You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
391 lines
12 KiB
391 lines
12 KiB
from datetime import datetime
|
|
from operator import methodcaller
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
Series,
|
|
Timestamp,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.groupby.grouper import Grouper
|
|
from pandas.core.indexes.datetimes import date_range
|
|
|
|
|
|
@pytest.fixture
|
|
def test_series():
|
|
return Series(
|
|
np.random.default_rng(2).standard_normal(1000),
|
|
index=date_range("1/1/2000", periods=1000),
|
|
)
|
|
|
|
|
|
def test_apply(test_series):
|
|
grouper = Grouper(freq="YE", label="right", closed="right")
|
|
|
|
grouped = test_series.groupby(grouper)
|
|
|
|
def f(x):
|
|
return x.sort_values()[-3:]
|
|
|
|
applied = grouped.apply(f)
|
|
expected = test_series.groupby(lambda x: x.year).apply(f)
|
|
|
|
applied.index = applied.index.droplevel(0)
|
|
expected.index = expected.index.droplevel(0)
|
|
tm.assert_series_equal(applied, expected)
|
|
|
|
|
|
def test_count(test_series):
|
|
test_series[::3] = np.nan
|
|
|
|
expected = test_series.groupby(lambda x: x.year).count()
|
|
|
|
grouper = Grouper(freq="YE", label="right", closed="right")
|
|
result = test_series.groupby(grouper).count()
|
|
expected.index = result.index
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = test_series.resample("YE").count()
|
|
expected.index = result.index
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_numpy_reduction(test_series):
|
|
result = test_series.resample("YE", closed="right").prod()
|
|
|
|
msg = "using SeriesGroupBy.prod"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
expected = test_series.groupby(lambda x: x.year).agg(np.prod)
|
|
expected.index = result.index
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_iteration():
|
|
# #2300
|
|
N = 1000
|
|
ind = date_range(start="2000-01-01", freq="D", periods=N)
|
|
df = DataFrame({"open": 1, "close": 2}, index=ind)
|
|
tg = Grouper(freq="ME")
|
|
|
|
grouper, _ = tg._get_grouper(df)
|
|
|
|
# Errors
|
|
grouped = df.groupby(grouper, group_keys=False)
|
|
|
|
def f(df):
|
|
return df["close"] / df["open"]
|
|
|
|
# it works!
|
|
result = grouped.apply(f)
|
|
tm.assert_index_equal(result.index, df.index)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index([1, 2]),
|
|
Index(["a", "b"]),
|
|
Index([1.1, 2.2]),
|
|
pd.MultiIndex.from_arrays([[1, 2], ["a", "b"]]),
|
|
],
|
|
)
|
|
def test_fails_on_no_datetime_index(index):
|
|
name = type(index).__name__
|
|
df = DataFrame({"a": range(len(index))}, index=index)
|
|
|
|
msg = (
|
|
"Only valid with DatetimeIndex, TimedeltaIndex "
|
|
f"or PeriodIndex, but got an instance of '{name}'"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
df.groupby(Grouper(freq="D"))
|
|
|
|
|
|
def test_aaa_group_order():
|
|
# GH 12840
|
|
# check TimeGrouper perform stable sorts
|
|
n = 20
|
|
data = np.random.default_rng(2).standard_normal((n, 4))
|
|
df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
df["key"] = [
|
|
datetime(2013, 1, 1),
|
|
datetime(2013, 1, 2),
|
|
datetime(2013, 1, 3),
|
|
datetime(2013, 1, 4),
|
|
datetime(2013, 1, 5),
|
|
] * 4
|
|
grouped = df.groupby(Grouper(key="key", freq="D"))
|
|
|
|
tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 1)), df[::5])
|
|
tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 2)), df[1::5])
|
|
tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 3)), df[2::5])
|
|
tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 4)), df[3::5])
|
|
tm.assert_frame_equal(grouped.get_group(datetime(2013, 1, 5)), df[4::5])
|
|
|
|
|
|
def test_aggregate_normal(resample_method):
|
|
"""Check TimeGrouper's aggregation is identical as normal groupby."""
|
|
|
|
data = np.random.default_rng(2).standard_normal((20, 4))
|
|
normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
normal_df["key"] = [1, 2, 3, 4, 5] * 4
|
|
|
|
dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
dt_df["key"] = Index(
|
|
[
|
|
datetime(2013, 1, 1),
|
|
datetime(2013, 1, 2),
|
|
datetime(2013, 1, 3),
|
|
datetime(2013, 1, 4),
|
|
datetime(2013, 1, 5),
|
|
]
|
|
* 4,
|
|
dtype="M8[ns]",
|
|
)
|
|
|
|
normal_grouped = normal_df.groupby("key")
|
|
dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
|
|
|
|
expected = getattr(normal_grouped, resample_method)()
|
|
dt_result = getattr(dt_grouped, resample_method)()
|
|
expected.index = date_range(start="2013-01-01", freq="D", periods=5, name="key")
|
|
tm.assert_equal(expected, dt_result)
|
|
|
|
|
|
@pytest.mark.xfail(reason="if TimeGrouper is used included, 'nth' doesn't work yet")
|
|
def test_aggregate_nth():
|
|
"""Check TimeGrouper's aggregation is identical as normal groupby."""
|
|
|
|
data = np.random.default_rng(2).standard_normal((20, 4))
|
|
normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
normal_df["key"] = [1, 2, 3, 4, 5] * 4
|
|
|
|
dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
dt_df["key"] = [
|
|
datetime(2013, 1, 1),
|
|
datetime(2013, 1, 2),
|
|
datetime(2013, 1, 3),
|
|
datetime(2013, 1, 4),
|
|
datetime(2013, 1, 5),
|
|
] * 4
|
|
|
|
normal_grouped = normal_df.groupby("key")
|
|
dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
|
|
|
|
expected = normal_grouped.nth(3)
|
|
expected.index = date_range(start="2013-01-01", freq="D", periods=5, name="key")
|
|
dt_result = dt_grouped.nth(3)
|
|
tm.assert_frame_equal(expected, dt_result)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, method_args, unit",
|
|
[
|
|
("sum", {}, 0),
|
|
("sum", {"min_count": 0}, 0),
|
|
("sum", {"min_count": 1}, np.nan),
|
|
("prod", {}, 1),
|
|
("prod", {"min_count": 0}, 1),
|
|
("prod", {"min_count": 1}, np.nan),
|
|
],
|
|
)
|
|
def test_resample_entirely_nat_window(method, method_args, unit):
|
|
ser = Series([0] * 2 + [np.nan] * 2, index=date_range("2017", periods=4))
|
|
result = methodcaller(method, **method_args)(ser.resample("2d"))
|
|
|
|
exp_dti = pd.DatetimeIndex(["2017-01-01", "2017-01-03"], dtype="M8[ns]", freq="2D")
|
|
expected = Series([0.0, unit], index=exp_dti)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"func, fill_value",
|
|
[("min", np.nan), ("max", np.nan), ("sum", 0), ("prod", 1), ("count", 0)],
|
|
)
|
|
def test_aggregate_with_nat(func, fill_value):
|
|
# check TimeGrouper's aggregation is identical as normal groupby
|
|
# if NaT is included, 'var', 'std', 'mean', 'first','last'
|
|
# and 'nth' doesn't work yet
|
|
|
|
n = 20
|
|
data = np.random.default_rng(2).standard_normal((n, 4)).astype("int64")
|
|
normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
normal_df["key"] = [1, 2, np.nan, 4, 5] * 4
|
|
|
|
dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
dt_df["key"] = Index(
|
|
[
|
|
datetime(2013, 1, 1),
|
|
datetime(2013, 1, 2),
|
|
pd.NaT,
|
|
datetime(2013, 1, 4),
|
|
datetime(2013, 1, 5),
|
|
]
|
|
* 4,
|
|
dtype="M8[ns]",
|
|
)
|
|
|
|
normal_grouped = normal_df.groupby("key")
|
|
dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
|
|
|
|
normal_result = getattr(normal_grouped, func)()
|
|
dt_result = getattr(dt_grouped, func)()
|
|
|
|
pad = DataFrame([[fill_value] * 4], index=[3], columns=["A", "B", "C", "D"])
|
|
expected = pd.concat([normal_result, pad])
|
|
expected = expected.sort_index()
|
|
dti = date_range(
|
|
start="2013-01-01",
|
|
freq="D",
|
|
periods=5,
|
|
name="key",
|
|
unit=dt_df["key"]._values.unit,
|
|
)
|
|
expected.index = dti._with_freq(None) # TODO: is this desired?
|
|
tm.assert_frame_equal(expected, dt_result)
|
|
assert dt_result.index.name == "key"
|
|
|
|
|
|
def test_aggregate_with_nat_size():
|
|
# GH 9925
|
|
n = 20
|
|
data = np.random.default_rng(2).standard_normal((n, 4)).astype("int64")
|
|
normal_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
normal_df["key"] = [1, 2, np.nan, 4, 5] * 4
|
|
|
|
dt_df = DataFrame(data, columns=["A", "B", "C", "D"])
|
|
dt_df["key"] = Index(
|
|
[
|
|
datetime(2013, 1, 1),
|
|
datetime(2013, 1, 2),
|
|
pd.NaT,
|
|
datetime(2013, 1, 4),
|
|
datetime(2013, 1, 5),
|
|
]
|
|
* 4,
|
|
dtype="M8[ns]",
|
|
)
|
|
|
|
normal_grouped = normal_df.groupby("key")
|
|
dt_grouped = dt_df.groupby(Grouper(key="key", freq="D"))
|
|
|
|
normal_result = normal_grouped.size()
|
|
dt_result = dt_grouped.size()
|
|
|
|
pad = Series([0], index=[3])
|
|
expected = pd.concat([normal_result, pad])
|
|
expected = expected.sort_index()
|
|
expected.index = date_range(
|
|
start="2013-01-01",
|
|
freq="D",
|
|
periods=5,
|
|
name="key",
|
|
unit=dt_df["key"]._values.unit,
|
|
)._with_freq(None)
|
|
tm.assert_series_equal(expected, dt_result)
|
|
assert dt_result.index.name == "key"
|
|
|
|
|
|
def test_repr():
|
|
# GH18203
|
|
result = repr(Grouper(key="A", freq="h"))
|
|
expected = (
|
|
"TimeGrouper(key='A', freq=<Hour>, axis=0, sort=True, dropna=True, "
|
|
"closed='left', label='left', how='mean', "
|
|
"convention='e', origin='start_day')"
|
|
)
|
|
assert result == expected
|
|
|
|
result = repr(Grouper(key="A", freq="h", origin="2000-01-01"))
|
|
expected = (
|
|
"TimeGrouper(key='A', freq=<Hour>, axis=0, sort=True, dropna=True, "
|
|
"closed='left', label='left', how='mean', "
|
|
"convention='e', origin=Timestamp('2000-01-01 00:00:00'))"
|
|
)
|
|
assert result == expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, method_args, expected_values",
|
|
[
|
|
("sum", {}, [1, 0, 1]),
|
|
("sum", {"min_count": 0}, [1, 0, 1]),
|
|
("sum", {"min_count": 1}, [1, np.nan, 1]),
|
|
("sum", {"min_count": 2}, [np.nan, np.nan, np.nan]),
|
|
("prod", {}, [1, 1, 1]),
|
|
("prod", {"min_count": 0}, [1, 1, 1]),
|
|
("prod", {"min_count": 1}, [1, np.nan, 1]),
|
|
("prod", {"min_count": 2}, [np.nan, np.nan, np.nan]),
|
|
],
|
|
)
|
|
def test_upsample_sum(method, method_args, expected_values):
|
|
ser = Series(1, index=date_range("2017", periods=2, freq="h"))
|
|
resampled = ser.resample("30min")
|
|
index = pd.DatetimeIndex(
|
|
["2017-01-01T00:00:00", "2017-01-01T00:30:00", "2017-01-01T01:00:00"],
|
|
dtype="M8[ns]",
|
|
freq="30min",
|
|
)
|
|
result = methodcaller(method, **method_args)(resampled)
|
|
expected = Series(expected_values, index=index)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_groupby_resample_interpolate():
|
|
# GH 35325
|
|
d = {"price": [10, 11, 9], "volume": [50, 60, 50]}
|
|
|
|
df = DataFrame(d)
|
|
|
|
df["week_starting"] = date_range("01/01/2018", periods=3, freq="W")
|
|
|
|
msg = "DataFrameGroupBy.resample operated on the grouping columns"
|
|
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
|
result = (
|
|
df.set_index("week_starting")
|
|
.groupby("volume")
|
|
.resample("1D")
|
|
.interpolate(method="linear")
|
|
)
|
|
|
|
volume = [50] * 15 + [60]
|
|
week_starting = list(date_range("2018-01-07", "2018-01-21")) + [
|
|
Timestamp("2018-01-14")
|
|
]
|
|
expected_ind = pd.MultiIndex.from_arrays(
|
|
[volume, week_starting],
|
|
names=["volume", "week_starting"],
|
|
)
|
|
|
|
expected = DataFrame(
|
|
data={
|
|
"price": [
|
|
10.0,
|
|
9.928571428571429,
|
|
9.857142857142858,
|
|
9.785714285714286,
|
|
9.714285714285714,
|
|
9.642857142857142,
|
|
9.571428571428571,
|
|
9.5,
|
|
9.428571428571429,
|
|
9.357142857142858,
|
|
9.285714285714286,
|
|
9.214285714285714,
|
|
9.142857142857142,
|
|
9.071428571428571,
|
|
9.0,
|
|
11.0,
|
|
],
|
|
"volume": [50.0] * 15 + [60],
|
|
},
|
|
index=expected_ind,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|