You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
725 lines
26 KiB
725 lines
26 KiB
from datetime import datetime
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.core.dtypes.dtypes import ArrowDtype
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
_testing as tm,
|
|
)
|
|
|
|
|
|
def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype):
|
|
# TODO: should this raise TypeError
|
|
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
|
with pytest.raises(ValueError, match="expand must be True or False"):
|
|
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None)
|
|
|
|
|
|
def test_extract_expand_kwarg(any_string_dtype):
|
|
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
|
expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype)
|
|
|
|
result = s.str.extract(".*(BAD[_]+).*")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = s.str.extract(".*(BAD[_]+).*", expand=True)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
expected = DataFrame(
|
|
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_False_mixed_object():
|
|
ser = Series(
|
|
["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0]
|
|
)
|
|
|
|
# two groups
|
|
result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
|
er = [np.nan, np.nan] # empty row
|
|
expected = DataFrame(
|
|
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# single group
|
|
result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False)
|
|
expected = Series(
|
|
["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan],
|
|
dtype=object,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_index_raises():
|
|
# GH9980
|
|
# Index only works with one regex group since
|
|
# multi-group would expand to a frame
|
|
idx = Index(["A1", "A2", "A3", "A4", "B5"])
|
|
msg = "only one regex group is supported with Index"
|
|
with pytest.raises(ValueError, match=msg):
|
|
idx.str.extract("([AB])([123])", expand=False)
|
|
|
|
|
|
def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype):
|
|
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
|
|
msg = "pattern contains no capture groups"
|
|
|
|
# no groups
|
|
with pytest.raises(ValueError, match=msg):
|
|
s_or_idx.str.extract("[ABC][123]", expand=False)
|
|
|
|
# only non-capturing groups
|
|
with pytest.raises(ValueError, match=msg):
|
|
s_or_idx.str.extract("(?:[AB]).*", expand=False)
|
|
|
|
|
|
def test_extract_expand_single_capture_group(index_or_series, any_string_dtype):
|
|
# single group renames series/index properly
|
|
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
|
|
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False)
|
|
|
|
expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype)
|
|
if index_or_series == Series:
|
|
tm.assert_series_equal(result, expected)
|
|
else:
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_capture_groups(any_string_dtype):
|
|
s = Series(["A1", "B2", "C3"], dtype=any_string_dtype)
|
|
# one group, no matches
|
|
result = s.str.extract("(_)", expand=False)
|
|
expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# two groups, no matches
|
|
result = s.str.extract("(_)(_)", expand=False)
|
|
expected = DataFrame(
|
|
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one group, some matches
|
|
result = s.str.extract("([AB])[123]", expand=False)
|
|
expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# two groups, some matches
|
|
result = s.str.extract("([AB])([123])", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one named group
|
|
result = s.str.extract("(?P<letter>[AB])", expand=False)
|
|
expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# two named groups
|
|
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
|
columns=["letter", "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# mix named and unnamed groups
|
|
result = s.str.extract("([AB])(?P<number>[123])", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
|
columns=[0, "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one normal group, one non-capturing group
|
|
result = s.str.extract("([AB])(?:[123])", expand=False)
|
|
expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# two normal groups, one non-capturing group
|
|
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
|
|
result = s.str.extract("([AB])([123])(?:[123])", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one optional group followed by one normal group
|
|
s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
|
|
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, "3"]],
|
|
columns=["letter", "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one normal group followed by one optional group
|
|
s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
|
|
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
|
columns=["letter", "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_capture_groups_index(index, any_string_dtype):
|
|
# https://github.com/pandas-dev/pandas/issues/6348
|
|
# not passing index to the extractor
|
|
data = ["A1", "B2", "C"]
|
|
|
|
if len(index) == 0:
|
|
pytest.skip("Test requires len(index) > 0")
|
|
while len(index) < len(data):
|
|
index = index.repeat(2)
|
|
|
|
index = index[: len(data)]
|
|
ser = Series(data, index=index, dtype=any_string_dtype)
|
|
|
|
result = ser.str.extract(r"(\d)", expand=False)
|
|
expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
|
columns=["letter", "number"],
|
|
index=index,
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_single_series_name_is_preserved(any_string_dtype):
|
|
s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype)
|
|
result = s.str.extract(r"(?P<sue>[a-z])", expand=False)
|
|
expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_True(any_string_dtype):
|
|
# Contains tests like those in test_match and some others.
|
|
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
|
|
|
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
|
|
expected = DataFrame(
|
|
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_True_mixed_object():
|
|
er = [np.nan, np.nan] # empty row
|
|
mixed = Series(
|
|
[
|
|
"aBAD_BAD",
|
|
np.nan,
|
|
"BAD_b_BAD",
|
|
True,
|
|
datetime.today(),
|
|
"foo",
|
|
None,
|
|
1,
|
|
2.0,
|
|
]
|
|
)
|
|
|
|
result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
|
|
expected = DataFrame(
|
|
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_expand_True_single_capture_group_raises(
|
|
index_or_series, any_string_dtype
|
|
):
|
|
# these should work for both Series and Index
|
|
# no groups
|
|
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
|
|
msg = "pattern contains no capture groups"
|
|
with pytest.raises(ValueError, match=msg):
|
|
s_or_idx.str.extract("[ABC][123]", expand=True)
|
|
|
|
# only non-capturing groups
|
|
with pytest.raises(ValueError, match=msg):
|
|
s_or_idx.str.extract("(?:[AB]).*", expand=True)
|
|
|
|
|
|
def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype):
|
|
# single group renames series/index properly
|
|
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
|
|
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True)
|
|
expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("name", [None, "series_name"])
|
|
def test_extract_series(name, any_string_dtype):
|
|
# extract should give the same result whether or not the series has a name.
|
|
s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype)
|
|
|
|
# one group, no matches
|
|
result = s.str.extract("(_)", expand=True)
|
|
expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# two groups, no matches
|
|
result = s.str.extract("(_)(_)", expand=True)
|
|
expected = DataFrame(
|
|
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one group, some matches
|
|
result = s.str.extract("([AB])[123]", expand=True)
|
|
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# two groups, some matches
|
|
result = s.str.extract("([AB])([123])", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one named group
|
|
result = s.str.extract("(?P<letter>[AB])", expand=True)
|
|
expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# two named groups
|
|
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
|
columns=["letter", "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# mix named and unnamed groups
|
|
result = s.str.extract("([AB])(?P<number>[123])", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
|
|
columns=[0, "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one normal group, one non-capturing group
|
|
result = s.str.extract("([AB])(?:[123])", expand=True)
|
|
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_optional_groups(any_string_dtype):
|
|
# two normal groups, one non-capturing group
|
|
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
|
|
result = s.str.extract("([AB])([123])(?:[123])", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one optional group followed by one normal group
|
|
s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
|
|
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], [np.nan, "3"]],
|
|
columns=["letter", "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one normal group followed by one optional group
|
|
s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
|
|
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
|
columns=["letter", "number"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_dataframe_capture_groups_index(index, any_string_dtype):
|
|
# GH6348
|
|
# not passing index to the extractor
|
|
|
|
data = ["A1", "B2", "C"]
|
|
|
|
if len(index) < len(data):
|
|
pytest.skip(f"Index needs more than {len(data)} values")
|
|
|
|
index = index[: len(data)]
|
|
s = Series(data, index=index, dtype=any_string_dtype)
|
|
|
|
result = s.str.extract(r"(\d)", expand=True)
|
|
expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True)
|
|
expected = DataFrame(
|
|
[["A", "1"], ["B", "2"], ["C", np.nan]],
|
|
columns=["letter", "number"],
|
|
index=index,
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extract_single_group_returns_frame(any_string_dtype):
|
|
# GH11386 extract should always return DataFrame, even when
|
|
# there is only one group. Prior to v0.18.0, extract returned
|
|
# Series when there was only one group in the regex.
|
|
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
|
|
result = s.str.extract(r"(?P<letter>[a-z])", expand=True)
|
|
expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extractall(any_string_dtype):
|
|
data = [
|
|
"dave@google.com",
|
|
"tdhock5@gmail.com",
|
|
"maudelaperriere@gmail.com",
|
|
"rob@gmail.com some text steve@gmail.com",
|
|
"a@b.com some text c@d.com and e@f.com",
|
|
np.nan,
|
|
"",
|
|
]
|
|
expected_tuples = [
|
|
("dave", "google", "com"),
|
|
("tdhock5", "gmail", "com"),
|
|
("maudelaperriere", "gmail", "com"),
|
|
("rob", "gmail", "com"),
|
|
("steve", "gmail", "com"),
|
|
("a", "b", "com"),
|
|
("c", "d", "com"),
|
|
("e", "f", "com"),
|
|
]
|
|
pat = r"""
|
|
(?P<user>[a-z0-9]+)
|
|
@
|
|
(?P<domain>[a-z]+)
|
|
\.
|
|
(?P<tld>[a-z]{2,4})
|
|
"""
|
|
expected_columns = ["user", "domain", "tld"]
|
|
s = Series(data, dtype=any_string_dtype)
|
|
# extractall should return a DataFrame with one row for each match, indexed by the
|
|
# subject from which the match came.
|
|
expected_index = MultiIndex.from_tuples(
|
|
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)],
|
|
names=(None, "match"),
|
|
)
|
|
expected = DataFrame(
|
|
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
|
|
)
|
|
result = s.str.extractall(pat, flags=re.VERBOSE)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# The index of the input Series should be used to construct the index of the output
|
|
# DataFrame:
|
|
mi = MultiIndex.from_tuples(
|
|
[
|
|
("single", "Dave"),
|
|
("single", "Toby"),
|
|
("single", "Maude"),
|
|
("multiple", "robAndSteve"),
|
|
("multiple", "abcdef"),
|
|
("none", "missing"),
|
|
("none", "empty"),
|
|
]
|
|
)
|
|
s = Series(data, index=mi, dtype=any_string_dtype)
|
|
expected_index = MultiIndex.from_tuples(
|
|
[
|
|
("single", "Dave", 0),
|
|
("single", "Toby", 0),
|
|
("single", "Maude", 0),
|
|
("multiple", "robAndSteve", 0),
|
|
("multiple", "robAndSteve", 1),
|
|
("multiple", "abcdef", 0),
|
|
("multiple", "abcdef", 1),
|
|
("multiple", "abcdef", 2),
|
|
],
|
|
names=(None, None, "match"),
|
|
)
|
|
expected = DataFrame(
|
|
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
|
|
)
|
|
result = s.str.extractall(pat, flags=re.VERBOSE)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# MultiIndexed subject with names.
|
|
s = Series(data, index=mi, dtype=any_string_dtype)
|
|
s.index.names = ("matches", "description")
|
|
expected_index.names = ("matches", "description", "match")
|
|
expected = DataFrame(
|
|
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
|
|
)
|
|
result = s.str.extractall(pat, flags=re.VERBOSE)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"pat,expected_names",
|
|
[
|
|
# optional groups.
|
|
("(?P<letter>[AB])?(?P<number>[123])", ["letter", "number"]),
|
|
# only one of two groups has a name.
|
|
("([AB])?(?P<number>[123])", [0, "number"]),
|
|
],
|
|
)
|
|
def test_extractall_column_names(pat, expected_names, any_string_dtype):
|
|
s = Series(["", "A1", "32"], dtype=any_string_dtype)
|
|
|
|
result = s.str.extractall(pat)
|
|
expected = DataFrame(
|
|
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
|
|
index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")),
|
|
columns=expected_names,
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extractall_single_group(any_string_dtype):
|
|
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
|
|
expected_index = MultiIndex.from_tuples(
|
|
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
|
|
)
|
|
|
|
# extractall(one named group) returns DataFrame with one named column.
|
|
result = s.str.extractall(r"(?P<letter>[a-z])")
|
|
expected = DataFrame(
|
|
{"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# extractall(one un-named group) returns DataFrame with one un-named column.
|
|
result = s.str.extractall(r"([a-z])")
|
|
expected = DataFrame(
|
|
["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extractall_single_group_with_quantifier(any_string_dtype):
|
|
# GH#13382
|
|
# extractall(one un-named group with quantifier) returns DataFrame with one un-named
|
|
# column.
|
|
s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype)
|
|
result = s.str.extractall(r"([a-z]+)")
|
|
expected = DataFrame(
|
|
["ab", "abc", "d", "cd"],
|
|
index=MultiIndex.from_tuples(
|
|
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
|
|
),
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"data, names",
|
|
[
|
|
([], (None,)),
|
|
([], ("i1",)),
|
|
([], (None, "i2")),
|
|
([], ("i1", "i2")),
|
|
(["a3", "b3", "d4c2"], (None,)),
|
|
(["a3", "b3", "d4c2"], ("i1", "i2")),
|
|
(["a3", "b3", "d4c2"], (None, "i2")),
|
|
(["a3", "b3", "d4c2"], ("i1", "i2")),
|
|
],
|
|
)
|
|
def test_extractall_no_matches(data, names, any_string_dtype):
|
|
# GH19075 extractall with no matches should return a valid MultiIndex
|
|
n = len(data)
|
|
if len(names) == 1:
|
|
index = Index(range(n), name=names[0])
|
|
else:
|
|
tuples = (tuple([i] * (n - 1)) for i in range(n))
|
|
index = MultiIndex.from_tuples(tuples, names=names)
|
|
s = Series(data, name="series_name", index=index, dtype=any_string_dtype)
|
|
expected_index = MultiIndex.from_tuples([], names=(names + ("match",)))
|
|
|
|
# one un-named group.
|
|
result = s.str.extractall("(z)")
|
|
expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# two un-named groups.
|
|
result = s.str.extractall("(z)(z)")
|
|
expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one named group.
|
|
result = s.str.extractall("(?P<first>z)")
|
|
expected = DataFrame(
|
|
columns=["first"], index=expected_index, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# two named groups.
|
|
result = s.str.extractall("(?P<first>z)(?P<second>z)")
|
|
expected = DataFrame(
|
|
columns=["first", "second"], index=expected_index, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# one named, one un-named.
|
|
result = s.str.extractall("(z)(?P<second>z)")
|
|
expected = DataFrame(
|
|
columns=[0, "second"], index=expected_index, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extractall_stringindex(any_string_dtype):
|
|
s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype)
|
|
result = s.str.extractall(r"[ab](?P<digit>\d)")
|
|
expected = DataFrame(
|
|
{"digit": ["1", "2", "1"]},
|
|
index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]),
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# index should return the same result as the default index without name thus
|
|
# index.name doesn't affect to the result
|
|
if any_string_dtype == "object":
|
|
for idx in [
|
|
Index(["a1a2", "b1", "c1"], dtype=object),
|
|
Index(["a1a2", "b1", "c1"], name="xxx", dtype=object),
|
|
]:
|
|
result = idx.str.extractall(r"[ab](?P<digit>\d)")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
s = Series(
|
|
["a1a2", "b1", "c1"],
|
|
name="s_name",
|
|
index=Index(["XX", "yy", "zz"], name="idx_name"),
|
|
dtype=any_string_dtype,
|
|
)
|
|
result = s.str.extractall(r"[ab](?P<digit>\d)")
|
|
expected = DataFrame(
|
|
{"digit": ["1", "2", "1"]},
|
|
index=MultiIndex.from_tuples(
|
|
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"]
|
|
),
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_extractall_no_capture_groups_raises(any_string_dtype):
|
|
# Does not make sense to use extractall with a regex that has no capture groups.
|
|
# (it returns DataFrame with one column for each capture group)
|
|
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
|
|
with pytest.raises(ValueError, match="no capture groups"):
|
|
s.str.extractall(r"[a-z]")
|
|
|
|
|
|
def test_extract_index_one_two_groups():
|
|
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name")
|
|
r = s.index.str.extract(r"([A-Z])", expand=True)
|
|
e = DataFrame(["A", "B", "D"])
|
|
tm.assert_frame_equal(r, e)
|
|
|
|
# Prior to v0.18.0, index.str.extract(regex with one group)
|
|
# returned Index. With more than one group, extract raised an
|
|
# error (GH9980). Now extract always returns DataFrame.
|
|
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True)
|
|
e_list = [("A", "3"), ("B", "3"), ("D", "4")]
|
|
e = DataFrame(e_list, columns=["letter", "digit"])
|
|
tm.assert_frame_equal(r, e)
|
|
|
|
|
|
def test_extractall_same_as_extract(any_string_dtype):
|
|
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
|
|
|
|
pattern_two_noname = r"([a-z])([0-9])"
|
|
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
|
|
has_multi_index = s.str.extractall(pattern_two_noname)
|
|
no_multi_index = has_multi_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_two_noname, no_multi_index)
|
|
|
|
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
|
|
extract_two_named = s.str.extract(pattern_two_named, expand=True)
|
|
has_multi_index = s.str.extractall(pattern_two_named)
|
|
no_multi_index = has_multi_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_two_named, no_multi_index)
|
|
|
|
pattern_one_named = r"(?P<group_name>[a-z])"
|
|
extract_one_named = s.str.extract(pattern_one_named, expand=True)
|
|
has_multi_index = s.str.extractall(pattern_one_named)
|
|
no_multi_index = has_multi_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_one_named, no_multi_index)
|
|
|
|
pattern_one_noname = r"([a-z])"
|
|
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
|
|
has_multi_index = s.str.extractall(pattern_one_noname)
|
|
no_multi_index = has_multi_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_one_noname, no_multi_index)
|
|
|
|
|
|
def test_extractall_same_as_extract_subject_index(any_string_dtype):
|
|
# same as above tests, but s has an MultiIndex.
|
|
mi = MultiIndex.from_tuples(
|
|
[("A", "first"), ("B", "second"), ("C", "third")],
|
|
names=("capital", "ordinal"),
|
|
)
|
|
s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype)
|
|
|
|
pattern_two_noname = r"([a-z])([0-9])"
|
|
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
|
|
has_match_index = s.str.extractall(pattern_two_noname)
|
|
no_match_index = has_match_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_two_noname, no_match_index)
|
|
|
|
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
|
|
extract_two_named = s.str.extract(pattern_two_named, expand=True)
|
|
has_match_index = s.str.extractall(pattern_two_named)
|
|
no_match_index = has_match_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_two_named, no_match_index)
|
|
|
|
pattern_one_named = r"(?P<group_name>[a-z])"
|
|
extract_one_named = s.str.extract(pattern_one_named, expand=True)
|
|
has_match_index = s.str.extractall(pattern_one_named)
|
|
no_match_index = has_match_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_one_named, no_match_index)
|
|
|
|
pattern_one_noname = r"([a-z])"
|
|
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
|
|
has_match_index = s.str.extractall(pattern_one_noname)
|
|
no_match_index = has_match_index.xs(0, level="match")
|
|
tm.assert_frame_equal(extract_one_noname, no_match_index)
|
|
|
|
|
|
def test_extractall_preserves_dtype():
|
|
# Ensure that when extractall is called on a series with specific dtypes set, that
|
|
# the dtype is preserved in the resulting DataFrame's column.
|
|
pa = pytest.importorskip("pyarrow")
|
|
|
|
result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)")
|
|
assert result.dtypes[0] == "string[pyarrow]"
|