is not None:
|
|
cols.set_names(names, inplace=True)
|
|
|
|
if self.is_transposed:
|
|
values = cvalues
|
|
index_ = cols
|
|
cols_ = Index(index, name=getattr(index, "name", None))
|
|
else:
|
|
values = cvalues.T
|
|
index_ = Index(index, name=getattr(index, "name", None))
|
|
cols_ = cols
|
|
|
|
# if we have a DataIndexableCol, its shape will only be 1 dim
|
|
if values.ndim == 1 and isinstance(values, np.ndarray):
|
|
values = values.reshape((1, values.shape[0]))
|
|
|
|
if isinstance(values, np.ndarray):
|
|
df = DataFrame(values.T, columns=cols_, index=index_, copy=False)
|
|
elif isinstance(values, Index):
|
|
df = DataFrame(values, columns=cols_, index=index_)
|
|
else:
|
|
# Categorical
|
|
df = DataFrame._from_arrays([values], columns=cols_, index=index_)
|
|
if not (using_pyarrow_string_dtype() and values.dtype.kind == "O"):
|
|
assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)
|
|
if using_pyarrow_string_dtype() and is_string_array(
|
|
values, # type: ignore[arg-type]
|
|
skipna=True,
|
|
):
|
|
df = df.astype("string[pyarrow_numpy]")
|
|
frames.append(df)
|
|
|
|
if len(frames) == 1:
|
|
df = frames[0]
|
|
else:
|
|
df = concat(frames, axis=1)
|
|
|
|
selection = Selection(self, where=where, start=start, stop=stop)
|
|
# apply the selection filters & axis orderings
|
|
df = self.process_axes(df, selection=selection, columns=columns)
|
|
return df
|
|
|
|
|
|
class AppendableSeriesTable(AppendableFrameTable):
|
|
"""support the new appendable table formats"""
|
|
|
|
pandas_kind = "series_table"
|
|
table_type = "appendable_series"
|
|
ndim = 2
|
|
obj_type = Series
|
|
|
|
@property
|
|
def is_transposed(self) -> bool:
|
|
return False
|
|
|
|
@classmethod
|
|
def get_object(cls, obj, transposed: bool):
|
|
return obj
|
|
|
|
# error: Signature of "write" incompatible with supertype "Fixed"
|
|
def write(self, obj, data_columns=None, **kwargs) -> None: # type: ignore[override]
|
|
"""we are going to write this as a frame table"""
|
|
if not isinstance(obj, DataFrame):
|
|
name = obj.name or "values"
|
|
obj = obj.to_frame(name)
|
|
super().write(obj=obj, data_columns=obj.columns.tolist(), **kwargs)
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
) -> Series:
|
|
is_multi_index = self.is_multi_index
|
|
if columns is not None and is_multi_index:
|
|
assert isinstance(self.levels, list) # needed for mypy
|
|
for n in self.levels:
|
|
if n not in columns:
|
|
columns.insert(0, n)
|
|
s = super().read(where=where, columns=columns, start=start, stop=stop)
|
|
if is_multi_index:
|
|
s.set_index(self.levels, inplace=True)
|
|
|
|
s = s.iloc[:, 0]
|
|
|
|
# remove the default name
|
|
if s.name == "values":
|
|
s.name = None
|
|
return s
|
|
|
|
|
|
class AppendableMultiSeriesTable(AppendableSeriesTable):
|
|
"""support the new appendable table formats"""
|
|
|
|
pandas_kind = "series_table"
|
|
table_type = "appendable_multiseries"
|
|
|
|
# error: Signature of "write" incompatible with supertype "Fixed"
|
|
def write(self, obj, **kwargs) -> None: # type: ignore[override]
|
|
"""we are going to write this as a frame table"""
|
|
name = obj.name or "values"
|
|
newobj, self.levels = self.validate_multiindex(obj)
|
|
assert isinstance(self.levels, list) # for mypy
|
|
cols = list(self.levels)
|
|
cols.append(name)
|
|
newobj.columns = Index(cols)
|
|
super().write(obj=newobj, **kwargs)
|
|
|
|
|
|
class GenericTable(AppendableFrameTable):
|
|
"""a table that read/writes the generic pytables table format"""
|
|
|
|
pandas_kind = "frame_table"
|
|
table_type = "generic_table"
|
|
ndim = 2
|
|
obj_type = DataFrame
|
|
levels: list[Hashable]
|
|
|
|
@property
|
|
def pandas_type(self) -> str:
|
|
return self.pandas_kind
|
|
|
|
@property
|
|
def storable(self):
|
|
return getattr(self.group, "table", None) or self.group
|
|
|
|
def get_attrs(self) -> None:
|
|
"""retrieve our attributes"""
|
|
self.non_index_axes = []
|
|
self.nan_rep = None
|
|
self.levels = []
|
|
|
|
self.index_axes = [a for a in self.indexables if a.is_an_indexable]
|
|
self.values_axes = [a for a in self.indexables if not a.is_an_indexable]
|
|
self.data_columns = [a.name for a in self.values_axes]
|
|
|
|
@cache_readonly
|
|
def indexables(self):
|
|
"""create the indexables from the table description"""
|
|
d = self.description
|
|
|
|
# TODO: can we get a typ for this? AFAICT it is the only place
|
|
# where we aren't passing one
|
|
# the index columns is just a simple index
|
|
md = self.read_metadata("index")
|
|
meta = "category" if md is not None else None
|
|
index_col = GenericIndexCol(
|
|
name="index", axis=0, table=self.table, meta=meta, metadata=md
|
|
)
|
|
|
|
_indexables: list[GenericIndexCol | GenericDataIndexableCol] = [index_col]
|
|
|
|
for i, n in enumerate(d._v_names):
|
|
assert isinstance(n, str)
|
|
|
|
atom = getattr(d, n)
|
|
md = self.read_metadata(n)
|
|
meta = "category" if md is not None else None
|
|
dc = GenericDataIndexableCol(
|
|
name=n,
|
|
pos=i,
|
|
values=[n],
|
|
typ=atom,
|
|
table=self.table,
|
|
meta=meta,
|
|
metadata=md,
|
|
)
|
|
_indexables.append(dc)
|
|
|
|
return _indexables
|
|
|
|
# error: Signature of "write" incompatible with supertype "AppendableTable"
|
|
def write(self, **kwargs) -> None: # type: ignore[override]
|
|
raise NotImplementedError("cannot write on an generic table")
|
|
|
|
|
|
class AppendableMultiFrameTable(AppendableFrameTable):
|
|
"""a frame with a multi-index"""
|
|
|
|
table_type = "appendable_multiframe"
|
|
obj_type = DataFrame
|
|
ndim = 2
|
|
_re_levels = re.compile(r"^level_\d+$")
|
|
|
|
@property
|
|
def table_type_short(self) -> str:
|
|
return "appendable_multi"
|
|
|
|
# error: Signature of "write" incompatible with supertype "Fixed"
|
|
def write(self, obj, data_columns=None, **kwargs) -> None: # type: ignore[override]
|
|
if data_columns is None:
|
|
data_columns = []
|
|
elif data_columns is True:
|
|
data_columns = obj.columns.tolist()
|
|
obj, self.levels = self.validate_multiindex(obj)
|
|
assert isinstance(self.levels, list) # for mypy
|
|
for n in self.levels:
|
|
if n not in data_columns:
|
|
data_columns.insert(0, n)
|
|
super().write(obj=obj, data_columns=data_columns, **kwargs)
|
|
|
|
def read(
|
|
self,
|
|
where=None,
|
|
columns=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
):
|
|
df = super().read(where=where, columns=columns, start=start, stop=stop)
|
|
df = df.set_index(self.levels)
|
|
|
|
# remove names for 'level_%d'
|
|
df.index = df.index.set_names(
|
|
[None if self._re_levels.search(name) else name for name in df.index.names]
|
|
)
|
|
|
|
return df
|
|
|
|
|
|
def _reindex_axis(
|
|
obj: DataFrame, axis: AxisInt, labels: Index, other=None
|
|
) -> DataFrame:
|
|
ax = obj._get_axis(axis)
|
|
labels = ensure_index(labels)
|
|
|
|
# try not to reindex even if other is provided
|
|
# if it equals our current index
|
|
if other is not None:
|
|
other = ensure_index(other)
|
|
if (other is None or labels.equals(other)) and labels.equals(ax):
|
|
return obj
|
|
|
|
labels = ensure_index(labels.unique())
|
|
if other is not None:
|
|
labels = ensure_index(other.unique()).intersection(labels, sort=False)
|
|
if not labels.equals(ax):
|
|
slicer: list[slice | Index] = [slice(None, None)] * obj.ndim
|
|
slicer[axis] = labels
|
|
obj = obj.loc[tuple(slicer)]
|
|
return obj
|
|
|
|
|
|
# tz to/from coercion
|
|
|
|
|
|
def _get_tz(tz: tzinfo) -> str | tzinfo:
|
|
"""for a tz-aware type, return an encoded zone"""
|
|
zone = timezones.get_timezone(tz)
|
|
return zone
|
|
|
|
|
|
@overload
|
|
def _set_tz(
|
|
values: np.ndarray | Index, tz: str | tzinfo, coerce: bool = False
|
|
) -> DatetimeIndex:
|
|
...
|
|
|
|
|
|
@overload
|
|
def _set_tz(values: np.ndarray | Index, tz: None, coerce: bool = False) -> np.ndarray:
|
|
...
|
|
|
|
|
|
def _set_tz(
|
|
values: np.ndarray | Index, tz: str | tzinfo | None, coerce: bool = False
|
|
) -> np.ndarray | DatetimeIndex:
|
|
"""
|
|
coerce the values to a DatetimeIndex if tz is set
|
|
preserve the input shape if possible
|
|
|
|
Parameters
|
|
----------
|
|
values : ndarray or Index
|
|
tz : str or tzinfo
|
|
coerce : if we do not have a passed timezone, coerce to M8[ns] ndarray
|
|
"""
|
|
if isinstance(values, DatetimeIndex):
|
|
# If values is tzaware, the tz gets dropped in the values.ravel()
|
|
# call below (which returns an ndarray). So we are only non-lossy
|
|
# if `tz` matches `values.tz`.
|
|
assert values.tz is None or values.tz == tz
|
|
if values.tz is not None:
|
|
return values
|
|
|
|
if tz is not None:
|
|
if isinstance(values, DatetimeIndex):
|
|
name = values.name
|
|
else:
|
|
name = None
|
|
values = values.ravel()
|
|
|
|
tz = _ensure_decoded(tz)
|
|
values = DatetimeIndex(values, name=name)
|
|
values = values.tz_localize("UTC").tz_convert(tz)
|
|
elif coerce:
|
|
values = np.asarray(values, dtype="M8[ns]")
|
|
|
|
# error: Incompatible return value type (got "Union[ndarray, Index]",
|
|
# expected "Union[ndarray, DatetimeIndex]")
|
|
return values # type: ignore[return-value]
|
|
|
|
|
|
def _convert_index(name: str, index: Index, encoding: str, errors: str) -> IndexCol:
|
|
assert isinstance(name, str)
|
|
|
|
index_name = index.name
|
|
# error: Argument 1 to "_get_data_and_dtype_name" has incompatible type "Index";
|
|
# expected "Union[ExtensionArray, ndarray]"
|
|
converted, dtype_name = _get_data_and_dtype_name(index) # type: ignore[arg-type]
|
|
kind = _dtype_to_kind(dtype_name)
|
|
atom = DataIndexableCol._get_atom(converted)
|
|
|
|
if (
|
|
lib.is_np_dtype(index.dtype, "iu")
|
|
or needs_i8_conversion(index.dtype)
|
|
or is_bool_dtype(index.dtype)
|
|
):
|
|
# Includes Index, RangeIndex, DatetimeIndex, TimedeltaIndex, PeriodIndex,
|
|
# in which case "kind" is "integer", "integer", "datetime64",
|
|
# "timedelta64", and "integer", respectively.
|
|
return IndexCol(
|
|
name,
|
|
values=converted,
|
|
kind=kind,
|
|
typ=atom,
|
|
freq=getattr(index, "freq", None),
|
|
tz=getattr(index, "tz", None),
|
|
index_name=index_name,
|
|
)
|
|
|
|
if isinstance(index, MultiIndex):
|
|
raise TypeError("MultiIndex not supported here!")
|
|
|
|
inferred_type = lib.infer_dtype(index, skipna=False)
|
|
# we won't get inferred_type of "datetime64" or "timedelta64" as these
|
|
# would go through the DatetimeIndex/TimedeltaIndex paths above
|
|
|
|
values = np.asarray(index)
|
|
|
|
if inferred_type == "date":
|
|
converted = np.asarray([v.toordinal() for v in values], dtype=np.int32)
|
|
return IndexCol(
|
|
name, converted, "date", _tables().Time32Col(), index_name=index_name
|
|
)
|
|
elif inferred_type == "string":
|
|
converted = _convert_string_array(values, encoding, errors)
|
|
itemsize = converted.dtype.itemsize
|
|
return IndexCol(
|
|
name,
|
|
converted,
|
|
"string",
|
|
_tables().StringCol(itemsize),
|
|
index_name=index_name,
|
|
)
|
|
|
|
elif inferred_type in ["integer", "floating"]:
|
|
return IndexCol(
|
|
name, values=converted, kind=kind, typ=atom, index_name=index_name
|
|
)
|
|
else:
|
|
assert isinstance(converted, np.ndarray) and converted.dtype == object
|
|
assert kind == "object", kind
|
|
atom = _tables().ObjectAtom()
|
|
return IndexCol(name, converted, kind, atom, index_name=index_name)
|
|
|
|
|
|
def _unconvert_index(data, kind: str, encoding: str, errors: str) -> np.ndarray | Index:
|
|
index: Index | np.ndarray
|
|
|
|
if kind.startswith("datetime64"):
|
|
if kind == "datetime64":
|
|
# created before we stored resolution information
|
|
index = DatetimeIndex(data)
|
|
else:
|
|
index = DatetimeIndex(data.view(kind))
|
|
elif kind == "timedelta64":
|
|
index = TimedeltaIndex(data)
|
|
elif kind == "date":
|
|
try:
|
|
index = np.asarray([date.fromordinal(v) for v in data], dtype=object)
|
|
except ValueError:
|
|
index = np.asarray([date.fromtimestamp(v) for v in data], dtype=object)
|
|
elif kind in ("integer", "float", "bool"):
|
|
index = np.asarray(data)
|
|
elif kind in ("string"):
|
|
index = _unconvert_string_array(
|
|
data, nan_rep=None, encoding=encoding, errors=errors
|
|
)
|
|
elif kind == "object":
|
|
index = np.asarray(data[0])
|
|
else: # pragma: no cover
|
|
raise ValueError(f"unrecognized index type {kind}")
|
|
return index
|
|
|
|
|
|
def _maybe_convert_for_string_atom(
|
|
name: str,
|
|
bvalues: ArrayLike,
|
|
existing_col,
|
|
min_itemsize,
|
|
nan_rep,
|
|
encoding,
|
|
errors,
|
|
columns: list[str],
|
|
):
|
|
if bvalues.dtype != object:
|
|
return bvalues
|
|
|
|
bvalues = cast(np.ndarray, bvalues)
|
|
|
|
dtype_name = bvalues.dtype.name
|
|
inferred_type = lib.infer_dtype(bvalues, skipna=False)
|
|
|
|
if inferred_type == "date":
|
|
raise TypeError("[date] is not implemented as a table column")
|
|
if inferred_type == "datetime":
|
|
# after GH#8260
|
|
# this only would be hit for a multi-timezone dtype which is an error
|
|
raise TypeError(
|
|
"too many timezones in this block, create separate data columns"
|
|
)
|
|
|
|
if not (inferred_type == "string" or dtype_name == "object"):
|
|
return bvalues
|
|
|
|
mask = isna(bvalues)
|
|
data = bvalues.copy()
|
|
data[mask] = nan_rep
|
|
|
|
# see if we have a valid string type
|
|
inferred_type = lib.infer_dtype(data, skipna=False)
|
|
if inferred_type != "string":
|
|
# we cannot serialize this data, so report an exception on a column
|
|
# by column basis
|
|
|
|
# expected behaviour:
|
|
# search block for a non-string object column by column
|
|
for i in range(data.shape[0]):
|
|
col = data[i]
|
|
inferred_type = lib.infer_dtype(col, skipna=False)
|
|
if inferred_type != "string":
|
|
error_column_label = columns[i] if len(columns) > i else f"No.{i}"
|
|
raise TypeError(
|
|
f"Cannot serialize the column [{error_column_label}]\n"
|
|
f"because its data contents are not [string] but "
|
|
f"[{inferred_type}] object dtype"
|
|
)
|
|
|
|
# itemsize is the maximum length of a string (along any dimension)
|
|
|
|
data_converted = _convert_string_array(data, encoding, errors).reshape(data.shape)
|
|
itemsize = data_converted.itemsize
|
|
|
|
# specified min_itemsize?
|
|
if isinstance(min_itemsize, dict):
|
|
min_itemsize = int(min_itemsize.get(name) or min_itemsize.get("values") or 0)
|
|
itemsize = max(min_itemsize or 0, itemsize)
|
|
|
|
# check for column in the values conflicts
|
|
if existing_col is not None:
|
|
eci = existing_col.validate_col(itemsize)
|
|
if eci is not None and eci > itemsize:
|
|
itemsize = eci
|
|
|
|
data_converted = data_converted.astype(f"|S{itemsize}", copy=False)
|
|
return data_converted
|
|
|
|
|
|
def _convert_string_array(data: np.ndarray, encoding: str, errors: str) -> np.ndarray:
|
|
"""
|
|
Take a string-like that is object dtype and coerce to a fixed size string type.
|
|
|
|
Parameters
|
|
----------
|
|
data : np.ndarray[object]
|
|
encoding : str
|
|
errors : str
|
|
Handler for encoding errors.
|
|
|
|
Returns
|
|
-------
|
|
np.ndarray[fixed-length-string]
|
|
"""
|
|
# encode if needed
|
|
if len(data):
|
|
data = (
|
|
Series(data.ravel(), copy=False)
|
|
.str.encode(encoding, errors)
|
|
._values.reshape(data.shape)
|
|
)
|
|
|
|
# create the sized dtype
|
|
ensured = ensure_object(data.ravel())
|
|
itemsize = max(1, libwriters.max_len_string_array(ensured))
|
|
|
|
data = np.asarray(data, dtype=f"S{itemsize}")
|
|
return data
|
|
|
|
|
|
def _unconvert_string_array(
|
|
data: np.ndarray, nan_rep, encoding: str, errors: str
|
|
) -> np.ndarray:
|
|
"""
|
|
Inverse of _convert_string_array.
|
|
|
|
Parameters
|
|
----------
|
|
data : np.ndarray[fixed-length-string]
|
|
nan_rep : the storage repr of NaN
|
|
encoding : str
|
|
errors : str
|
|
Handler for encoding errors.
|
|
|
|
Returns
|
|
-------
|
|
np.ndarray[object]
|
|
Decoded data.
|
|
"""
|
|
shape = data.shape
|
|
data = np.asarray(data.ravel(), dtype=object)
|
|
|
|
if len(data):
|
|
itemsize = libwriters.max_len_string_array(ensure_object(data))
|
|
dtype = f"U{itemsize}"
|
|
|
|
if isinstance(data[0], bytes):
|
|
data = Series(data, copy=False).str.decode(encoding, errors=errors)._values
|
|
else:
|
|
data = data.astype(dtype, copy=False).astype(object, copy=False)
|
|
|
|
if nan_rep is None:
|
|
nan_rep = "nan"
|
|
|
|
libwriters.string_array_replace_from_nan_rep(data, nan_rep)
|
|
return data.reshape(shape)
|
|
|
|
|
|
def _maybe_convert(values: np.ndarray, val_kind: str, encoding: str, errors: str):
|
|
assert isinstance(val_kind, str), type(val_kind)
|
|
if _need_convert(val_kind):
|
|
conv = _get_converter(val_kind, encoding, errors)
|
|
values = conv(values)
|
|
return values
|
|
|
|
|
|
def _get_converter(kind: str, encoding: str, errors: str):
|
|
if kind == "datetime64":
|
|
return lambda x: np.asarray(x, dtype="M8[ns]")
|
|
elif "datetime64" in kind:
|
|
return lambda x: np.asarray(x, dtype=kind)
|
|
elif kind == "string":
|
|
return lambda x: _unconvert_string_array(
|
|
x, nan_rep=None, encoding=encoding, errors=errors
|
|
)
|
|
else: # pragma: no cover
|
|
raise ValueError(f"invalid kind {kind}")
|
|
|
|
|
|
def _need_convert(kind: str) -> bool:
|
|
if kind in ("datetime64", "string") or "datetime64" in kind:
|
|
return True
|
|
return False
|
|
|
|
|
|
def _maybe_adjust_name(name: str, version: Sequence[int]) -> str:
|
|
"""
|
|
Prior to 0.10.1, we named values blocks like: values_block_0 an the
|
|
name values_0, adjust the given name if necessary.
|
|
|
|
Parameters
|
|
----------
|
|
name : str
|
|
version : Tuple[int, int, int]
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
"""
|
|
if isinstance(version, str) or len(version) < 3:
|
|
raise ValueError("Version is incorrect, expected sequence of 3 integers.")
|
|
|
|
if version[0] == 0 and version[1] <= 10 and version[2] == 0:
|
|
m = re.search(r"values_block_(\d+)", name)
|
|
if m:
|
|
grp = m.groups()[0]
|
|
name = f"values_{grp}"
|
|
return name
|
|
|
|
|
|
def _dtype_to_kind(dtype_str: str) -> str:
|
|
"""
|
|
Find the "kind" string describing the given dtype name.
|
|
"""
|
|
dtype_str = _ensure_decoded(dtype_str)
|
|
|
|
if dtype_str.startswith(("string", "bytes")):
|
|
kind = "string"
|
|
elif dtype_str.startswith("float"):
|
|
kind = "float"
|
|
elif dtype_str.startswith("complex"):
|
|
kind = "complex"
|
|
elif dtype_str.startswith(("int", "uint")):
|
|
kind = "integer"
|
|
elif dtype_str.startswith("datetime64"):
|
|
kind = dtype_str
|
|
elif dtype_str.startswith("timedelta"):
|
|
kind = "timedelta64"
|
|
elif dtype_str.startswith("bool"):
|
|
kind = "bool"
|
|
elif dtype_str.startswith("category"):
|
|
kind = "category"
|
|
elif dtype_str.startswith("period"):
|
|
# We store the `freq` attr so we can restore from integers
|
|
kind = "integer"
|
|
elif dtype_str == "object":
|
|
kind = "object"
|
|
else:
|
|
raise ValueError(f"cannot interpret dtype of [{dtype_str}]")
|
|
|
|
return kind
|
|
|
|
|
|
def _get_data_and_dtype_name(data: ArrayLike):
|
|
"""
|
|
Convert the passed data into a storable form and a dtype string.
|
|
"""
|
|
if isinstance(data, Categorical):
|
|
data = data.codes
|
|
|
|
if isinstance(data.dtype, DatetimeTZDtype):
|
|
# For datetime64tz we need to drop the TZ in tests TODO: why?
|
|
dtype_name = f"datetime64[{data.dtype.unit}]"
|
|
else:
|
|
dtype_name = data.dtype.name
|
|
|
|
if data.dtype.kind in "mM":
|
|
data = np.asarray(data.view("i8"))
|
|
# TODO: we used to reshape for the dt64tz case, but no longer
|
|
# doing that doesn't seem to break anything. why?
|
|
|
|
elif isinstance(data, PeriodIndex):
|
|
data = data.asi8
|
|
|
|
data = np.asarray(data)
|
|
return data, dtype_name
|
|
|
|
|
|
class Selection:
|
|
"""
|
|
Carries out a selection operation on a tables.Table object.
|
|
|
|
Parameters
|
|
----------
|
|
table : a Table object
|
|
where : list of Terms (or convertible to)
|
|
start, stop: indices to start and/or stop selection
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
table: Table,
|
|
where=None,
|
|
start: int | None = None,
|
|
stop: int | None = None,
|
|
) -> None:
|
|
self.table = table
|
|
self.where = where
|
|
self.start = start
|
|
self.stop = stop
|
|
self.condition = None
|
|
self.filter = None
|
|
self.terms = None
|
|
self.coordinates = None
|
|
|
|
if is_list_like(where):
|
|
# see if we have a passed coordinate like
|
|
with suppress(ValueError):
|
|
inferred = lib.infer_dtype(where, skipna=False)
|
|
if inferred in ("integer", "boolean"):
|
|
where = np.asarray(where)
|
|
if where.dtype == np.bool_:
|
|
start, stop = self.start, self.stop
|
|
if start is None:
|
|
start = 0
|
|
if stop is None:
|
|
stop = self.table.nrows
|
|
self.coordinates = np.arange(start, stop)[where]
|
|
elif issubclass(where.dtype.type, np.integer):
|
|
if (self.start is not None and (where < self.start).any()) or (
|
|
self.stop is not None and (where >= self.stop).any()
|
|
):
|
|
raise ValueError(
|
|
"where must have index locations >= start and < stop"
|
|
)
|
|
self.coordinates = where
|
|
|
|
if self.coordinates is None:
|
|
self.terms = self.generate(where)
|
|
|
|
# create the numexpr & the filter
|
|
if self.terms is not None:
|
|
self.condition, self.filter = self.terms.evaluate()
|
|
|
|
def generate(self, where):
|
|
"""where can be a : dict,list,tuple,string"""
|
|
if where is None:
|
|
return None
|
|
|
|
q = self.table.queryables()
|
|
try:
|
|
return PyTablesExpr(where, queryables=q, encoding=self.table.encoding)
|
|
except NameError as err:
|
|
# raise a nice message, suggesting that the user should use
|
|
# data_columns
|
|
qkeys = ",".join(q.keys())
|
|
msg = dedent(
|
|
f"""\
|
|
The passed where expression: {where}
|
|
contains an invalid variable reference
|
|
all of the variable references must be a reference to
|
|
an axis (e.g. 'index' or 'columns'), or a data_column
|
|
The currently defined references are: {qkeys}
|
|
"""
|
|
)
|
|
raise ValueError(msg) from err
|
|
|
|
def select(self):
|
|
"""
|
|
generate the selection
|
|
"""
|
|
if self.condition is not None:
|
|
return self.table.table.read_where(
|
|
self.condition.format(), start=self.start, stop=self.stop
|
|
)
|
|
elif self.coordinates is not None:
|
|
return self.table.table.read_coordinates(self.coordinates)
|
|
return self.table.table.read(start=self.start, stop=self.stop)
|
|
|
|
def select_coords(self):
|
|
"""
|
|
generate the selection
|
|
"""
|
|
start, stop = self.start, self.stop
|
|
nrows = self.table.nrows
|
|
if start is None:
|
|
start = 0
|
|
elif start < 0:
|
|
start += nrows
|
|
if stop is None:
|
|
stop = nrows
|
|
elif stop < 0:
|
|
stop += nrows
|
|
|
|
if self.condition is not None:
|
|
return self.table.table.get_where_list(
|
|
self.condition.format(), start=start, stop=stop, sort=True
|
|
)
|
|
elif self.coordinates is not None:
|
|
return self.coordinates
|
|
|
|
return np.arange(start, stop)
|