You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

156 lines
5.6 KiB

""" Test cases for GroupBy.plot """
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
Series,
)
from pandas.tests.plotting.common import (
_check_axes_shape,
_check_legend_labels,
)
pytest.importorskip("matplotlib")
class TestDataFrameGroupByPlots:
def test_series_groupby_plotting_nominally_works(self):
n = 10
weight = Series(np.random.default_rng(2).normal(166, 20, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
weight.groupby(gender).plot()
def test_series_groupby_plotting_nominally_works_hist(self):
n = 10
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
height.groupby(gender).hist()
def test_series_groupby_plotting_nominally_works_alpha(self):
n = 10
height = Series(np.random.default_rng(2).normal(60, 10, size=n))
gender = np.random.default_rng(2).choice(["male", "female"], size=n)
# Regression test for GH8733
height.groupby(gender).plot(alpha=0.5)
def test_plotting_with_float_index_works(self):
# GH 7025
df = DataFrame(
{
"def": [1, 1, 1, 2, 2, 2, 3, 3, 3],
"val": np.random.default_rng(2).standard_normal(9),
},
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
)
df.groupby("def")["val"].plot()
def test_plotting_with_float_index_works_apply(self):
# GH 7025
df = DataFrame(
{
"def": [1, 1, 1, 2, 2, 2, 3, 3, 3],
"val": np.random.default_rng(2).standard_normal(9),
},
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
)
df.groupby("def")["val"].apply(lambda x: x.plot())
def test_hist_single_row(self):
# GH10214
bins = np.arange(80, 100 + 2, 1)
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]})
df["Mark"].hist(by=df["ByCol"], bins=bins)
def test_hist_single_row_single_bycol(self):
# GH10214
bins = np.arange(80, 100 + 2, 1)
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
df["Mark"].hist(by=df["ByCol"], bins=bins)
def test_plot_submethod_works(self):
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
df.groupby("z").plot.scatter("x", "y")
def test_plot_submethod_works_line(self):
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
df.groupby("z")["x"].plot.line()
def test_plot_kwargs(self):
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
res = df.groupby("z").plot(kind="scatter", x="x", y="y")
# check that a scatter plot is effectively plotted: the axes should
# contain a PathCollection from the scatter plot (GH11805)
assert len(res["a"].collections) == 1
def test_plot_kwargs_scatter(self):
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
res = df.groupby("z").plot.scatter(x="x", y="y")
assert len(res["a"].collections) == 1
@pytest.mark.parametrize("column, expected_axes_num", [(None, 2), ("b", 1)])
def test_groupby_hist_frame_with_legend(self, column, expected_axes_num):
# GH 6279 - DataFrameGroupBy histogram can have a legend
expected_layout = (1, expected_axes_num)
expected_labels = column or [["a"], ["b"]]
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 2)),
index=index,
columns=["a", "b"],
)
g = df.groupby("c")
for axes in g.hist(legend=True, column=column):
_check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
for ax, expected_label in zip(axes[0], expected_labels):
_check_legend_labels(ax, expected_label)
@pytest.mark.parametrize("column", [None, "b"])
def test_groupby_hist_frame_with_legend_raises(self, column):
# GH 6279 - DataFrameGroupBy histogram with legend and label raises
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 2)),
index=index,
columns=["a", "b"],
)
g = df.groupby("c")
with pytest.raises(ValueError, match="Cannot use both legend and label"):
g.hist(legend=True, column=column, label="d")
def test_groupby_hist_series_with_legend(self):
# GH 6279 - SeriesGroupBy histogram can have a legend
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 2)),
index=index,
columns=["a", "b"],
)
g = df.groupby("c")
for ax in g["a"].hist(legend=True):
_check_axes_shape(ax, axes_num=1, layout=(1, 1))
_check_legend_labels(ax, ["1", "2"])
def test_groupby_hist_series_with_legend_raises(self):
# GH 6279 - SeriesGroupBy histogram with legend and label raises
index = Index(15 * ["1"] + 15 * ["2"], name="c")
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 2)),
index=index,
columns=["a", "b"],
)
g = df.groupby("c")
with pytest.raises(ValueError, match="Cannot use both legend and label"):
g.hist(legend=True, label="d")