You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
973 lines
34 KiB
973 lines
34 KiB
from datetime import datetime
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import PerformanceWarning
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Series,
|
|
_testing as tm,
|
|
)
|
|
from pandas.tests.strings import (
|
|
_convert_na_value,
|
|
object_pyarrow_numpy,
|
|
)
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.contains
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def using_pyarrow(dtype):
|
|
return dtype in ("string[pyarrow]", "string[pyarrow_numpy]")
|
|
|
|
|
|
def test_contains(any_string_dtype):
|
|
values = np.array(
|
|
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
|
|
)
|
|
values = Series(values, dtype=any_string_dtype)
|
|
pat = "mmm[_]+"
|
|
|
|
result = values.str.contains(pat)
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series(
|
|
np.array([False, np.nan, True, True, False], dtype=np.object_),
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = values.str.contains(pat, regex=False)
|
|
expected = Series(
|
|
np.array([False, np.nan, False, False, True], dtype=np.object_),
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
values = Series(
|
|
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object),
|
|
dtype=any_string_dtype,
|
|
)
|
|
result = values.str.contains(pat)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# case insensitive using regex
|
|
values = Series(
|
|
np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object),
|
|
dtype=any_string_dtype,
|
|
)
|
|
|
|
result = values.str.contains("FOO|mmm", case=False)
|
|
expected = Series(np.array([True, False, True, True]), dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# case insensitive without regex
|
|
result = values.str.contains("foo", regex=False, case=False)
|
|
expected = Series(np.array([True, False, True, False]), dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# unicode
|
|
values = Series(
|
|
np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_),
|
|
dtype=any_string_dtype,
|
|
)
|
|
pat = "mmm[_]+"
|
|
|
|
result = values.str.contains(pat)
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series(
|
|
np.array([False, np.nan, True, True], dtype=np.object_), dtype=expected_dtype
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = values.str.contains(pat, na=False)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
values = Series(
|
|
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_),
|
|
dtype=any_string_dtype,
|
|
)
|
|
result = values.str.contains(pat)
|
|
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_contains_object_mixed():
|
|
mixed = Series(
|
|
np.array(
|
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
|
dtype=object,
|
|
)
|
|
)
|
|
result = mixed.str.contains("o")
|
|
expected = Series(
|
|
np.array(
|
|
[False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan],
|
|
dtype=np.object_,
|
|
)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_contains_na_kwarg_for_object_category():
|
|
# gh 22158
|
|
|
|
# na for category
|
|
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
|
|
result = values.str.contains("a", na=True)
|
|
expected = Series([True, False, False, True, True])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = values.str.contains("a", na=False)
|
|
expected = Series([True, False, False, True, False])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# na for objects
|
|
values = Series(["a", "b", "c", "a", np.nan])
|
|
result = values.str.contains("a", na=True)
|
|
expected = Series([True, False, False, True, True])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = values.str.contains("a", na=False)
|
|
expected = Series([True, False, False, True, False])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"na, expected",
|
|
[
|
|
(None, pd.NA),
|
|
(True, True),
|
|
(False, False),
|
|
(0, False),
|
|
(3, True),
|
|
(np.nan, pd.NA),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("regex", [True, False])
|
|
def test_contains_na_kwarg_for_nullable_string_dtype(
|
|
nullable_string_dtype, na, expected, regex
|
|
):
|
|
# https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
|
|
|
|
values = Series(["a", "b", "c", "a", np.nan], dtype=nullable_string_dtype)
|
|
result = values.str.contains("a", na=na, regex=regex)
|
|
expected = Series([True, False, False, True, expected], dtype="boolean")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_contains_moar(any_string_dtype):
|
|
# PR #1179
|
|
s = Series(
|
|
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
|
|
result = s.str.contains("a")
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series(
|
|
[False, False, False, True, True, False, np.nan, False, False, True],
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("a", case=False)
|
|
expected = Series(
|
|
[True, False, False, True, True, False, np.nan, True, False, True],
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("Aa")
|
|
expected = Series(
|
|
[False, False, False, True, False, False, np.nan, False, False, False],
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("ba")
|
|
expected = Series(
|
|
[False, False, False, True, False, False, np.nan, False, False, False],
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("ba", case=False)
|
|
expected = Series(
|
|
[False, False, False, True, True, False, np.nan, True, False, False],
|
|
dtype=expected_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_contains_nan(any_string_dtype):
|
|
# PR #14171
|
|
s = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
|
|
|
|
result = s.str.contains("foo", na=False)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([False, False, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("foo", na=True)
|
|
expected = Series([True, True, True], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("foo", na="foo")
|
|
if any_string_dtype == "object":
|
|
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
|
|
elif any_string_dtype == "string[pyarrow_numpy]":
|
|
expected = Series([True, True, True], dtype=np.bool_)
|
|
else:
|
|
expected = Series([True, True, True], dtype="boolean")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.contains("foo")
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([np.nan, np.nan, np.nan], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.startswith
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
|
|
@pytest.mark.parametrize("dtype", ["object", "category"])
|
|
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
|
|
@pytest.mark.parametrize("na", [True, False])
|
|
def test_startswith(pat, dtype, null_value, na):
|
|
# add category dtype parametrizations for GH-36241
|
|
values = Series(
|
|
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
|
|
dtype=dtype,
|
|
)
|
|
|
|
result = values.str.startswith(pat)
|
|
exp = Series([False, np.nan, True, False, False, np.nan, True])
|
|
if dtype == "object" and null_value is pd.NA:
|
|
# GH#18463
|
|
exp = exp.fillna(null_value)
|
|
elif dtype == "object" and null_value is None:
|
|
exp[exp.isna()] = None
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = values.str.startswith(pat, na=na)
|
|
exp = Series([False, na, True, False, False, na, True])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# mixed
|
|
mixed = np.array(
|
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
|
dtype=np.object_,
|
|
)
|
|
rs = Series(mixed).str.startswith("f")
|
|
xp = Series([False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan])
|
|
tm.assert_series_equal(rs, xp)
|
|
|
|
|
|
@pytest.mark.parametrize("na", [None, True, False])
|
|
def test_startswith_nullable_string_dtype(nullable_string_dtype, na):
|
|
values = Series(
|
|
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
|
|
dtype=nullable_string_dtype,
|
|
)
|
|
result = values.str.startswith("foo", na=na)
|
|
exp = Series(
|
|
[False, na, True, False, False, na, True, False, False], dtype="boolean"
|
|
)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = values.str.startswith("rege.", na=na)
|
|
exp = Series(
|
|
[False, na, False, False, False, na, False, False, True], dtype="boolean"
|
|
)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.endswith
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
|
|
@pytest.mark.parametrize("dtype", ["object", "category"])
|
|
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
|
|
@pytest.mark.parametrize("na", [True, False])
|
|
def test_endswith(pat, dtype, null_value, na):
|
|
# add category dtype parametrizations for GH-36241
|
|
values = Series(
|
|
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
|
|
dtype=dtype,
|
|
)
|
|
|
|
result = values.str.endswith(pat)
|
|
exp = Series([False, np.nan, False, False, True, np.nan, True])
|
|
if dtype == "object" and null_value is pd.NA:
|
|
# GH#18463
|
|
exp = exp.fillna(null_value)
|
|
elif dtype == "object" and null_value is None:
|
|
exp[exp.isna()] = None
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = values.str.endswith(pat, na=na)
|
|
exp = Series([False, na, False, False, True, na, True])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# mixed
|
|
mixed = np.array(
|
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
|
dtype=object,
|
|
)
|
|
rs = Series(mixed).str.endswith("f")
|
|
xp = Series([False, np.nan, False, np.nan, np.nan, False, None, np.nan, np.nan])
|
|
tm.assert_series_equal(rs, xp)
|
|
|
|
|
|
@pytest.mark.parametrize("na", [None, True, False])
|
|
def test_endswith_nullable_string_dtype(nullable_string_dtype, na):
|
|
values = Series(
|
|
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
|
|
dtype=nullable_string_dtype,
|
|
)
|
|
result = values.str.endswith("foo", na=na)
|
|
exp = Series(
|
|
[False, na, False, False, True, na, True, False, False], dtype="boolean"
|
|
)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = values.str.endswith("rege.", na=na)
|
|
exp = Series(
|
|
[False, na, False, False, False, na, False, False, True], dtype="boolean"
|
|
)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.replace
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def test_replace(any_string_dtype):
|
|
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
|
|
|
result = ser.str.replace("BAD[_]*", "", regex=True)
|
|
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_max_replacements(any_string_dtype):
|
|
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
|
|
|
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
|
|
result = ser.str.replace("BAD[_]*", "", n=1, regex=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected = Series(["foo__barBAD", np.nan], dtype=any_string_dtype)
|
|
result = ser.str.replace("BAD", "", n=1, regex=False)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_mixed_object():
|
|
ser = Series(
|
|
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
|
|
)
|
|
result = Series(ser).str.replace("BAD[_]*", "", regex=True)
|
|
expected = Series(
|
|
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_unicode(any_string_dtype):
|
|
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
|
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE, regex=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("repl", [None, 3, {"a": "b"}])
|
|
@pytest.mark.parametrize("data", [["a", "b", None], ["a", "b", "c", "ad"]])
|
|
def test_replace_wrong_repl_type_raises(any_string_dtype, index_or_series, repl, data):
|
|
# https://github.com/pandas-dev/pandas/issues/13438
|
|
msg = "repl must be a string or callable"
|
|
obj = index_or_series(data, dtype=any_string_dtype)
|
|
with pytest.raises(TypeError, match=msg):
|
|
obj.str.replace("a", repl)
|
|
|
|
|
|
def test_replace_callable(any_string_dtype):
|
|
# GH 15055
|
|
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
|
|
|
# test with callable
|
|
repl = lambda m: m.group(0).swapcase()
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace("[a-z][A-Z]{2}", repl, n=2, regex=True)
|
|
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"repl", [lambda: None, lambda m, x: None, lambda m, x, y=None: None]
|
|
)
|
|
def test_replace_callable_raises(any_string_dtype, repl):
|
|
# GH 15055
|
|
values = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
|
|
|
# test with wrong number of arguments, raising an error
|
|
msg = (
|
|
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
|
|
r"(?(3)required )positional arguments?"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
with tm.maybe_produces_warning(
|
|
PerformanceWarning, using_pyarrow(any_string_dtype)
|
|
):
|
|
values.str.replace("a", repl, regex=True)
|
|
|
|
|
|
def test_replace_callable_named_groups(any_string_dtype):
|
|
# test regex named groups
|
|
ser = Series(["Foo Bar Baz", np.nan], dtype=any_string_dtype)
|
|
pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
|
|
repl = lambda m: m.group("middle").swapcase()
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace(pat, repl, regex=True)
|
|
expected = Series(["bAR", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_compiled_regex(any_string_dtype):
|
|
# GH 15446
|
|
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
|
|
|
# test with compiled regex
|
|
pat = re.compile(r"BAD_*")
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace(pat, "", regex=True)
|
|
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace(pat, "", n=1, regex=True)
|
|
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_compiled_regex_mixed_object():
|
|
pat = re.compile(r"BAD_*")
|
|
ser = Series(
|
|
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
|
|
)
|
|
result = Series(ser).str.replace(pat, "", regex=True)
|
|
expected = Series(
|
|
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_compiled_regex_unicode(any_string_dtype):
|
|
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
|
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
|
|
pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace(pat, ", ", regex=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_compiled_regex_raises(any_string_dtype):
|
|
# case and flags provided to str.replace will have no effect
|
|
# and will produce warnings
|
|
ser = Series(["fooBAD__barBAD__bad", np.nan], dtype=any_string_dtype)
|
|
pat = re.compile(r"BAD_*")
|
|
|
|
msg = "case and flags cannot be set when pat is a compiled regex"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.str.replace(pat, "", flags=re.IGNORECASE, regex=True)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.str.replace(pat, "", case=False, regex=True)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.str.replace(pat, "", case=True, regex=True)
|
|
|
|
|
|
def test_replace_compiled_regex_callable(any_string_dtype):
|
|
# test with callable
|
|
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
|
|
repl = lambda m: m.group(0).swapcase()
|
|
pat = re.compile("[a-z][A-Z]{2}")
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace(pat, repl, n=2, regex=True)
|
|
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"regex,expected", [(True, ["bao", "bao", np.nan]), (False, ["bao", "foo", np.nan])]
|
|
)
|
|
def test_replace_literal(regex, expected, any_string_dtype):
|
|
# GH16808 literal replace (regex=False vs regex=True)
|
|
ser = Series(["f.o", "foo", np.nan], dtype=any_string_dtype)
|
|
expected = Series(expected, dtype=any_string_dtype)
|
|
result = ser.str.replace("f.", "ba", regex=regex)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_literal_callable_raises(any_string_dtype):
|
|
ser = Series([], dtype=any_string_dtype)
|
|
repl = lambda m: m.group(0).swapcase()
|
|
|
|
msg = "Cannot use a callable replacement when regex=False"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.str.replace("abc", repl, regex=False)
|
|
|
|
|
|
def test_replace_literal_compiled_raises(any_string_dtype):
|
|
ser = Series([], dtype=any_string_dtype)
|
|
pat = re.compile("[a-z][A-Z]{2}")
|
|
|
|
msg = "Cannot use a compiled regex as replacement pattern with regex=False"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.str.replace(pat, "", regex=False)
|
|
|
|
|
|
def test_replace_moar(any_string_dtype):
|
|
# PR #1179
|
|
ser = Series(
|
|
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
|
|
result = ser.str.replace("A", "YYY")
|
|
expected = Series(
|
|
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace("A", "YYY", case=False)
|
|
expected = Series(
|
|
[
|
|
"YYY",
|
|
"B",
|
|
"C",
|
|
"YYYYYYbYYY",
|
|
"BYYYcYYY",
|
|
"",
|
|
np.nan,
|
|
"CYYYBYYY",
|
|
"dog",
|
|
"cYYYt",
|
|
],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
|
|
expected = Series(
|
|
[
|
|
"A",
|
|
"B",
|
|
"C",
|
|
"XX-XX ba",
|
|
"XX-XX ca",
|
|
"",
|
|
np.nan,
|
|
"XX-XX BA",
|
|
"XX-XX ",
|
|
"XX-XX t",
|
|
],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_not_case_sensitive_not_regex(any_string_dtype):
|
|
# https://github.com/pandas-dev/pandas/issues/41602
|
|
ser = Series(["A.", "a.", "Ab", "ab", np.nan], dtype=any_string_dtype)
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace("a", "c", case=False, regex=False)
|
|
expected = Series(["c.", "c.", "cb", "cb", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.replace("a.", "c.", case=False, regex=False)
|
|
expected = Series(["c.", "c.", "Ab", "ab", np.nan], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_replace_regex(any_string_dtype):
|
|
# https://github.com/pandas-dev/pandas/pull/24809
|
|
s = Series(["a", "b", "ac", np.nan, ""], dtype=any_string_dtype)
|
|
result = s.str.replace("^.$", "a", regex=True)
|
|
expected = Series(["a", "a", "ac", np.nan, ""], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("regex", [True, False])
|
|
def test_replace_regex_single_character(regex, any_string_dtype):
|
|
# https://github.com/pandas-dev/pandas/pull/24809, enforced in 2.0
|
|
# GH 24804
|
|
s = Series(["a.b", ".", "b", np.nan, ""], dtype=any_string_dtype)
|
|
|
|
result = s.str.replace(".", "a", regex=regex)
|
|
if regex:
|
|
expected = Series(["aaa", "a", "a", np.nan, ""], dtype=any_string_dtype)
|
|
else:
|
|
expected = Series(["aab", "a", "b", np.nan, ""], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.match
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def test_match(any_string_dtype):
|
|
# New match behavior introduced in 0.13
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
|
|
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
|
|
result = values.str.match(".*(BAD[_]+).*(BAD)")
|
|
expected = Series([True, np.nan, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
values = Series(
|
|
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
|
)
|
|
result = values.str.match(".*BAD[_]+.*BAD")
|
|
expected = Series([True, True, np.nan, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = values.str.match("BAD[_]+.*BAD")
|
|
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
values = Series(
|
|
["fooBAD__barBAD", "^BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
|
)
|
|
result = values.str.match("^BAD[_]+.*BAD")
|
|
expected = Series([False, False, np.nan, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = values.str.match("\\^BAD[_]+.*BAD")
|
|
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_match_mixed_object():
|
|
mixed = Series(
|
|
[
|
|
"aBAD_BAD",
|
|
np.nan,
|
|
"BAD_b_BAD",
|
|
True,
|
|
datetime.today(),
|
|
"foo",
|
|
None,
|
|
1,
|
|
2.0,
|
|
]
|
|
)
|
|
result = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
|
|
expected = Series([True, np.nan, True, np.nan, np.nan, False, None, np.nan, np.nan])
|
|
assert isinstance(result, Series)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_match_na_kwarg(any_string_dtype):
|
|
# GH #6609
|
|
s = Series(["a", "b", np.nan], dtype=any_string_dtype)
|
|
|
|
result = s.str.match("a", na=False)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([True, False, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.str.match("a")
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([True, False, np.nan], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_match_case_kwarg(any_string_dtype):
|
|
values = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
|
|
result = values.str.match("ab", case=False)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([True, True, True, True], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.fullmatch
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def test_fullmatch(any_string_dtype):
|
|
# GH 32806
|
|
ser = Series(
|
|
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
|
)
|
|
result = ser.str.fullmatch(".*BAD[_]+.*BAD")
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([True, False, np.nan, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_fullmatch_dollar_literal(any_string_dtype):
|
|
# GH 56652
|
|
ser = Series(["foo", "foo$foo", np.nan, "foo$"], dtype=any_string_dtype)
|
|
result = ser.str.fullmatch("foo\\$")
|
|
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([False, False, np.nan, True], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_fullmatch_na_kwarg(any_string_dtype):
|
|
ser = Series(
|
|
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
|
|
)
|
|
result = ser.str.fullmatch(".*BAD[_]+.*BAD", na=False)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
expected = Series([True, False, False, False], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_fullmatch_case_kwarg(any_string_dtype):
|
|
ser = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
|
|
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
|
|
|
|
expected = Series([True, False, False, False], dtype=expected_dtype)
|
|
|
|
result = ser.str.fullmatch("ab", case=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected = Series([True, True, False, False], dtype=expected_dtype)
|
|
|
|
result = ser.str.fullmatch("ab", case=False)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
|
|
result = ser.str.fullmatch("ab", flags=re.IGNORECASE)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.findall
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def test_findall(any_string_dtype):
|
|
ser = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"], dtype=any_string_dtype)
|
|
result = ser.str.findall("BAD[_]*")
|
|
expected = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
|
|
expected = _convert_na_value(ser, expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_findall_mixed_object():
|
|
ser = Series(
|
|
[
|
|
"fooBAD__barBAD",
|
|
np.nan,
|
|
"foo",
|
|
True,
|
|
datetime.today(),
|
|
"BAD",
|
|
None,
|
|
1,
|
|
2.0,
|
|
]
|
|
)
|
|
|
|
result = ser.str.findall("BAD[_]*")
|
|
expected = Series(
|
|
[
|
|
["BAD__", "BAD"],
|
|
np.nan,
|
|
[],
|
|
np.nan,
|
|
np.nan,
|
|
["BAD"],
|
|
None,
|
|
np.nan,
|
|
np.nan,
|
|
]
|
|
)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.find
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def test_find(any_string_dtype):
|
|
ser = Series(
|
|
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"], dtype=any_string_dtype
|
|
)
|
|
expected_dtype = np.int64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
|
|
|
result = ser.str.find("EF")
|
|
expected = Series([4, 3, 1, 0, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
expected = np.array([v.find("EF") for v in np.array(ser)], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
|
|
|
result = ser.str.rfind("EF")
|
|
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
expected = np.array([v.rfind("EF") for v in np.array(ser)], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
|
|
|
result = ser.str.find("EF", 3)
|
|
expected = Series([4, 3, 7, 4, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
expected = np.array([v.find("EF", 3) for v in np.array(ser)], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
|
|
|
result = ser.str.rfind("EF", 3)
|
|
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
expected = np.array([v.rfind("EF", 3) for v in np.array(ser)], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
|
|
|
result = ser.str.find("EF", 3, 6)
|
|
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
expected = np.array([v.find("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
|
|
|
result = ser.str.rfind("EF", 3, 6)
|
|
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
expected = np.array([v.rfind("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
|
|
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
|
|
|
|
|
|
def test_find_bad_arg_raises(any_string_dtype):
|
|
ser = Series([], dtype=any_string_dtype)
|
|
with pytest.raises(TypeError, match="expected a string object, not int"):
|
|
ser.str.find(0)
|
|
|
|
with pytest.raises(TypeError, match="expected a string object, not int"):
|
|
ser.str.rfind(0)
|
|
|
|
|
|
def test_find_nan(any_string_dtype):
|
|
ser = Series(
|
|
["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"], dtype=any_string_dtype
|
|
)
|
|
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
|
|
|
|
result = ser.str.find("EF")
|
|
expected = Series([4, np.nan, 1, np.nan, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.rfind("EF")
|
|
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.find("EF", 3)
|
|
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.rfind("EF", 3)
|
|
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.find("EF", 3, 6)
|
|
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.rfind("EF", 3, 6)
|
|
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
# str.translate
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
|
|
)
|
|
def test_translate(index_or_series, any_string_dtype, infer_string):
|
|
obj = index_or_series(
|
|
["abcdefg", "abcc", "cdddfg", "cdefggg"], dtype=any_string_dtype
|
|
)
|
|
table = str.maketrans("abc", "cde")
|
|
result = obj.str.translate(table)
|
|
expected = index_or_series(
|
|
["cdedefg", "cdee", "edddfg", "edefggg"], dtype=any_string_dtype
|
|
)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
def test_translate_mixed_object():
|
|
# Series with non-string values
|
|
s = Series(["a", "b", "c", 1.2])
|
|
table = str.maketrans("abc", "cde")
|
|
expected = Series(["c", "d", "e", np.nan], dtype=object)
|
|
result = s.str.translate(table)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# --------------------------------------------------------------------------------------
|
|
|
|
|
|
def test_flags_kwarg(any_string_dtype):
|
|
data = {
|
|
"Dave": "dave@google.com",
|
|
"Steve": "steve@gmail.com",
|
|
"Rob": "rob@gmail.com",
|
|
"Wes": np.nan,
|
|
}
|
|
data = Series(data, dtype=any_string_dtype)
|
|
|
|
pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
|
|
|
|
use_pyarrow = using_pyarrow(any_string_dtype)
|
|
|
|
result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
|
|
assert result.iloc[0].tolist() == ["dave", "google", "com"]
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
|
|
result = data.str.match(pat, flags=re.IGNORECASE)
|
|
assert result.iloc[0]
|
|
|
|
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
|
|
result = data.str.fullmatch(pat, flags=re.IGNORECASE)
|
|
assert result.iloc[0]
|
|
|
|
result = data.str.findall(pat, flags=re.IGNORECASE)
|
|
assert result.iloc[0][0] == ("dave", "google", "com")
|
|
|
|
result = data.str.count(pat, flags=re.IGNORECASE)
|
|
assert result.iloc[0] == 1
|
|
|
|
msg = "has match groups"
|
|
with tm.assert_produces_warning(
|
|
UserWarning, match=msg, raise_on_extra_warnings=not use_pyarrow
|
|
):
|
|
result = data.str.contains(pat, flags=re.IGNORECASE)
|
|
assert result.iloc[0]
|