You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

762 lines
29 KiB

""" Test cases for .boxplot method """
import itertools
import string
import numpy as np
import pytest
from pandas import (
DataFrame,
MultiIndex,
Series,
date_range,
plotting,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
_check_axes_shape,
_check_box_return_type,
_check_plot_works,
_check_ticks_props,
_check_visible,
)
from pandas.io.formats.printing import pprint_thing
mpl = pytest.importorskip("matplotlib")
plt = pytest.importorskip("matplotlib.pyplot")
def _check_ax_limits(col, ax):
y_min, y_max = ax.get_ylim()
assert y_min <= col.min()
assert y_max >= col.max()
class TestDataFramePlots:
def test_stacked_boxplot_set_axis(self):
# GH2980
import matplotlib.pyplot as plt
n = 80
df = DataFrame(
{
"Clinical": np.random.default_rng(2).choice([0, 1, 2, 3], n),
"Confirmed": np.random.default_rng(2).choice([0, 1, 2, 3], n),
"Discarded": np.random.default_rng(2).choice([0, 1, 2, 3], n),
},
index=np.arange(0, n),
)
ax = df.plot(kind="bar", stacked=True)
assert [int(x.get_text()) for x in ax.get_xticklabels()] == df.index.to_list()
ax.set_xticks(np.arange(0, 80, 10))
plt.draw() # Update changes
assert [int(x.get_text()) for x in ax.get_xticklabels()] == list(
np.arange(0, 80, 10)
)
@pytest.mark.slow
@pytest.mark.parametrize(
"kwargs, warn",
[
[{"return_type": "dict"}, None],
[{"column": ["one", "two"]}, None],
[{"column": ["one", "two"], "by": "indic"}, UserWarning],
[{"column": ["one"], "by": ["indic", "indic2"]}, None],
[{"by": "indic"}, UserWarning],
[{"by": ["indic", "indic2"]}, UserWarning],
[{"notch": 1}, None],
[{"by": "indic", "notch": 1}, UserWarning],
],
)
def test_boxplot_legacy1(self, kwargs, warn):
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
df["indic"] = ["foo", "bar"] * 3
df["indic2"] = ["foo", "bar", "foo"] * 2
# _check_plot_works can add an ax so catch warning. see GH #13188
with tm.assert_produces_warning(warn, check_stacklevel=False):
_check_plot_works(df.boxplot, **kwargs)
def test_boxplot_legacy1_series(self):
ser = Series(np.random.default_rng(2).standard_normal(6))
_check_plot_works(plotting._core.boxplot, data=ser, return_type="dict")
def test_boxplot_legacy2(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(df.boxplot, by="X")
def test_boxplot_legacy2_with_ax(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
# When ax is supplied and required number of axes is 1,
# passed ax should be used:
_, ax = mpl.pyplot.subplots()
axes = df.boxplot("Col1", by="X", ax=ax)
ax_axes = ax.axes
assert ax_axes is axes
def test_boxplot_legacy2_with_ax_return_type(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
fig, ax = mpl.pyplot.subplots()
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
ax_axes = ax.axes
assert ax_axes is axes["A"]
def test_boxplot_legacy2_with_multi_col(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
# Multiple columns with an ax argument should use same figure
fig, ax = mpl.pyplot.subplots()
with tm.assert_produces_warning(UserWarning):
axes = df.boxplot(
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
)
assert axes["Col1"].get_figure() is fig
def test_boxplot_legacy2_by_none(self):
df = DataFrame(
np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"]
)
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = Series(["A"] * 10)
# When by is None, check that all relevant lines are present in the
# dict
_, ax = mpl.pyplot.subplots()
d = df.boxplot(ax=ax, return_type="dict")
lines = list(itertools.chain.from_iterable(d.values()))
assert len(ax.get_lines()) == len(lines)
def test_boxplot_return_type_none(self, hist_df):
# GH 12216; return_type=None & by=None -> axes
result = hist_df.boxplot()
assert isinstance(result, mpl.pyplot.Axes)
def test_boxplot_return_type_legacy(self):
# API change in https://github.com/pandas-dev/pandas/pull/7096
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
msg = "return_type must be {'axes', 'dict', 'both'}"
with pytest.raises(ValueError, match=msg):
df.boxplot(return_type="NOT_A_TYPE")
result = df.boxplot()
_check_box_return_type(result, "axes")
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
def test_boxplot_return_type_legacy_return_type(self, return_type):
# API change in https://github.com/pandas-dev/pandas/pull/7096
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)),
index=list(string.ascii_letters[:6]),
columns=["one", "two", "three", "four"],
)
with tm.assert_produces_warning(False):
result = df.boxplot(return_type=return_type)
_check_box_return_type(result, return_type)
def test_boxplot_axis_limits(self, hist_df):
df = hist_df.copy()
df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0])
# One full row
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
_check_ax_limits(df["height"], height_ax)
_check_ax_limits(df["weight"], weight_ax)
assert weight_ax._sharey == height_ax
def test_boxplot_axis_limits_two_rows(self, hist_df):
df = hist_df.copy()
df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0])
# Two rows, one partial
p = df.boxplot(["height", "weight", "age"], by="category")
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
dummy_ax = p[1, 1]
_check_ax_limits(df["height"], height_ax)
_check_ax_limits(df["weight"], weight_ax)
_check_ax_limits(df["age"], age_ax)
assert weight_ax._sharey == height_ax
assert age_ax._sharey == height_ax
assert dummy_ax._sharey is None
def test_boxplot_empty_column(self):
df = DataFrame(np.random.default_rng(2).standard_normal((20, 4)))
df.loc[:, 0] = np.nan
_check_plot_works(df.boxplot, return_type="axes")
def test_figsize(self):
df = DataFrame(
np.random.default_rng(2).random((10, 5)), columns=["A", "B", "C", "D", "E"]
)
result = df.boxplot(return_type="axes", figsize=(12, 8))
assert result.figure.bbox_inches.width == 12
assert result.figure.bbox_inches.height == 8
def test_fontsize(self):
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
_check_ticks_props(df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16)
def test_boxplot_numeric_data(self):
# GH 22799
df = DataFrame(
{
"a": date_range("2012-01-01", periods=100),
"b": np.random.default_rng(2).standard_normal(100),
"c": np.random.default_rng(2).standard_normal(100) + 2,
"d": date_range("2012-01-01", periods=100).astype(str),
"e": date_range("2012-01-01", periods=100, tz="UTC"),
"f": timedelta_range("1 days", periods=100),
}
)
ax = df.plot(kind="box")
assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
@pytest.mark.parametrize(
"colors_kwd, expected",
[
(
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
),
({"boxes": "r"}, {"boxes": "r"}),
("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
],
)
def test_color_kwd(self, colors_kwd, expected):
# GH: 26214
df = DataFrame(np.random.default_rng(2).random((10, 2)))
result = df.boxplot(color=colors_kwd, return_type="dict")
for k, v in expected.items():
assert result[k][0].get_color() == v
@pytest.mark.parametrize(
"scheme,expected",
[
(
"dark_background",
{
"boxes": "#8dd3c7",
"whiskers": "#8dd3c7",
"medians": "#bfbbd9",
"caps": "#8dd3c7",
},
),
(
"default",
{
"boxes": "#1f77b4",
"whiskers": "#1f77b4",
"medians": "#2ca02c",
"caps": "#1f77b4",
},
),
],
)
def test_colors_in_theme(self, scheme, expected):
# GH: 40769
df = DataFrame(np.random.default_rng(2).random((10, 2)))
import matplotlib.pyplot as plt
plt.style.use(scheme)
result = df.plot.box(return_type="dict")
for k, v in expected.items():
assert result[k][0].get_color() == v
@pytest.mark.parametrize(
"dict_colors, msg",
[({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
)
def test_color_kwd_errors(self, dict_colors, msg):
# GH: 26214
df = DataFrame(np.random.default_rng(2).random((10, 2)))
with pytest.raises(ValueError, match=msg):
df.boxplot(color=dict_colors, return_type="dict")
@pytest.mark.parametrize(
"props, expected",
[
("boxprops", "boxes"),
("whiskerprops", "whiskers"),
("capprops", "caps"),
("medianprops", "medians"),
],
)
def test_specified_props_kwd(self, props, expected):
# GH 30346
df = DataFrame({k: np.random.default_rng(2).random(10) for k in "ABC"})
kwd = {props: {"color": "C1"}}
result = df.boxplot(return_type="dict", **kwd)
assert result[expected][0].get_color() == "C1"
@pytest.mark.parametrize("vert", [True, False])
def test_plot_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
xlabel, ylabel = "x", "y"
ax = df.plot(kind="box", vert=vert, xlabel=xlabel, ylabel=ylabel)
assert ax.get_xlabel() == xlabel
assert ax.get_ylabel() == ylabel
@pytest.mark.parametrize("vert", [True, False])
def test_plot_box(self, vert):
# GH 54941
rng = np.random.default_rng(2)
df1 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD"))
df2 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD"))
xlabel, ylabel = "x", "y"
_, axs = plt.subplots(ncols=2, figsize=(10, 7), sharey=True)
df1.plot.box(ax=axs[0], vert=vert, xlabel=xlabel, ylabel=ylabel)
df2.plot.box(ax=axs[1], vert=vert, xlabel=xlabel, ylabel=ylabel)
for ax in axs:
assert ax.get_xlabel() == xlabel
assert ax.get_ylabel() == ylabel
mpl.pyplot.close()
@pytest.mark.parametrize("vert", [True, False])
def test_boxplot_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
xlabel, ylabel = "x", "y"
ax = df.boxplot(vert=vert, xlabel=xlabel, ylabel=ylabel)
assert ax.get_xlabel() == xlabel
assert ax.get_ylabel() == ylabel
@pytest.mark.parametrize("vert", [True, False])
def test_boxplot_group_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
xlabel, ylabel = "x", "y"
ax = df.boxplot(by="group", vert=vert, xlabel=xlabel, ylabel=ylabel)
for subplot in ax:
assert subplot.get_xlabel() == xlabel
assert subplot.get_ylabel() == ylabel
mpl.pyplot.close()
@pytest.mark.parametrize("vert", [True, False])
def test_boxplot_group_no_xlabel_ylabel(self, vert):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(10),
"b": np.random.default_rng(2).standard_normal(10),
"group": np.random.default_rng(2).choice(["group1", "group2"], 10),
}
)
ax = df.boxplot(by="group", vert=vert)
for subplot in ax:
target_label = subplot.get_xlabel() if vert else subplot.get_ylabel()
assert target_label == pprint_thing(["group"])
mpl.pyplot.close()
class TestDataFrameGroupByPlots:
def test_boxplot_legacy1(self, hist_df):
grouped = hist_df.groupby(by="gender")
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
_check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
def test_boxplot_legacy1_return_type(self, hist_df):
grouped = hist_df.groupby(by="gender")
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_boxplot_legacy2(self):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(
np.random.default_rng(2).random((10, 3)),
index=MultiIndex.from_tuples(tuples),
)
grouped = df.groupby(level=1)
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(grouped.boxplot, return_type="axes")
_check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
@pytest.mark.slow
def test_boxplot_legacy2_return_type(self):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(
np.random.default_rng(2).random((10, 3)),
index=MultiIndex.from_tuples(tuples),
)
grouped = df.groupby(level=1)
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
_check_axes_shape(axes, axes_num=1, layout=(1, 1))
@pytest.mark.parametrize(
"subplots, warn, axes_num, layout",
[[True, UserWarning, 3, (2, 2)], [False, None, 1, (1, 1)]],
)
def test_boxplot_legacy3(self, subplots, warn, axes_num, layout):
tuples = zip(string.ascii_letters[:10], range(10))
df = DataFrame(
np.random.default_rng(2).random((10, 3)),
index=MultiIndex.from_tuples(tuples),
)
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grouped = df.unstack(level=1).groupby(level=0, axis=1)
with tm.assert_produces_warning(warn, check_stacklevel=False):
axes = _check_plot_works(
grouped.boxplot, subplots=subplots, return_type="axes"
)
_check_axes_shape(axes, axes_num=axes_num, layout=layout)
def test_grouped_plot_fignums(self):
n = 10
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
df = DataFrame({"height": height, "weight": weight, "gender": gender})
gb = df.groupby("gender")
res = gb.plot()
assert len(mpl.pyplot.get_fignums()) == 2
assert len(res) == 2
plt.close("all")
res = gb.boxplot(return_type="axes")
assert len(mpl.pyplot.get_fignums()) == 1
assert len(res) == 2
def test_grouped_plot_fignums_excluded_col(self):
n = 10
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
df = DataFrame({"height": height, "weight": weight, "gender": gender})
# now works with GH 5610 as gender is excluded
df.groupby("gender").hist()
@pytest.mark.slow
def test_grouped_box_return_type(self, hist_df):
df = hist_df
# old style: return_type=None
result = df.boxplot(by="gender")
assert isinstance(result, np.ndarray)
_check_box_return_type(
result, None, expected_keys=["height", "weight", "category"]
)
@pytest.mark.slow
def test_grouped_box_return_type_groupby(self, hist_df):
df = hist_df
# now for groupby
result = df.groupby("gender").boxplot(return_type="dict")
_check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
@pytest.mark.slow
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
def test_grouped_box_return_type_arg(self, hist_df, return_type):
df = hist_df
returned = df.groupby("classroom").boxplot(return_type=return_type)
_check_box_return_type(returned, return_type, expected_keys=["A", "B", "C"])
returned = df.boxplot(by="classroom", return_type=return_type)
_check_box_return_type(
returned, return_type, expected_keys=["height", "weight", "category"]
)
@pytest.mark.slow
@pytest.mark.parametrize("return_type", ["dict", "axes", "both"])
def test_grouped_box_return_type_arg_duplcate_cats(self, return_type):
columns2 = "X B C D A".split()
df2 = DataFrame(
np.random.default_rng(2).standard_normal((6, 5)), columns=columns2
)
categories2 = "A B".split()
df2["category"] = categories2 * 3
returned = df2.groupby("category").boxplot(return_type=return_type)
_check_box_return_type(returned, return_type, expected_keys=categories2)
returned = df2.boxplot(by="category", return_type=return_type)
_check_box_return_type(returned, return_type, expected_keys=columns2)
@pytest.mark.slow
def test_grouped_box_layout_too_small(self, hist_df):
df = hist_df
msg = "Layout of 1x1 must be larger than required size 2"
with pytest.raises(ValueError, match=msg):
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
@pytest.mark.slow
def test_grouped_box_layout_needs_by(self, hist_df):
df = hist_df
msg = "The 'layout' keyword is not supported when 'by' is None"
with pytest.raises(ValueError, match=msg):
df.boxplot(
column=["height", "weight", "category"],
layout=(2, 1),
return_type="dict",
)
@pytest.mark.slow
def test_grouped_box_layout_positive_layout(self, hist_df):
df = hist_df
msg = "At least one dimension of layout must be positive"
with pytest.raises(ValueError, match=msg):
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
@pytest.mark.slow
@pytest.mark.parametrize(
"gb_key, axes_num, rows",
[["gender", 2, 1], ["category", 4, 2], ["classroom", 3, 2]],
)
def test_grouped_box_layout_positive_layout_axes(
self, hist_df, gb_key, axes_num, rows
):
df = hist_df
# _check_plot_works adds an ax so catch warning. see GH #13188 GH 6769
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(
df.groupby(gb_key).boxplot, column="height", return_type="dict"
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=axes_num, layout=(rows, 2))
@pytest.mark.slow
@pytest.mark.parametrize(
"col, visible", [["height", False], ["weight", True], ["category", True]]
)
def test_grouped_box_layout_visible(self, hist_df, col, visible):
df = hist_df
# GH 5897
axes = df.boxplot(
column=["height", "weight", "category"], by="gender", return_type="axes"
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2))
ax = axes[col]
_check_visible(ax.get_xticklabels(), visible=visible)
_check_visible([ax.xaxis.get_label()], visible=visible)
@pytest.mark.slow
def test_grouped_box_layout_shape(self, hist_df):
df = hist_df
df.groupby("classroom").boxplot(
column=["height", "weight", "category"], return_type="dict"
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2))
@pytest.mark.slow
@pytest.mark.parametrize("cols", [2, -1])
def test_grouped_box_layout_works(self, hist_df, cols):
df = hist_df
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
_check_plot_works(
df.groupby("category").boxplot,
column="height",
layout=(3, cols),
return_type="dict",
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(3, 2))
@pytest.mark.slow
@pytest.mark.parametrize("rows, res", [[4, 4], [-1, 3]])
def test_grouped_box_layout_axes_shape_rows(self, hist_df, rows, res):
df = hist_df
df.boxplot(
column=["height", "weight", "category"], by="gender", layout=(rows, 1)
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(res, 1))
@pytest.mark.slow
@pytest.mark.parametrize("cols, res", [[4, 4], [-1, 3]])
def test_grouped_box_layout_axes_shape_cols_groupby(self, hist_df, cols, res):
df = hist_df
df.groupby("classroom").boxplot(
column=["height", "weight", "category"],
layout=(1, cols),
return_type="dict",
)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(1, res))
@pytest.mark.slow
def test_grouped_box_multiple_axes(self, hist_df):
# GH 6970, GH 7069
df = hist_df
# check warning to ignore sharex / sharey
# this check should be done in the first function which
# passes multiple axes to plot, hist or boxplot
# location should be changed if other test is added
# which has earlier alphabetical order
with tm.assert_produces_warning(UserWarning):
_, axes = mpl.pyplot.subplots(2, 2)
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
_check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(2, 2))
@pytest.mark.slow
def test_grouped_box_multiple_axes_on_fig(self, hist_df):
# GH 6970, GH 7069
df = hist_df
fig, axes = mpl.pyplot.subplots(2, 3)
with tm.assert_produces_warning(UserWarning):
returned = df.boxplot(
column=["height", "weight", "category"],
by="gender",
return_type="axes",
ax=axes[0],
)
returned = np.array(list(returned.values))
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[0])
assert returned[0].figure is fig
# draw on second row
with tm.assert_produces_warning(UserWarning):
returned = df.groupby("classroom").boxplot(
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
)
returned = np.array(list(returned.values))
_check_axes_shape(returned, axes_num=3, layout=(1, 3))
tm.assert_numpy_array_equal(returned, axes[1])
assert returned[0].figure is fig
@pytest.mark.slow
def test_grouped_box_multiple_axes_ax_error(self, hist_df):
# GH 6970, GH 7069
df = hist_df
msg = "The number of passed axes must be 3, the same as the output plot"
with pytest.raises(ValueError, match=msg):
fig, axes = mpl.pyplot.subplots(2, 3)
# pass different number of axes from required
with tm.assert_produces_warning(UserWarning):
axes = df.groupby("classroom").boxplot(ax=axes)
def test_fontsize(self):
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
_check_ticks_props(
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
)
@pytest.mark.parametrize(
"col, expected_xticklabel",
[
("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
(["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
(
["v", "v1"],
[
"(a, v)",
"(a, v1)",
"(b, v)",
"(b, v1)",
"(c, v)",
"(c, v1)",
"(d, v)",
"(d, v1)",
"(e, v)",
"(e, v1)",
],
),
(
None,
[
"(a, v)",
"(a, v1)",
"(b, v)",
"(b, v1)",
"(c, v)",
"(c, v1)",
"(d, v)",
"(d, v1)",
"(e, v)",
"(e, v1)",
],
),
],
)
def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
# GH 16748
df = DataFrame(
{
"cat": np.random.default_rng(2).choice(list("abcde"), 100),
"v": np.random.default_rng(2).random(100),
"v1": np.random.default_rng(2).random(100),
}
)
grouped = df.groupby("cat")
axes = _check_plot_works(
grouped.boxplot, subplots=False, column=col, return_type="axes"
)
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
assert expected_xticklabel == result_xticklabel
def test_groupby_boxplot_object(self, hist_df):
# GH 43480
df = hist_df.astype("object")
grouped = df.groupby("gender")
msg = "boxplot method requires numerical columns, nothing to plot"
with pytest.raises(ValueError, match=msg):
_check_plot_works(grouped.boxplot, subplots=False)
def test_boxplot_multiindex_column(self):
# GH 16748
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = list(zip(*arrays))
index = MultiIndex.from_tuples(tuples, names=["first", "second"])
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 8)),
index=["A", "B", "C"],
columns=index,
)
col = [("bar", "one"), ("bar", "two")]
axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
expected_xticklabel = ["(bar, one)", "(bar, two)"]
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
assert expected_xticklabel == result_xticklabel