You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

623 lines
20 KiB

import numpy as np
import pytest
from pandas.core.dtypes.common import ensure_platform_int
import pandas as pd
from pandas import (
Index,
RangeIndex,
)
import pandas._testing as tm
class TestRangeIndex:
@pytest.fixture
def simple_index(self):
return RangeIndex(start=0, stop=20, step=2)
def test_constructor_unwraps_index(self):
result = RangeIndex(1, 3)
expected = np.array([1, 2], dtype=np.int64)
tm.assert_numpy_array_equal(result._data, expected)
def test_can_hold_identifiers(self, simple_index):
idx = simple_index
key = idx[0]
assert idx._can_hold_identifiers_and_holds_name(key) is False
def test_too_many_names(self, simple_index):
index = simple_index
with pytest.raises(ValueError, match="^Length"):
index.names = ["roger", "harold"]
@pytest.mark.parametrize(
"index, start, stop, step",
[
(RangeIndex(5), 0, 5, 1),
(RangeIndex(0, 5), 0, 5, 1),
(RangeIndex(5, step=2), 0, 5, 2),
(RangeIndex(1, 5, 2), 1, 5, 2),
],
)
def test_start_stop_step_attrs(self, index, start, stop, step):
# GH 25710
assert index.start == start
assert index.stop == stop
assert index.step == step
def test_copy(self):
i = RangeIndex(5, name="Foo")
i_copy = i.copy()
assert i_copy is not i
assert i_copy.identical(i)
assert i_copy._range == range(0, 5, 1)
assert i_copy.name == "Foo"
def test_repr(self):
i = RangeIndex(5, name="Foo")
result = repr(i)
expected = "RangeIndex(start=0, stop=5, step=1, name='Foo')"
assert result == expected
result = eval(result)
tm.assert_index_equal(result, i, exact=True)
i = RangeIndex(5, 0, -1)
result = repr(i)
expected = "RangeIndex(start=5, stop=0, step=-1)"
assert result == expected
result = eval(result)
tm.assert_index_equal(result, i, exact=True)
def test_insert(self):
idx = RangeIndex(5, name="Foo")
result = idx[1:4]
# test 0th element
tm.assert_index_equal(idx[0:4], result.insert(0, idx[0]), exact="equiv")
# GH 18295 (test missing)
expected = Index([0, np.nan, 1, 2, 3, 4], dtype=np.float64)
for na in [np.nan, None, pd.NA]:
result = RangeIndex(5).insert(1, na)
tm.assert_index_equal(result, expected)
result = RangeIndex(5).insert(1, pd.NaT)
expected = Index([0, pd.NaT, 1, 2, 3, 4], dtype=object)
tm.assert_index_equal(result, expected)
def test_insert_edges_preserves_rangeindex(self):
idx = Index(range(4, 9, 2))
result = idx.insert(0, 2)
expected = Index(range(2, 9, 2))
tm.assert_index_equal(result, expected, exact=True)
result = idx.insert(3, 10)
expected = Index(range(4, 11, 2))
tm.assert_index_equal(result, expected, exact=True)
def test_insert_middle_preserves_rangeindex(self):
# insert in the middle
idx = Index(range(0, 3, 2))
result = idx.insert(1, 1)
expected = Index(range(3))
tm.assert_index_equal(result, expected, exact=True)
idx = idx * 2
result = idx.insert(1, 2)
expected = expected * 2
tm.assert_index_equal(result, expected, exact=True)
def test_delete(self):
idx = RangeIndex(5, name="Foo")
expected = idx[1:]
result = idx.delete(0)
tm.assert_index_equal(result, expected, exact=True)
assert result.name == expected.name
expected = idx[:-1]
result = idx.delete(-1)
tm.assert_index_equal(result, expected, exact=True)
assert result.name == expected.name
msg = "index 5 is out of bounds for axis 0 with size 5"
with pytest.raises((IndexError, ValueError), match=msg):
# either depending on numpy version
result = idx.delete(len(idx))
def test_delete_preserves_rangeindex(self):
idx = Index(range(2), name="foo")
result = idx.delete([1])
expected = Index(range(1), name="foo")
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(1)
tm.assert_index_equal(result, expected, exact=True)
def test_delete_preserves_rangeindex_middle(self):
idx = Index(range(3), name="foo")
result = idx.delete(1)
expected = idx[::2]
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(-2)
tm.assert_index_equal(result, expected, exact=True)
def test_delete_preserves_rangeindex_list_at_end(self):
idx = RangeIndex(0, 6, 1)
loc = [2, 3, 4, 5]
result = idx.delete(loc)
expected = idx[:2]
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_delete_preserves_rangeindex_list_middle(self):
idx = RangeIndex(0, 6, 1)
loc = [1, 2, 3, 4]
result = idx.delete(loc)
expected = RangeIndex(0, 6, 5)
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_delete_all_preserves_rangeindex(self):
idx = RangeIndex(0, 6, 1)
loc = [0, 1, 2, 3, 4, 5]
result = idx.delete(loc)
expected = idx[:0]
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_delete_not_preserving_rangeindex(self):
idx = RangeIndex(0, 6, 1)
loc = [0, 3, 5]
result = idx.delete(loc)
expected = Index([1, 2, 4])
tm.assert_index_equal(result, expected, exact=True)
result = idx.delete(loc[::-1])
tm.assert_index_equal(result, expected, exact=True)
def test_view(self):
i = RangeIndex(0, name="Foo")
i_view = i.view()
assert i_view.name == "Foo"
i_view = i.view("i8")
tm.assert_numpy_array_equal(i.values, i_view)
msg = "Passing a type in RangeIndex.view is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
i_view = i.view(RangeIndex)
tm.assert_index_equal(i, i_view)
def test_dtype(self, simple_index):
index = simple_index
assert index.dtype == np.int64
def test_cache(self):
# GH 26565, GH26617, GH35432, GH53387
# This test checks whether _cache has been set.
# Calling RangeIndex._cache["_data"] creates an int64 array of the same length
# as the RangeIndex and stores it in _cache.
idx = RangeIndex(0, 100, 10)
assert idx._cache == {}
repr(idx)
assert idx._cache == {}
str(idx)
assert idx._cache == {}
idx.get_loc(20)
assert idx._cache == {}
90 in idx # True
assert idx._cache == {}
91 in idx # False
assert idx._cache == {}
idx.all()
assert idx._cache == {}
idx.any()
assert idx._cache == {}
for _ in idx:
pass
assert idx._cache == {}
msg = "RangeIndex.format is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
idx.format()
assert idx._cache == {}
df = pd.DataFrame({"a": range(10)}, index=idx)
# df.__repr__ should not populate index cache
str(df)
assert idx._cache == {}
df.loc[50]
assert idx._cache == {}
with pytest.raises(KeyError, match="51"):
df.loc[51]
assert idx._cache == {}
df.loc[10:50]
assert idx._cache == {}
df.iloc[5:10]
assert idx._cache == {}
# after calling take, _cache may contain other keys, but not "_data"
idx.take([3, 0, 1])
assert "_data" not in idx._cache
df.loc[[50]]
assert "_data" not in idx._cache
df.iloc[[5, 6, 7, 8, 9]]
assert "_data" not in idx._cache
# idx._cache should contain a _data entry after call to idx._data
idx._data
assert isinstance(idx._data, np.ndarray)
assert idx._data is idx._data # check cached value is reused
assert "_data" in idx._cache
expected = np.arange(0, 100, 10, dtype="int64")
tm.assert_numpy_array_equal(idx._cache["_data"], expected)
def test_is_monotonic(self):
index = RangeIndex(0, 20, 2)
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is False
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is False
index = RangeIndex(4, 0, -1)
assert index.is_monotonic_increasing is False
assert index._is_strictly_monotonic_increasing is False
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_decreasing is True
index = RangeIndex(1, 2)
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
index = RangeIndex(2, 1)
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
index = RangeIndex(1, 1)
assert index.is_monotonic_increasing is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
@pytest.mark.parametrize(
"left,right",
[
(RangeIndex(0, 9, 2), RangeIndex(0, 10, 2)),
(RangeIndex(0), RangeIndex(1, -1, 3)),
(RangeIndex(1, 2, 3), RangeIndex(1, 3, 4)),
(RangeIndex(0, -9, -2), RangeIndex(0, -10, -2)),
],
)
def test_equals_range(self, left, right):
assert left.equals(right)
assert right.equals(left)
def test_logical_compat(self, simple_index):
idx = simple_index
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
def test_identical(self, simple_index):
index = simple_index
i = Index(index.copy())
assert i.identical(index)
# we don't allow object dtype for RangeIndex
if isinstance(index, RangeIndex):
return
same_values_different_type = Index(i, dtype=object)
assert not i.identical(same_values_different_type)
i = index.copy(dtype=object)
i = i.rename("foo")
same_values = Index(i, dtype=object)
assert same_values.identical(index.copy(dtype=object))
assert not i.identical(index)
assert Index(same_values, name="foo", dtype=object).identical(i)
assert not index.copy(dtype=object).identical(index.copy(dtype="int64"))
def test_nbytes(self):
# memory savings vs int index
idx = RangeIndex(0, 1000)
assert idx.nbytes < Index(idx._values).nbytes / 10
# constant memory usage
i2 = RangeIndex(0, 10)
assert idx.nbytes == i2.nbytes
@pytest.mark.parametrize(
"start,stop,step",
[
# can't
("foo", "bar", "baz"),
# shouldn't
("0", "1", "2"),
],
)
def test_cant_or_shouldnt_cast(self, start, stop, step):
msg = f"Wrong type {type(start)} for value {start}"
with pytest.raises(TypeError, match=msg):
RangeIndex(start, stop, step)
def test_view_index(self, simple_index):
index = simple_index
msg = "Passing a type in RangeIndex.view is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
index.view(Index)
def test_prevent_casting(self, simple_index):
index = simple_index
result = index.astype("O")
assert result.dtype == np.object_
def test_repr_roundtrip(self, simple_index):
index = simple_index
tm.assert_index_equal(eval(repr(index)), index)
def test_slice_keep_name(self):
idx = RangeIndex(1, 2, name="asdf")
assert idx.name == idx[1:].name
@pytest.mark.parametrize(
"index",
[
RangeIndex(start=0, stop=20, step=2, name="foo"),
RangeIndex(start=18, stop=-1, step=-2, name="bar"),
],
ids=["index_inc", "index_dec"],
)
def test_has_duplicates(self, index):
assert index.is_unique
assert not index.has_duplicates
def test_extended_gcd(self, simple_index):
index = simple_index
result = index._extended_gcd(6, 10)
assert result[0] == result[1] * 6 + result[2] * 10
assert 2 == result[0]
result = index._extended_gcd(10, 6)
assert 2 == result[1] * 10 + result[2] * 6
assert 2 == result[0]
def test_min_fitting_element(self):
result = RangeIndex(0, 20, 2)._min_fitting_element(1)
assert 2 == result
result = RangeIndex(1, 6)._min_fitting_element(1)
assert 1 == result
result = RangeIndex(18, -2, -2)._min_fitting_element(1)
assert 2 == result
result = RangeIndex(5, 0, -1)._min_fitting_element(1)
assert 1 == result
big_num = 500000000000000000000000
result = RangeIndex(5, big_num * 2, 1)._min_fitting_element(big_num)
assert big_num == result
def test_slice_specialised(self, simple_index):
index = simple_index
index.name = "foo"
# scalar indexing
res = index[1]
expected = 2
assert res == expected
res = index[-1]
expected = 18
assert res == expected
# slicing
# slice value completion
index_slice = index[:]
expected = index
tm.assert_index_equal(index_slice, expected)
# positive slice values
index_slice = index[7:10:2]
expected = Index([14, 18], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
# negative slice values
index_slice = index[-1:-5:-2]
expected = Index([18, 14], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
# stop overshoot
index_slice = index[2:100:4]
expected = Index([4, 12], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
# reverse
index_slice = index[::-1]
expected = Index(index.values[::-1], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[-8::-1]
expected = Index([4, 2, 0], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[-40::-1]
expected = Index(np.array([], dtype=np.int64), name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[40::-1]
expected = Index(index.values[40::-1], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
index_slice = index[10::-1]
expected = Index(index.values[::-1], name="foo")
tm.assert_index_equal(index_slice, expected, exact="equiv")
@pytest.mark.parametrize("step", set(range(-5, 6)) - {0})
def test_len_specialised(self, step):
# make sure that our len is the same as np.arange calc
start, stop = (0, 5) if step > 0 else (5, 0)
arr = np.arange(start, stop, step)
index = RangeIndex(start, stop, step)
assert len(index) == len(arr)
index = RangeIndex(stop, start, step)
assert len(index) == 0
@pytest.mark.parametrize(
"indices, expected",
[
([RangeIndex(1, 12, 5)], RangeIndex(1, 12, 5)),
([RangeIndex(0, 6, 4)], RangeIndex(0, 6, 4)),
([RangeIndex(1, 3), RangeIndex(3, 7)], RangeIndex(1, 7)),
([RangeIndex(1, 5, 2), RangeIndex(5, 6)], RangeIndex(1, 6, 2)),
([RangeIndex(1, 3, 2), RangeIndex(4, 7, 3)], RangeIndex(1, 7, 3)),
([RangeIndex(-4, 3, 2), RangeIndex(4, 7, 2)], RangeIndex(-4, 7, 2)),
([RangeIndex(-4, -8), RangeIndex(-8, -12)], RangeIndex(0, 0)),
([RangeIndex(-4, -8), RangeIndex(3, -4)], RangeIndex(0, 0)),
([RangeIndex(-4, -8), RangeIndex(3, 5)], RangeIndex(3, 5)),
([RangeIndex(-4, -2), RangeIndex(3, 5)], Index([-4, -3, 3, 4])),
([RangeIndex(-2), RangeIndex(3, 5)], RangeIndex(3, 5)),
([RangeIndex(2), RangeIndex(2)], Index([0, 1, 0, 1])),
([RangeIndex(2), RangeIndex(2, 5), RangeIndex(5, 8, 4)], RangeIndex(0, 6)),
(
[RangeIndex(2), RangeIndex(3, 5), RangeIndex(5, 8, 4)],
Index([0, 1, 3, 4, 5]),
),
(
[RangeIndex(-2, 2), RangeIndex(2, 5), RangeIndex(5, 8, 4)],
RangeIndex(-2, 6),
),
([RangeIndex(3), Index([-1, 3, 15])], Index([0, 1, 2, -1, 3, 15])),
([RangeIndex(3), Index([-1, 3.1, 15.0])], Index([0, 1, 2, -1, 3.1, 15.0])),
([RangeIndex(3), Index(["a", None, 14])], Index([0, 1, 2, "a", None, 14])),
([RangeIndex(3, 1), Index(["a", None, 14])], Index(["a", None, 14])),
],
)
def test_append(self, indices, expected):
# GH16212
result = indices[0].append(indices[1:])
tm.assert_index_equal(result, expected, exact=True)
if len(indices) == 2:
# Append single item rather than list
result2 = indices[0].append(indices[1])
tm.assert_index_equal(result2, expected, exact=True)
def test_engineless_lookup(self):
# GH 16685
# Standard lookup on RangeIndex should not require the engine to be
# created
idx = RangeIndex(2, 10, 3)
assert idx.get_loc(5) == 1
tm.assert_numpy_array_equal(
idx.get_indexer([2, 8]), ensure_platform_int(np.array([0, 2]))
)
with pytest.raises(KeyError, match="3"):
idx.get_loc(3)
assert "_engine" not in idx._cache
# Different types of scalars can be excluded immediately, no need to
# use the _engine
with pytest.raises(KeyError, match="'a'"):
idx.get_loc("a")
assert "_engine" not in idx._cache
def test_format_empty(self):
# GH35712
empty_idx = RangeIndex(0)
msg = r"RangeIndex\.format is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
assert empty_idx.format() == []
with tm.assert_produces_warning(FutureWarning, match=msg):
assert empty_idx.format(name=True) == [""]
@pytest.mark.parametrize(
"ri",
[
RangeIndex(0, -1, -1),
RangeIndex(0, 1, 1),
RangeIndex(1, 3, 2),
RangeIndex(0, -1, -2),
RangeIndex(-3, -5, -2),
],
)
def test_append_len_one(self, ri):
# GH39401
result = ri.append([])
tm.assert_index_equal(result, ri, exact=True)
@pytest.mark.parametrize("base", [RangeIndex(0, 2), Index([0, 1])])
def test_isin_range(self, base):
# GH#41151
values = RangeIndex(0, 1)
result = base.isin(values)
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
def test_sort_values_key(self):
# GH#43666, GH#52764
sort_order = {8: 2, 6: 0, 4: 8, 2: 10, 0: 12}
values = RangeIndex(0, 10, 2)
result = values.sort_values(key=lambda x: x.map(sort_order))
expected = Index([6, 8, 4, 2, 0], dtype="int64")
tm.assert_index_equal(result, expected, check_exact=True)
# check this matches the Series.sort_values behavior
ser = values.to_series()
result2 = ser.sort_values(key=lambda x: x.map(sort_order))
tm.assert_series_equal(result2, expected.to_series(), check_exact=True)
def test_range_index_rsub_by_const(self):
# GH#53255
result = 3 - RangeIndex(0, 4, 1)
expected = RangeIndex(3, -1, -1)
tm.assert_index_equal(result, expected)