You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
10 KiB
320 lines
10 KiB
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import UnsupportedFunctionCall
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[np.int32, np.int64, np.float32, np.float64, "Int64", "Float64"],
|
|
ids=["np.int32", "np.int64", "np.float32", "np.float64", "Int64", "Float64"],
|
|
)
|
|
def dtypes_for_minmax(request):
|
|
"""
|
|
Fixture of dtypes with min and max values used for testing
|
|
cummin and cummax
|
|
"""
|
|
dtype = request.param
|
|
|
|
np_type = dtype
|
|
if dtype == "Int64":
|
|
np_type = np.int64
|
|
elif dtype == "Float64":
|
|
np_type = np.float64
|
|
|
|
min_val = (
|
|
np.iinfo(np_type).min
|
|
if np.dtype(np_type).kind == "i"
|
|
else np.finfo(np_type).min
|
|
)
|
|
max_val = (
|
|
np.iinfo(np_type).max
|
|
if np.dtype(np_type).kind == "i"
|
|
else np.finfo(np_type).max
|
|
)
|
|
|
|
return (dtype, min_val, max_val)
|
|
|
|
|
|
def test_groupby_cumprod():
|
|
# GH 4095
|
|
df = DataFrame({"key": ["b"] * 10, "value": 2})
|
|
|
|
actual = df.groupby("key")["value"].cumprod()
|
|
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
|
|
expected.name = "value"
|
|
tm.assert_series_equal(actual, expected)
|
|
|
|
df = DataFrame({"key": ["b"] * 100, "value": 2})
|
|
df["value"] = df["value"].astype(float)
|
|
actual = df.groupby("key")["value"].cumprod()
|
|
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
|
|
expected.name = "value"
|
|
tm.assert_series_equal(actual, expected)
|
|
|
|
|
|
@pytest.mark.skip_ubsan
|
|
def test_groupby_cumprod_overflow():
|
|
# GH#37493 if we overflow we return garbage consistent with numpy
|
|
df = DataFrame({"key": ["b"] * 4, "value": 100_000})
|
|
actual = df.groupby("key")["value"].cumprod()
|
|
expected = Series(
|
|
[100_000, 10_000_000_000, 1_000_000_000_000_000, 7766279631452241920],
|
|
name="value",
|
|
)
|
|
tm.assert_series_equal(actual, expected)
|
|
|
|
numpy_result = df.groupby("key", group_keys=False)["value"].apply(
|
|
lambda x: x.cumprod()
|
|
)
|
|
numpy_result.name = "value"
|
|
tm.assert_series_equal(actual, numpy_result)
|
|
|
|
|
|
def test_groupby_cumprod_nan_influences_other_columns():
|
|
# GH#48064
|
|
df = DataFrame(
|
|
{
|
|
"a": 1,
|
|
"b": [1, np.nan, 2],
|
|
"c": [1, 2, 3.0],
|
|
}
|
|
)
|
|
result = df.groupby("a").cumprod(numeric_only=True, skipna=False)
|
|
expected = DataFrame({"b": [1, np.nan, np.nan], "c": [1, 2, 6.0]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_cummin(dtypes_for_minmax):
|
|
dtype = dtypes_for_minmax[0]
|
|
min_val = dtypes_for_minmax[1]
|
|
|
|
# GH 15048
|
|
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
|
|
expected_mins = [3, 3, 3, 2, 2, 2, 2, 1]
|
|
|
|
df = base_df.astype(dtype)
|
|
|
|
expected = DataFrame({"B": expected_mins}).astype(dtype)
|
|
result = df.groupby("A").cummin()
|
|
tm.assert_frame_equal(result, expected)
|
|
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Test w/ min value for dtype
|
|
df.loc[[2, 6], "B"] = min_val
|
|
df.loc[[1, 5], "B"] = min_val + 1
|
|
expected.loc[[2, 3, 6, 7], "B"] = min_val
|
|
expected.loc[[1, 5], "B"] = min_val + 1 # should not be rounded to min_val
|
|
result = df.groupby("A").cummin()
|
|
tm.assert_frame_equal(result, expected, check_exact=True)
|
|
expected = (
|
|
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
|
|
)
|
|
tm.assert_frame_equal(result, expected, check_exact=True)
|
|
|
|
# Test nan in some values
|
|
# Explicit cast to float to avoid implicit cast when setting nan
|
|
base_df = base_df.astype({"B": "float"})
|
|
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
|
|
expected = DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]})
|
|
result = base_df.groupby("A").cummin()
|
|
tm.assert_frame_equal(result, expected)
|
|
expected = (
|
|
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH 15561
|
|
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
|
|
expected = Series(pd.to_datetime("2001"), index=[0], name="b")
|
|
|
|
result = df.groupby("a")["b"].cummin()
|
|
tm.assert_series_equal(expected, result)
|
|
|
|
# GH 15635
|
|
df = DataFrame({"a": [1, 2, 1], "b": [1, 2, 2]})
|
|
result = df.groupby("a").b.cummin()
|
|
expected = Series([1, 2, 1], name="b")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
|
@pytest.mark.parametrize("dtype", ["UInt64", "Int64", "Float64", "float", "boolean"])
|
|
def test_cummin_max_all_nan_column(method, dtype):
|
|
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8})
|
|
base_df["B"] = base_df["B"].astype(dtype)
|
|
grouped = base_df.groupby("A")
|
|
|
|
expected = DataFrame({"B": [np.nan] * 8}, dtype=dtype)
|
|
result = getattr(grouped, method)()
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
result = getattr(grouped["B"], method)().to_frame()
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
|
|
def test_cummax(dtypes_for_minmax):
|
|
dtype = dtypes_for_minmax[0]
|
|
max_val = dtypes_for_minmax[2]
|
|
|
|
# GH 15048
|
|
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
|
|
expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3]
|
|
|
|
df = base_df.astype(dtype)
|
|
|
|
expected = DataFrame({"B": expected_maxs}).astype(dtype)
|
|
result = df.groupby("A").cummax()
|
|
tm.assert_frame_equal(result, expected)
|
|
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Test w/ max value for dtype
|
|
df.loc[[2, 6], "B"] = max_val
|
|
expected.loc[[2, 3, 6, 7], "B"] = max_val
|
|
result = df.groupby("A").cummax()
|
|
tm.assert_frame_equal(result, expected)
|
|
expected = (
|
|
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Test nan in some values
|
|
# Explicit cast to float to avoid implicit cast when setting nan
|
|
base_df = base_df.astype({"B": "float"})
|
|
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
|
|
expected = DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]})
|
|
result = base_df.groupby("A").cummax()
|
|
tm.assert_frame_equal(result, expected)
|
|
expected = (
|
|
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH 15561
|
|
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
|
|
expected = Series(pd.to_datetime("2001"), index=[0], name="b")
|
|
|
|
result = df.groupby("a")["b"].cummax()
|
|
tm.assert_series_equal(expected, result)
|
|
|
|
# GH 15635
|
|
df = DataFrame({"a": [1, 2, 1], "b": [2, 1, 1]})
|
|
result = df.groupby("a").b.cummax()
|
|
expected = Series([2, 1, 2], name="b")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_cummax_i8_at_implementation_bound():
|
|
# the minimum value used to be treated as NPY_NAT+1 instead of NPY_NAT
|
|
# for int64 dtype GH#46382
|
|
ser = Series([pd.NaT._value + n for n in range(5)])
|
|
df = DataFrame({"A": 1, "B": ser, "C": ser._values.view("M8[ns]")})
|
|
gb = df.groupby("A")
|
|
|
|
res = gb.cummax()
|
|
exp = df[["B", "C"]]
|
|
tm.assert_frame_equal(res, exp)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
|
@pytest.mark.parametrize("dtype", ["float", "Int64", "Float64"])
|
|
@pytest.mark.parametrize(
|
|
"groups,expected_data",
|
|
[
|
|
([1, 1, 1], [1, None, None]),
|
|
([1, 2, 3], [1, None, 2]),
|
|
([1, 3, 3], [1, None, None]),
|
|
],
|
|
)
|
|
def test_cummin_max_skipna(method, dtype, groups, expected_data):
|
|
# GH-34047
|
|
df = DataFrame({"a": Series([1, None, 2], dtype=dtype)})
|
|
orig = df.copy()
|
|
gb = df.groupby(groups)["a"]
|
|
|
|
result = getattr(gb, method)(skipna=False)
|
|
expected = Series(expected_data, dtype=dtype, name="a")
|
|
|
|
# check we didn't accidentally alter df
|
|
tm.assert_frame_equal(df, orig)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
|
def test_cummin_max_skipna_multiple_cols(method):
|
|
# Ensure missing value in "a" doesn't cause "b" to be nan-filled
|
|
df = DataFrame({"a": [np.nan, 2.0, 2.0], "b": [2.0, 2.0, 2.0]})
|
|
gb = df.groupby([1, 1, 1])[["a", "b"]]
|
|
|
|
result = getattr(gb, method)(skipna=False)
|
|
expected = DataFrame({"a": [np.nan, np.nan, np.nan], "b": [2.0, 2.0, 2.0]})
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["cumprod", "cumsum"])
|
|
def test_numpy_compat(func):
|
|
# see gh-12811
|
|
df = DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
|
|
g = df.groupby("A")
|
|
|
|
msg = "numpy operations are not valid with groupby"
|
|
|
|
with pytest.raises(UnsupportedFunctionCall, match=msg):
|
|
getattr(g, func)(1, 2, 3)
|
|
with pytest.raises(UnsupportedFunctionCall, match=msg):
|
|
getattr(g, func)(foo=1)
|
|
|
|
|
|
@td.skip_if_32bit
|
|
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
|
@pytest.mark.parametrize(
|
|
"dtype,val", [("UInt64", np.iinfo("uint64").max), ("Int64", 2**53 + 1)]
|
|
)
|
|
def test_nullable_int_not_cast_as_float(method, dtype, val):
|
|
data = [val, pd.NA]
|
|
df = DataFrame({"grp": [1, 1], "b": data}, dtype=dtype)
|
|
grouped = df.groupby("grp")
|
|
|
|
result = grouped.transform(method)
|
|
expected = DataFrame({"b": data}, dtype=dtype)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_cython_api2():
|
|
# this takes the fast apply path
|
|
|
|
# cumsum (GH5614)
|
|
df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"])
|
|
expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"])
|
|
result = df.groupby("A").cumsum()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH 5755 - cumsum is a transformer and should ignore as_index
|
|
result = df.groupby("A", as_index=False).cumsum()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH 13994
|
|
msg = "DataFrameGroupBy.cumsum with axis=1 is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = df.groupby("A").cumsum(axis=1)
|
|
expected = df.cumsum(axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
msg = "DataFrameGroupBy.cumprod with axis=1 is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = df.groupby("A").cumprod(axis=1)
|
|
expected = df.cumprod(axis=1)
|
|
tm.assert_frame_equal(result, expected)
|