You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1177 lines
36 KiB
1177 lines
36 KiB
import builtins
|
|
import datetime as dt
|
|
from string import ascii_lowercase
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs.tslibs import iNaT
|
|
|
|
from pandas.core.dtypes.common import pandas_dtype
|
|
from pandas.core.dtypes.missing import na_value_for_dtype
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
MultiIndex,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
isna,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.util import _test_decorators as td
|
|
|
|
|
|
@pytest.mark.parametrize("agg_func", ["any", "all"])
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
["foo", "bar", "baz"],
|
|
["foo", "", ""],
|
|
["", "", ""],
|
|
[1, 2, 3],
|
|
[1, 0, 0],
|
|
[0, 0, 0],
|
|
[1.0, 2.0, 3.0],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 0.0, 0.0],
|
|
[True, True, True],
|
|
[True, False, False],
|
|
[False, False, False],
|
|
[np.nan, np.nan, np.nan],
|
|
],
|
|
)
|
|
def test_groupby_bool_aggs(skipna, agg_func, vals):
|
|
df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
|
|
|
|
# Figure out expectation using Python builtin
|
|
exp = getattr(builtins, agg_func)(vals)
|
|
|
|
# edge case for missing data with skipna and 'any'
|
|
if skipna and all(isna(vals)) and agg_func == "any":
|
|
exp = False
|
|
|
|
expected = DataFrame(
|
|
[exp] * 2, columns=["val"], index=pd.Index(["a", "b"], name="key")
|
|
)
|
|
result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_any():
|
|
df = DataFrame(
|
|
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
|
|
columns=["A", "B", "C"],
|
|
)
|
|
expected = DataFrame(
|
|
[[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
|
|
)
|
|
expected.index.name = "A"
|
|
result = df.groupby("A").any()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
|
def test_bool_aggs_dup_column_labels(bool_agg_func):
|
|
# GH#21668
|
|
df = DataFrame([[True, True]], columns=["a", "a"])
|
|
grp_by = df.groupby([0])
|
|
result = getattr(grp_by, bool_agg_func)()
|
|
|
|
expected = df.set_axis(np.array([0]))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
|
@pytest.mark.parametrize(
|
|
"data",
|
|
[
|
|
[False, False, False],
|
|
[True, True, True],
|
|
[pd.NA, pd.NA, pd.NA],
|
|
[False, pd.NA, False],
|
|
[True, pd.NA, True],
|
|
[True, pd.NA, False],
|
|
],
|
|
)
|
|
def test_masked_kleene_logic(bool_agg_func, skipna, data):
|
|
# GH#37506
|
|
ser = Series(data, dtype="boolean")
|
|
|
|
# The result should match aggregating on the whole series. Correctness
|
|
# there is verified in test_reductions.py::test_any_all_boolean_kleene_logic
|
|
expected_data = getattr(ser, bool_agg_func)(skipna=skipna)
|
|
expected = Series(expected_data, index=np.array([0]), dtype="boolean")
|
|
|
|
result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype1,dtype2,exp_col1,exp_col2",
|
|
[
|
|
(
|
|
"float",
|
|
"Float64",
|
|
np.array([True], dtype=bool),
|
|
pd.array([pd.NA], dtype="boolean"),
|
|
),
|
|
(
|
|
"Int64",
|
|
"float",
|
|
pd.array([pd.NA], dtype="boolean"),
|
|
np.array([True], dtype=bool),
|
|
),
|
|
(
|
|
"Int64",
|
|
"Int64",
|
|
pd.array([pd.NA], dtype="boolean"),
|
|
pd.array([pd.NA], dtype="boolean"),
|
|
),
|
|
(
|
|
"Float64",
|
|
"boolean",
|
|
pd.array([pd.NA], dtype="boolean"),
|
|
pd.array([pd.NA], dtype="boolean"),
|
|
),
|
|
],
|
|
)
|
|
def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2):
|
|
# GH#37506
|
|
data = [1.0, np.nan]
|
|
df = DataFrame(
|
|
{"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)}
|
|
)
|
|
result = df.groupby([1, 1]).agg("all", skipna=False)
|
|
|
|
expected = DataFrame({"col1": exp_col1, "col2": exp_col2}, index=np.array([1]))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
|
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
|
|
def test_masked_bool_aggs_skipna(bool_agg_func, dtype, skipna, frame_or_series):
|
|
# GH#40585
|
|
obj = frame_or_series([pd.NA, 1], dtype=dtype)
|
|
expected_res = True
|
|
if not skipna and bool_agg_func == "all":
|
|
expected_res = pd.NA
|
|
expected = frame_or_series([expected_res], index=np.array([1]), dtype="boolean")
|
|
|
|
result = obj.groupby([1, 1]).agg(bool_agg_func, skipna=skipna)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"bool_agg_func,data,expected_res",
|
|
[
|
|
("any", [pd.NA, np.nan], False),
|
|
("any", [pd.NA, 1, np.nan], True),
|
|
("all", [pd.NA, pd.NaT], True),
|
|
("all", [pd.NA, False, pd.NaT], False),
|
|
],
|
|
)
|
|
def test_object_type_missing_vals(bool_agg_func, data, expected_res, frame_or_series):
|
|
# GH#37501
|
|
obj = frame_or_series(data, dtype=object)
|
|
result = obj.groupby([1] * len(data)).agg(bool_agg_func)
|
|
expected = frame_or_series([expected_res], index=np.array([1]), dtype="bool")
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
|
def test_object_NA_raises_with_skipna_false(bool_agg_func):
|
|
# GH#37501
|
|
ser = Series([pd.NA], dtype=object)
|
|
with pytest.raises(TypeError, match="boolean value of NA is ambiguous"):
|
|
ser.groupby([1]).agg(bool_agg_func, skipna=False)
|
|
|
|
|
|
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
|
def test_empty(frame_or_series, bool_agg_func):
|
|
# GH 45231
|
|
kwargs = {"columns": ["a"]} if frame_or_series is DataFrame else {"name": "a"}
|
|
obj = frame_or_series(**kwargs, dtype=object)
|
|
result = getattr(obj.groupby(obj.index), bool_agg_func)()
|
|
expected = frame_or_series(**kwargs, dtype=bool)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("how", ["idxmin", "idxmax"])
|
|
def test_idxmin_idxmax_extremes(how, any_real_numpy_dtype):
|
|
# GH#57040
|
|
if any_real_numpy_dtype is int or any_real_numpy_dtype is float:
|
|
# No need to test
|
|
return
|
|
info = np.iinfo if "int" in any_real_numpy_dtype else np.finfo
|
|
min_value = info(any_real_numpy_dtype).min
|
|
max_value = info(any_real_numpy_dtype).max
|
|
df = DataFrame(
|
|
{"a": [2, 1, 1, 2], "b": [min_value, max_value, max_value, min_value]},
|
|
dtype=any_real_numpy_dtype,
|
|
)
|
|
gb = df.groupby("a")
|
|
result = getattr(gb, how)()
|
|
expected = DataFrame(
|
|
{"b": [1, 0]}, index=pd.Index([1, 2], name="a", dtype=any_real_numpy_dtype)
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("how", ["idxmin", "idxmax"])
|
|
def test_idxmin_idxmax_extremes_skipna(skipna, how, float_numpy_dtype):
|
|
# GH#57040
|
|
min_value = np.finfo(float_numpy_dtype).min
|
|
max_value = np.finfo(float_numpy_dtype).max
|
|
df = DataFrame(
|
|
{
|
|
"a": Series(np.repeat(range(1, 6), repeats=2), dtype="intp"),
|
|
"b": Series(
|
|
[
|
|
np.nan,
|
|
min_value,
|
|
np.nan,
|
|
max_value,
|
|
min_value,
|
|
np.nan,
|
|
max_value,
|
|
np.nan,
|
|
np.nan,
|
|
np.nan,
|
|
],
|
|
dtype=float_numpy_dtype,
|
|
),
|
|
},
|
|
)
|
|
gb = df.groupby("a")
|
|
|
|
warn = None if skipna else FutureWarning
|
|
msg = f"The behavior of DataFrameGroupBy.{how} with all-NA values"
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
result = getattr(gb, how)(skipna=skipna)
|
|
if skipna:
|
|
values = [1, 3, 4, 6, np.nan]
|
|
else:
|
|
values = np.nan
|
|
expected = DataFrame(
|
|
{"b": values}, index=pd.Index(range(1, 6), name="a", dtype="intp")
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"func, values",
|
|
[
|
|
("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}),
|
|
("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("numeric_only", [True, False])
|
|
def test_idxmin_idxmax_returns_int_types(func, values, numeric_only):
|
|
# GH 25444
|
|
df = DataFrame(
|
|
{
|
|
"name": ["A", "A", "B", "B"],
|
|
"c_int": [1, 2, 3, 4],
|
|
"c_float": [4.02, 3.03, 2.04, 1.05],
|
|
"c_date": ["2019", "2018", "2016", "2017"],
|
|
}
|
|
)
|
|
df["c_date"] = pd.to_datetime(df["c_date"])
|
|
df["c_date_tz"] = df["c_date"].dt.tz_localize("US/Pacific")
|
|
df["c_timedelta"] = df["c_date"] - df["c_date"].iloc[0]
|
|
df["c_period"] = df["c_date"].dt.to_period("W")
|
|
df["c_Integer"] = df["c_int"].astype("Int64")
|
|
df["c_Floating"] = df["c_float"].astype("Float64")
|
|
|
|
result = getattr(df.groupby("name"), func)(numeric_only=numeric_only)
|
|
|
|
expected = DataFrame(values, index=pd.Index(["A", "B"], name="name"))
|
|
if numeric_only:
|
|
expected = expected.drop(columns=["c_date"])
|
|
else:
|
|
expected["c_date_tz"] = expected["c_date"]
|
|
expected["c_timedelta"] = expected["c_date"]
|
|
expected["c_period"] = expected["c_date"]
|
|
expected["c_Integer"] = expected["c_int"]
|
|
expected["c_Floating"] = expected["c_float"]
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"data",
|
|
[
|
|
(
|
|
Timestamp("2011-01-15 12:50:28.502376"),
|
|
Timestamp("2011-01-20 12:50:28.593448"),
|
|
),
|
|
(24650000000000001, 24650000000000002),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("method", ["count", "min", "max", "first", "last"])
|
|
def test_groupby_non_arithmetic_agg_int_like_precision(method, data):
|
|
# GH#6620, GH#9311
|
|
df = DataFrame({"a": [1, 1], "b": data})
|
|
|
|
grouped = df.groupby("a")
|
|
result = getattr(grouped, method)()
|
|
if method == "count":
|
|
expected_value = 2
|
|
elif method == "first":
|
|
expected_value = data[0]
|
|
elif method == "last":
|
|
expected_value = data[1]
|
|
else:
|
|
expected_value = getattr(df["b"], method)()
|
|
expected = DataFrame({"b": [expected_value]}, index=pd.Index([1], name="a"))
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("how", ["first", "last"])
|
|
def test_first_last_skipna(any_real_nullable_dtype, sort, skipna, how):
|
|
# GH#57019
|
|
na_value = na_value_for_dtype(pandas_dtype(any_real_nullable_dtype))
|
|
df = DataFrame(
|
|
{
|
|
"a": [2, 1, 1, 2, 3, 3],
|
|
"b": [na_value, 3.0, na_value, 4.0, np.nan, np.nan],
|
|
"c": [na_value, 3.0, na_value, 4.0, np.nan, np.nan],
|
|
},
|
|
dtype=any_real_nullable_dtype,
|
|
)
|
|
gb = df.groupby("a", sort=sort)
|
|
method = getattr(gb, how)
|
|
result = method(skipna=skipna)
|
|
|
|
ilocs = {
|
|
("first", True): [3, 1, 4],
|
|
("first", False): [0, 1, 4],
|
|
("last", True): [3, 1, 5],
|
|
("last", False): [3, 2, 5],
|
|
}[how, skipna]
|
|
expected = df.iloc[ilocs].set_index("a")
|
|
if sort:
|
|
expected = expected.sort_index()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_idxmin_idxmax_axis1():
|
|
df = DataFrame(
|
|
np.random.default_rng(2).standard_normal((10, 4)), columns=["A", "B", "C", "D"]
|
|
)
|
|
df["A"] = [1, 2, 3, 1, 2, 3, 1, 2, 3, 4]
|
|
|
|
gb = df.groupby("A")
|
|
|
|
warn_msg = "DataFrameGroupBy.idxmax with axis=1 is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
|
res = gb.idxmax(axis=1)
|
|
|
|
alt = df.iloc[:, 1:].idxmax(axis=1)
|
|
indexer = res.index.get_level_values(1)
|
|
|
|
tm.assert_series_equal(alt[indexer], res.droplevel("A"))
|
|
|
|
df["E"] = date_range("2016-01-01", periods=10)
|
|
gb2 = df.groupby("A")
|
|
|
|
msg = "'>' not supported between instances of 'Timestamp' and 'float'"
|
|
with pytest.raises(TypeError, match=msg):
|
|
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
|
gb2.idxmax(axis=1)
|
|
|
|
|
|
def test_groupby_mean_no_overflow():
|
|
# Regression test for (#22487)
|
|
df = DataFrame(
|
|
{
|
|
"user": ["A", "A", "A", "A", "A"],
|
|
"connections": [4970, 4749, 4719, 4704, 18446744073699999744],
|
|
}
|
|
)
|
|
assert df.groupby("user")["connections"].mean()["A"] == 3689348814740003840
|
|
|
|
|
|
def test_mean_on_timedelta():
|
|
# GH 17382
|
|
df = DataFrame({"time": pd.to_timedelta(range(10)), "cat": ["A", "B"] * 5})
|
|
result = df.groupby("cat")["time"].mean()
|
|
expected = Series(
|
|
pd.to_timedelta([4, 5]), name="time", index=pd.Index(["A", "B"], name="cat")
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_cython_median():
|
|
arr = np.random.default_rng(2).standard_normal(1000)
|
|
arr[::2] = np.nan
|
|
df = DataFrame(arr)
|
|
|
|
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
|
|
labels[::17] = np.nan
|
|
|
|
result = df.groupby(labels).median()
|
|
msg = "using DataFrameGroupBy.median"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
exp = df.groupby(labels).agg(np.nanmedian)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
df = DataFrame(np.random.default_rng(2).standard_normal((1000, 5)))
|
|
msg = "using DataFrameGroupBy.median"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
rs = df.groupby(labels).agg(np.median)
|
|
xp = df.groupby(labels).median()
|
|
tm.assert_frame_equal(rs, xp)
|
|
|
|
|
|
def test_median_empty_bins(observed):
|
|
df = DataFrame(np.random.default_rng(2).integers(0, 44, 500))
|
|
|
|
grps = range(0, 55, 5)
|
|
bins = pd.cut(df[0], grps)
|
|
|
|
result = df.groupby(bins, observed=observed).median()
|
|
expected = df.groupby(bins, observed=observed).agg(lambda x: x.median())
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_max_min_non_numeric():
|
|
# #2700
|
|
aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]})
|
|
|
|
result = aa.groupby("nn").max()
|
|
assert "ss" in result
|
|
|
|
result = aa.groupby("nn").max(numeric_only=False)
|
|
assert "ss" in result
|
|
|
|
result = aa.groupby("nn").min()
|
|
assert "ss" in result
|
|
|
|
result = aa.groupby("nn").min(numeric_only=False)
|
|
assert "ss" in result
|
|
|
|
|
|
def test_max_min_object_multiple_columns(using_array_manager):
|
|
# GH#41111 case where the aggregation is valid for some columns but not
|
|
# others; we split object blocks column-wise, consistent with
|
|
# DataFrame._reduce
|
|
|
|
df = DataFrame(
|
|
{
|
|
"A": [1, 1, 2, 2, 3],
|
|
"B": [1, "foo", 2, "bar", False],
|
|
"C": ["a", "b", "c", "d", "e"],
|
|
}
|
|
)
|
|
df._consolidate_inplace() # should already be consolidate, but double-check
|
|
if not using_array_manager:
|
|
assert len(df._mgr.blocks) == 2
|
|
|
|
gb = df.groupby("A")
|
|
|
|
result = gb[["C"]].max()
|
|
# "max" is valid for column "C" but not for "B"
|
|
ei = pd.Index([1, 2, 3], name="A")
|
|
expected = DataFrame({"C": ["b", "d", "e"]}, index=ei)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = gb[["C"]].min()
|
|
# "min" is valid for column "C" but not for "B"
|
|
ei = pd.Index([1, 2, 3], name="A")
|
|
expected = DataFrame({"C": ["a", "c", "e"]}, index=ei)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_min_date_with_nans():
|
|
# GH26321
|
|
dates = pd.to_datetime(
|
|
Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d"
|
|
).dt.date
|
|
df = DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates})
|
|
|
|
result = df.groupby("b", as_index=False)["c"].min()["c"]
|
|
expected = pd.to_datetime(
|
|
Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d"
|
|
).dt.date
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = df.groupby("b")["c"].min()
|
|
expected.index.name = "b"
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_max_inat():
|
|
# GH#40767 dont interpret iNaT as NaN
|
|
ser = Series([1, iNaT])
|
|
key = np.array([1, 1], dtype=np.int64)
|
|
gb = ser.groupby(key)
|
|
|
|
result = gb.max(min_count=2)
|
|
expected = Series({1: 1}, dtype=np.int64)
|
|
tm.assert_series_equal(result, expected, check_exact=True)
|
|
|
|
result = gb.min(min_count=2)
|
|
expected = Series({1: iNaT}, dtype=np.int64)
|
|
tm.assert_series_equal(result, expected, check_exact=True)
|
|
|
|
# not enough entries -> gets masked to NaN
|
|
result = gb.min(min_count=3)
|
|
expected = Series({1: np.nan})
|
|
tm.assert_series_equal(result, expected, check_exact=True)
|
|
|
|
|
|
def test_max_inat_not_all_na():
|
|
# GH#40767 dont interpret iNaT as NaN
|
|
|
|
# make sure we dont round iNaT+1 to iNaT
|
|
ser = Series([1, iNaT, 2, iNaT + 1])
|
|
gb = ser.groupby([1, 2, 3, 3])
|
|
result = gb.min(min_count=2)
|
|
|
|
# Note: in converting to float64, the iNaT + 1 maps to iNaT, i.e. is lossy
|
|
expected = Series({1: np.nan, 2: np.nan, 3: iNaT + 1})
|
|
expected.index = expected.index.astype(int)
|
|
tm.assert_series_equal(result, expected, check_exact=True)
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["min", "max"])
|
|
def test_groupby_aggregate_period_column(func):
|
|
# GH 31471
|
|
groups = [1, 2]
|
|
periods = pd.period_range("2020", periods=2, freq="Y")
|
|
df = DataFrame({"a": groups, "b": periods})
|
|
|
|
result = getattr(df.groupby("a")["b"], func)()
|
|
idx = pd.Index([1, 2], name="a")
|
|
expected = Series(periods, index=idx, name="b")
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["min", "max"])
|
|
def test_groupby_aggregate_period_frame(func):
|
|
# GH 31471
|
|
groups = [1, 2]
|
|
periods = pd.period_range("2020", periods=2, freq="Y")
|
|
df = DataFrame({"a": groups, "b": periods})
|
|
|
|
result = getattr(df.groupby("a"), func)()
|
|
idx = pd.Index([1, 2], name="a")
|
|
expected = DataFrame({"b": periods}, index=idx)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_aggregate_numeric_object_dtype():
|
|
# https://github.com/pandas-dev/pandas/issues/39329
|
|
# simplified case: multiple object columns where one is all-NaN
|
|
# -> gets split as the all-NaN is inferred as float
|
|
df = DataFrame(
|
|
{"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": [np.nan] * 4},
|
|
).astype(object)
|
|
result = df.groupby("key").min()
|
|
expected = (
|
|
DataFrame(
|
|
{"key": ["A", "B"], "col1": ["a", "c"], "col2": [np.nan, np.nan]},
|
|
)
|
|
.set_index("key")
|
|
.astype(object)
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# same but with numbers
|
|
df = DataFrame(
|
|
{"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": range(4)},
|
|
).astype(object)
|
|
result = df.groupby("key").min()
|
|
expected = (
|
|
DataFrame({"key": ["A", "B"], "col1": ["a", "c"], "col2": [0, 2]})
|
|
.set_index("key")
|
|
.astype(object)
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["min", "max"])
|
|
def test_aggregate_categorical_lost_index(func: str):
|
|
# GH: 28641 groupby drops index, when grouping over categorical column with min/max
|
|
ds = Series(["b"], dtype="category").cat.as_ordered()
|
|
df = DataFrame({"A": [1997], "B": ds})
|
|
result = df.groupby("A").agg({"B": func})
|
|
expected = DataFrame({"B": ["b"]}, index=pd.Index([1997], name="A"))
|
|
|
|
# ordered categorical dtype should be preserved
|
|
expected["B"] = expected["B"].astype(ds.dtype)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["Int64", "Int32", "Float64", "Float32", "boolean"])
|
|
def test_groupby_min_max_nullable(dtype):
|
|
if dtype == "Int64":
|
|
# GH#41743 avoid precision loss
|
|
ts = 1618556707013635762
|
|
elif dtype == "boolean":
|
|
ts = 0
|
|
else:
|
|
ts = 4.0
|
|
|
|
df = DataFrame({"id": [2, 2], "ts": [ts, ts + 1]})
|
|
df["ts"] = df["ts"].astype(dtype)
|
|
|
|
gb = df.groupby("id")
|
|
|
|
result = gb.min()
|
|
expected = df.iloc[:1].set_index("id")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
res_max = gb.max()
|
|
expected_max = df.iloc[1:].set_index("id")
|
|
tm.assert_frame_equal(res_max, expected_max)
|
|
|
|
result2 = gb.min(min_count=3)
|
|
expected2 = DataFrame({"ts": [pd.NA]}, index=expected.index, dtype=dtype)
|
|
tm.assert_frame_equal(result2, expected2)
|
|
|
|
res_max2 = gb.max(min_count=3)
|
|
tm.assert_frame_equal(res_max2, expected2)
|
|
|
|
# Case with NA values
|
|
df2 = DataFrame({"id": [2, 2, 2], "ts": [ts, pd.NA, ts + 1]})
|
|
df2["ts"] = df2["ts"].astype(dtype)
|
|
gb2 = df2.groupby("id")
|
|
|
|
result3 = gb2.min()
|
|
tm.assert_frame_equal(result3, expected)
|
|
|
|
res_max3 = gb2.max()
|
|
tm.assert_frame_equal(res_max3, expected_max)
|
|
|
|
result4 = gb2.min(min_count=100)
|
|
tm.assert_frame_equal(result4, expected2)
|
|
|
|
res_max4 = gb2.max(min_count=100)
|
|
tm.assert_frame_equal(res_max4, expected2)
|
|
|
|
|
|
def test_min_max_nullable_uint64_empty_group():
|
|
# don't raise NotImplementedError from libgroupby
|
|
cat = pd.Categorical([0] * 10, categories=[0, 1])
|
|
df = DataFrame({"A": cat, "B": pd.array(np.arange(10, dtype=np.uint64))})
|
|
gb = df.groupby("A", observed=False)
|
|
|
|
res = gb.min()
|
|
|
|
idx = pd.CategoricalIndex([0, 1], dtype=cat.dtype, name="A")
|
|
expected = DataFrame({"B": pd.array([0, pd.NA], dtype="UInt64")}, index=idx)
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
res = gb.max()
|
|
expected.iloc[0, 0] = 9
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["first", "last", "min", "max"])
|
|
def test_groupby_min_max_categorical(func):
|
|
# GH: 52151
|
|
df = DataFrame(
|
|
{
|
|
"col1": pd.Categorical(["A"], categories=list("AB"), ordered=True),
|
|
"col2": pd.Categorical([1], categories=[1, 2], ordered=True),
|
|
"value": 0.1,
|
|
}
|
|
)
|
|
result = getattr(df.groupby("col1", observed=False), func)()
|
|
|
|
idx = pd.CategoricalIndex(data=["A", "B"], name="col1", ordered=True)
|
|
expected = DataFrame(
|
|
{
|
|
"col2": pd.Categorical([1, None], categories=[1, 2], ordered=True),
|
|
"value": [0.1, None],
|
|
},
|
|
index=idx,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["min", "max"])
|
|
def test_min_empty_string_dtype(func):
|
|
# GH#55619
|
|
pytest.importorskip("pyarrow")
|
|
dtype = "string[pyarrow_numpy]"
|
|
df = DataFrame({"a": ["a"], "b": "a", "c": "a"}, dtype=dtype).iloc[:0]
|
|
result = getattr(df.groupby("a"), func)()
|
|
expected = DataFrame(
|
|
columns=["b", "c"], dtype=dtype, index=pd.Index([], dtype=dtype, name="a")
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_max_nan_bug():
|
|
df = DataFrame(
|
|
{
|
|
"Unnamed: 0": ["-04-23", "-05-06", "-05-07"],
|
|
"Date": [
|
|
"2013-04-23 00:00:00",
|
|
"2013-05-06 00:00:00",
|
|
"2013-05-07 00:00:00",
|
|
],
|
|
"app": Series([np.nan, np.nan, "OE"]),
|
|
"File": ["log080001.log", "log.log", "xlsx"],
|
|
}
|
|
)
|
|
gb = df.groupby("Date")
|
|
r = gb[["File"]].max()
|
|
e = gb["File"].max().to_frame()
|
|
tm.assert_frame_equal(r, e)
|
|
assert not r["File"].isna().any()
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("sort", [False, True])
|
|
@pytest.mark.parametrize("dropna", [False, True])
|
|
@pytest.mark.parametrize("as_index", [True, False])
|
|
@pytest.mark.parametrize("with_nan", [True, False])
|
|
@pytest.mark.parametrize("keys", [["joe"], ["joe", "jim"]])
|
|
def test_series_groupby_nunique(sort, dropna, as_index, with_nan, keys):
|
|
n = 100
|
|
m = 10
|
|
days = date_range("2015-08-23", periods=10)
|
|
df = DataFrame(
|
|
{
|
|
"jim": np.random.default_rng(2).choice(list(ascii_lowercase), n),
|
|
"joe": np.random.default_rng(2).choice(days, n),
|
|
"julie": np.random.default_rng(2).integers(0, m, n),
|
|
}
|
|
)
|
|
if with_nan:
|
|
df = df.astype({"julie": float}) # Explicit cast to avoid implicit cast below
|
|
df.loc[1::17, "jim"] = None
|
|
df.loc[3::37, "joe"] = None
|
|
df.loc[7::19, "julie"] = None
|
|
df.loc[8::19, "julie"] = None
|
|
df.loc[9::19, "julie"] = None
|
|
original_df = df.copy()
|
|
gr = df.groupby(keys, as_index=as_index, sort=sort)
|
|
left = gr["julie"].nunique(dropna=dropna)
|
|
|
|
gr = df.groupby(keys, as_index=as_index, sort=sort)
|
|
right = gr["julie"].apply(Series.nunique, dropna=dropna)
|
|
if not as_index:
|
|
right = right.reset_index(drop=True)
|
|
|
|
if as_index:
|
|
tm.assert_series_equal(left, right, check_names=False)
|
|
else:
|
|
tm.assert_frame_equal(left, right, check_names=False)
|
|
tm.assert_frame_equal(df, original_df)
|
|
|
|
|
|
def test_nunique():
|
|
df = DataFrame({"A": list("abbacc"), "B": list("abxacc"), "C": list("abbacx")})
|
|
|
|
expected = DataFrame({"A": list("abc"), "B": [1, 2, 1], "C": [1, 1, 2]})
|
|
result = df.groupby("A", as_index=False).nunique()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# as_index
|
|
expected.index = list("abc")
|
|
expected.index.name = "A"
|
|
expected = expected.drop(columns="A")
|
|
result = df.groupby("A").nunique()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# with na
|
|
result = df.replace({"x": None}).groupby("A").nunique(dropna=False)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# dropna
|
|
expected = DataFrame({"B": [1] * 3, "C": [1] * 3}, index=list("abc"))
|
|
expected.index.name = "A"
|
|
result = df.replace({"x": None}).groupby("A").nunique()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_nunique_with_object():
|
|
# GH 11077
|
|
data = DataFrame(
|
|
[
|
|
[100, 1, "Alice"],
|
|
[200, 2, "Bob"],
|
|
[300, 3, "Charlie"],
|
|
[-400, 4, "Dan"],
|
|
[500, 5, "Edith"],
|
|
],
|
|
columns=["amount", "id", "name"],
|
|
)
|
|
|
|
result = data.groupby(["id", "amount"])["name"].nunique()
|
|
index = MultiIndex.from_arrays([data.id, data.amount])
|
|
expected = Series([1] * 5, name="name", index=index)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_nunique_with_empty_series():
|
|
# GH 12553
|
|
data = Series(name="name", dtype=object)
|
|
result = data.groupby(level=0).nunique()
|
|
expected = Series(name="name", dtype="int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_nunique_with_timegrouper():
|
|
# GH 13453
|
|
test = DataFrame(
|
|
{
|
|
"time": [
|
|
Timestamp("2016-06-28 09:35:35"),
|
|
Timestamp("2016-06-28 16:09:30"),
|
|
Timestamp("2016-06-28 16:46:28"),
|
|
],
|
|
"data": ["1", "2", "3"],
|
|
}
|
|
).set_index("time")
|
|
result = test.groupby(pd.Grouper(freq="h"))["data"].nunique()
|
|
expected = test.groupby(pd.Grouper(freq="h"))["data"].apply(Series.nunique)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"key, data, dropna, expected",
|
|
[
|
|
(
|
|
["x", "x", "x"],
|
|
[Timestamp("2019-01-01"), pd.NaT, Timestamp("2019-01-01")],
|
|
True,
|
|
Series([1], index=pd.Index(["x"], name="key"), name="data"),
|
|
),
|
|
(
|
|
["x", "x", "x"],
|
|
[dt.date(2019, 1, 1), pd.NaT, dt.date(2019, 1, 1)],
|
|
True,
|
|
Series([1], index=pd.Index(["x"], name="key"), name="data"),
|
|
),
|
|
(
|
|
["x", "x", "x", "y", "y"],
|
|
[
|
|
dt.date(2019, 1, 1),
|
|
pd.NaT,
|
|
dt.date(2019, 1, 1),
|
|
pd.NaT,
|
|
dt.date(2019, 1, 1),
|
|
],
|
|
False,
|
|
Series([2, 2], index=pd.Index(["x", "y"], name="key"), name="data"),
|
|
),
|
|
(
|
|
["x", "x", "x", "x", "y"],
|
|
[
|
|
dt.date(2019, 1, 1),
|
|
pd.NaT,
|
|
dt.date(2019, 1, 1),
|
|
pd.NaT,
|
|
dt.date(2019, 1, 1),
|
|
],
|
|
False,
|
|
Series([2, 1], index=pd.Index(["x", "y"], name="key"), name="data"),
|
|
),
|
|
],
|
|
)
|
|
def test_nunique_with_NaT(key, data, dropna, expected):
|
|
# GH 27951
|
|
df = DataFrame({"key": key, "data": data})
|
|
result = df.groupby(["key"])["data"].nunique(dropna=dropna)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_nunique_preserves_column_level_names():
|
|
# GH 23222
|
|
test = DataFrame([1, 2, 2], columns=pd.Index(["A"], name="level_0"))
|
|
result = test.groupby([0, 0, 0]).nunique()
|
|
expected = DataFrame([2], index=np.array([0]), columns=test.columns)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_nunique_transform_with_datetime():
|
|
# GH 35109 - transform with nunique on datetimes results in integers
|
|
df = DataFrame(date_range("2008-12-31", "2009-01-02"), columns=["date"])
|
|
result = df.groupby([0, 0, 1])["date"].transform("nunique")
|
|
expected = Series([2, 2, 1], name="date")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_empty_categorical(observed):
|
|
# GH#21334
|
|
cat = Series([1]).astype("category")
|
|
ser = cat[:0]
|
|
gb = ser.groupby(ser, observed=observed)
|
|
result = gb.nunique()
|
|
if observed:
|
|
expected = Series([], index=cat[:0], dtype="int64")
|
|
else:
|
|
expected = Series([0], index=cat, dtype="int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_intercept_builtin_sum():
|
|
s = Series([1.0, 2.0, np.nan, 3.0])
|
|
grouped = s.groupby([0, 1, 2, 2])
|
|
|
|
msg = "using SeriesGroupBy.sum"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
# GH#53425
|
|
result = grouped.agg(builtins.sum)
|
|
msg = "using np.sum"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
# GH#53425
|
|
result2 = grouped.apply(builtins.sum)
|
|
expected = grouped.sum()
|
|
tm.assert_series_equal(result, expected)
|
|
tm.assert_series_equal(result2, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("min_count", [0, 10])
|
|
def test_groupby_sum_mincount_boolean(min_count):
|
|
b = True
|
|
a = False
|
|
na = np.nan
|
|
dfg = pd.array([b, b, na, na, a, a, b], dtype="boolean")
|
|
|
|
df = DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": dfg})
|
|
result = df.groupby("A").sum(min_count=min_count)
|
|
if min_count == 0:
|
|
expected = DataFrame(
|
|
{"B": pd.array([3, 0, 0], dtype="Int64")},
|
|
index=pd.Index([1, 2, 3], name="A"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
else:
|
|
expected = DataFrame(
|
|
{"B": pd.array([pd.NA] * 3, dtype="Int64")},
|
|
index=pd.Index([1, 2, 3], name="A"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_groupby_sum_below_mincount_nullable_integer():
|
|
# https://github.com/pandas-dev/pandas/issues/32861
|
|
df = DataFrame({"a": [0, 1, 2], "b": [0, 1, 2], "c": [0, 1, 2]}, dtype="Int64")
|
|
grouped = df.groupby("a")
|
|
idx = pd.Index([0, 1, 2], name="a", dtype="Int64")
|
|
|
|
result = grouped["b"].sum(min_count=2)
|
|
expected = Series([pd.NA] * 3, dtype="Int64", index=idx, name="b")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = grouped.sum(min_count=2)
|
|
expected = DataFrame({"b": [pd.NA] * 3, "c": [pd.NA] * 3}, dtype="Int64", index=idx)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_groupby_sum_timedelta_with_nat():
|
|
# GH#42659
|
|
df = DataFrame(
|
|
{
|
|
"a": [1, 1, 2, 2],
|
|
"b": [pd.Timedelta("1d"), pd.Timedelta("2d"), pd.Timedelta("3d"), pd.NaT],
|
|
}
|
|
)
|
|
td3 = pd.Timedelta(days=3)
|
|
|
|
gb = df.groupby("a")
|
|
|
|
res = gb.sum()
|
|
expected = DataFrame({"b": [td3, td3]}, index=pd.Index([1, 2], name="a"))
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
res = gb["b"].sum()
|
|
tm.assert_series_equal(res, expected["b"])
|
|
|
|
res = gb["b"].sum(min_count=2)
|
|
expected = Series([td3, pd.NaT], dtype="m8[ns]", name="b", index=expected.index)
|
|
tm.assert_series_equal(res, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"method,data",
|
|
[
|
|
("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
|
|
("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
|
|
("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
|
|
("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
|
|
("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}),
|
|
],
|
|
)
|
|
def test_groupby_non_arithmetic_agg_types(dtype, method, data):
|
|
# GH9311, GH6620
|
|
df = DataFrame(
|
|
[{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}]
|
|
)
|
|
|
|
df["b"] = df.b.astype(dtype)
|
|
|
|
if "args" not in data:
|
|
data["args"] = []
|
|
|
|
if "out_type" in data:
|
|
out_type = data["out_type"]
|
|
else:
|
|
out_type = dtype
|
|
|
|
exp = data["df"]
|
|
df_out = DataFrame(exp)
|
|
|
|
df_out["b"] = df_out.b.astype(out_type)
|
|
df_out.set_index("a", inplace=True)
|
|
|
|
grpd = df.groupby("a")
|
|
t = getattr(grpd, method)(*data["args"])
|
|
tm.assert_frame_equal(t, df_out)
|
|
|
|
|
|
def scipy_sem(*args, **kwargs):
|
|
from scipy.stats import sem
|
|
|
|
return sem(*args, ddof=1, **kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"op,targop",
|
|
[
|
|
("mean", np.mean),
|
|
("median", np.median),
|
|
("std", np.std),
|
|
("var", np.var),
|
|
("sum", np.sum),
|
|
("prod", np.prod),
|
|
("min", np.min),
|
|
("max", np.max),
|
|
("first", lambda x: x.iloc[0]),
|
|
("last", lambda x: x.iloc[-1]),
|
|
("count", np.size),
|
|
pytest.param("sem", scipy_sem, marks=td.skip_if_no("scipy")),
|
|
],
|
|
)
|
|
def test_ops_general(op, targop):
|
|
df = DataFrame(np.random.default_rng(2).standard_normal(1000))
|
|
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
|
|
|
|
result = getattr(df.groupby(labels), op)()
|
|
warn = None if op in ("first", "last", "count", "sem") else FutureWarning
|
|
msg = f"using DataFrameGroupBy.{op}"
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
expected = df.groupby(labels).agg(targop)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[
|
|
{
|
|
"a": [1, 1, 1, 2, 2, 2, 3, 3, 3],
|
|
"b": [1, pd.NA, 2, 1, pd.NA, 2, 1, pd.NA, 2],
|
|
},
|
|
{"a": [1, 1, 2, 2, 3, 3], "b": [1, 2, 1, 2, 1, 2]},
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("function", ["mean", "median", "var"])
|
|
def test_apply_to_nullable_integer_returns_float(values, function):
|
|
# https://github.com/pandas-dev/pandas/issues/32219
|
|
output = 0.5 if function == "var" else 1.5
|
|
arr = np.array([output] * 3, dtype=float)
|
|
idx = pd.Index([1, 2, 3], name="a", dtype="Int64")
|
|
expected = DataFrame({"b": arr}, index=idx).astype("Float64")
|
|
|
|
groups = DataFrame(values, dtype="Int64").groupby("a")
|
|
|
|
result = getattr(groups, function)()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = groups.agg(function)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = groups.agg([function])
|
|
expected.columns = MultiIndex.from_tuples([("b", function)])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"op",
|
|
[
|
|
"sum",
|
|
"prod",
|
|
"min",
|
|
"max",
|
|
"median",
|
|
"mean",
|
|
"skew",
|
|
"std",
|
|
"var",
|
|
"sem",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("axis", [0, 1])
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
@pytest.mark.parametrize("sort", [True, False])
|
|
def test_regression_allowlist_methods(op, axis, skipna, sort):
|
|
# GH6944
|
|
# GH 17537
|
|
# explicitly test the allowlist methods
|
|
raw_frame = DataFrame([0])
|
|
if axis == 0:
|
|
frame = raw_frame
|
|
msg = "The 'axis' keyword in DataFrame.groupby is deprecated and will be"
|
|
else:
|
|
frame = raw_frame.T
|
|
msg = "DataFrame.groupby with axis=1 is deprecated"
|
|
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
grouped = frame.groupby(level=0, axis=axis, sort=sort)
|
|
|
|
if op == "skew":
|
|
# skew has skipna
|
|
result = getattr(grouped, op)(skipna=skipna)
|
|
expected = frame.groupby(level=0).apply(
|
|
lambda h: getattr(h, op)(axis=axis, skipna=skipna)
|
|
)
|
|
if sort:
|
|
expected = expected.sort_index(axis=axis)
|
|
tm.assert_frame_equal(result, expected)
|
|
else:
|
|
result = getattr(grouped, op)()
|
|
expected = frame.groupby(level=0).apply(lambda h: getattr(h, op)(axis=axis))
|
|
if sort:
|
|
expected = expected.sort_index(axis=axis)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_groupby_prod_with_int64_dtype():
|
|
# GH#46573
|
|
data = [
|
|
[1, 11],
|
|
[1, 41],
|
|
[1, 17],
|
|
[1, 37],
|
|
[1, 7],
|
|
[1, 29],
|
|
[1, 31],
|
|
[1, 2],
|
|
[1, 3],
|
|
[1, 43],
|
|
[1, 5],
|
|
[1, 47],
|
|
[1, 19],
|
|
[1, 88],
|
|
]
|
|
df = DataFrame(data, columns=["A", "B"], dtype="int64")
|
|
result = df.groupby(["A"]).prod().reset_index()
|
|
expected = DataFrame({"A": [1], "B": [180970905912331920]}, dtype="int64")
|
|
tm.assert_frame_equal(result, expected)
|