You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
735 lines
23 KiB
735 lines
23 KiB
from datetime import datetime
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
_testing as tm,
|
|
)
|
|
from pandas.tests.strings import (
|
|
_convert_na_value,
|
|
object_pyarrow_numpy,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
|
def test_split(any_string_dtype, method):
|
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
|
|
|
result = getattr(values.str, method)("_")
|
|
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
|
exp = _convert_na_value(values, exp)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
|
def test_split_more_than_one_char(any_string_dtype, method):
|
|
# more than one char
|
|
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype)
|
|
result = getattr(values.str, method)("__")
|
|
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
|
exp = _convert_na_value(values, exp)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = getattr(values.str, method)("__", expand=False)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_split_more_regex_split(any_string_dtype):
|
|
# regex split
|
|
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
|
|
result = values.str.split("[,_]")
|
|
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
|
exp = _convert_na_value(values, exp)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_split_regex(any_string_dtype):
|
|
# GH 43563
|
|
# explicit regex = True split
|
|
values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
|
|
result = values.str.split(r"\.jpg", regex=True)
|
|
exp = Series([["xxxjpgzzz", ""]])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_split_regex_explicit(any_string_dtype):
|
|
# explicit regex = True split with compiled regex
|
|
regex_pat = re.compile(r".jpg")
|
|
values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
|
|
result = values.str.split(regex_pat)
|
|
exp = Series([["xx", "zzz", ""]])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# explicit regex = False split
|
|
result = values.str.split(r"\.jpg", regex=False)
|
|
exp = Series([["xxxjpgzzz.jpg"]])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# non explicit regex split, pattern length == 1
|
|
result = values.str.split(r".")
|
|
exp = Series([["xxxjpgzzz", "jpg"]])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# non explicit regex split, pattern length != 1
|
|
result = values.str.split(r".jpg")
|
|
exp = Series([["xx", "zzz", ""]])
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# regex=False with pattern compiled regex raises error
|
|
with pytest.raises(
|
|
ValueError,
|
|
match="Cannot use a compiled regex as replacement pattern with regex=False",
|
|
):
|
|
values.str.split(regex_pat, regex=False)
|
|
|
|
|
|
@pytest.mark.parametrize("expand", [None, False])
|
|
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
|
def test_split_object_mixed(expand, method):
|
|
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
|
|
result = getattr(mixed.str, method)("_", expand=expand)
|
|
exp = Series(
|
|
[
|
|
["a", "b", "c"],
|
|
np.nan,
|
|
["d", "e", "f"],
|
|
np.nan,
|
|
np.nan,
|
|
None,
|
|
np.nan,
|
|
np.nan,
|
|
]
|
|
)
|
|
assert isinstance(result, Series)
|
|
tm.assert_almost_equal(result, exp)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
|
@pytest.mark.parametrize("n", [None, 0])
|
|
def test_split_n(any_string_dtype, method, n):
|
|
s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype)
|
|
expected = Series([["a", "b"], pd.NA, ["b", "c"]])
|
|
result = getattr(s.str, method)(" ", n=n)
|
|
expected = _convert_na_value(s, expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_rsplit(any_string_dtype):
|
|
# regex split is not supported by rsplit
|
|
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
|
|
result = values.str.rsplit("[,_]")
|
|
exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]])
|
|
exp = _convert_na_value(values, exp)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_rsplit_max_number(any_string_dtype):
|
|
# setting max number of splits, make sure it's from reverse
|
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
|
result = values.str.rsplit("_", n=1)
|
|
exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]])
|
|
exp = _convert_na_value(values, exp)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_split_blank_string(any_string_dtype):
|
|
# expand blank split GH 20067
|
|
values = Series([""], name="test", dtype=any_string_dtype)
|
|
result = values.str.split(expand=True)
|
|
exp = DataFrame([[]], dtype=any_string_dtype) # NOTE: this is NOT an empty df
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_split_blank_string_with_non_empty(any_string_dtype):
|
|
values = Series(["a b c", "a b", "", " "], name="test", dtype=any_string_dtype)
|
|
result = values.str.split(expand=True)
|
|
exp = DataFrame(
|
|
[
|
|
["a", "b", "c"],
|
|
["a", "b", None],
|
|
[None, None, None],
|
|
[None, None, None],
|
|
],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["split", "rsplit"])
|
|
def test_split_noargs(any_string_dtype, method):
|
|
# #1859
|
|
s = Series(["Wes McKinney", "Travis Oliphant"], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)()
|
|
expected = ["Travis", "Oliphant"]
|
|
assert result[1] == expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"data, pat",
|
|
[
|
|
(["bd asdf jfg", "kjasdflqw asdfnfk"], None),
|
|
(["bd asdf jfg", "kjasdflqw asdfnfk"], "asdf"),
|
|
(["bd_asdf_jfg", "kjasdflqw_asdfnfk"], "_"),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("n", [-1, 0])
|
|
def test_split_maxsplit(data, pat, any_string_dtype, n):
|
|
# re.split 0, str.split -1
|
|
s = Series(data, dtype=any_string_dtype)
|
|
|
|
result = s.str.split(pat=pat, n=n)
|
|
xp = s.str.split(pat=pat)
|
|
tm.assert_series_equal(result, xp)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"data, pat, expected",
|
|
[
|
|
(
|
|
["split once", "split once too!"],
|
|
None,
|
|
Series({0: ["split", "once"], 1: ["split", "once too!"]}),
|
|
),
|
|
(
|
|
["split_once", "split_once_too!"],
|
|
"_",
|
|
Series({0: ["split", "once"], 1: ["split", "once_too!"]}),
|
|
),
|
|
],
|
|
)
|
|
def test_split_no_pat_with_nonzero_n(data, pat, expected, any_string_dtype):
|
|
s = Series(data, dtype=any_string_dtype)
|
|
result = s.str.split(pat=pat, n=1)
|
|
tm.assert_series_equal(expected, result, check_index_type=False)
|
|
|
|
|
|
def test_split_to_dataframe_no_splits(any_string_dtype):
|
|
s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
|
|
result = s.str.split("_", expand=True)
|
|
exp = DataFrame({0: Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)})
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_split_to_dataframe(any_string_dtype):
|
|
s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
|
|
result = s.str.split("_", expand=True)
|
|
exp = DataFrame(
|
|
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_split_to_dataframe_unequal_splits(any_string_dtype):
|
|
s = Series(
|
|
["some_unequal_splits", "one_of_these_things_is_not"], dtype=any_string_dtype
|
|
)
|
|
result = s.str.split("_", expand=True)
|
|
exp = DataFrame(
|
|
{
|
|
0: ["some", "one"],
|
|
1: ["unequal", "of"],
|
|
2: ["splits", "these"],
|
|
3: [None, "things"],
|
|
4: [None, "is"],
|
|
5: [None, "not"],
|
|
},
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_split_to_dataframe_with_index(any_string_dtype):
|
|
s = Series(
|
|
["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
|
|
)
|
|
result = s.str.split("_", expand=True)
|
|
exp = DataFrame(
|
|
{0: ["some", "with"], 1: ["splits", "index"]},
|
|
index=["preserve", "me"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
with pytest.raises(ValueError, match="expand must be"):
|
|
s.str.split("_", expand="not_a_boolean")
|
|
|
|
|
|
def test_split_to_multiindex_expand_no_splits():
|
|
# https://github.com/pandas-dev/pandas/issues/23677
|
|
|
|
idx = Index(["nosplit", "alsonosplit", np.nan])
|
|
result = idx.str.split("_", expand=True)
|
|
exp = idx
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == 1
|
|
|
|
|
|
def test_split_to_multiindex_expand():
|
|
idx = Index(["some_equal_splits", "with_no_nans", np.nan, None])
|
|
result = idx.str.split("_", expand=True)
|
|
exp = MultiIndex.from_tuples(
|
|
[
|
|
("some", "equal", "splits"),
|
|
("with", "no", "nans"),
|
|
[np.nan, np.nan, np.nan],
|
|
[None, None, None],
|
|
]
|
|
)
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == 3
|
|
|
|
|
|
def test_split_to_multiindex_expand_unequal_splits():
|
|
idx = Index(["some_unequal_splits", "one_of_these_things_is_not", np.nan, None])
|
|
result = idx.str.split("_", expand=True)
|
|
exp = MultiIndex.from_tuples(
|
|
[
|
|
("some", "unequal", "splits", np.nan, np.nan, np.nan),
|
|
("one", "of", "these", "things", "is", "not"),
|
|
(np.nan, np.nan, np.nan, np.nan, np.nan, np.nan),
|
|
(None, None, None, None, None, None),
|
|
]
|
|
)
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == 6
|
|
|
|
with pytest.raises(ValueError, match="expand must be"):
|
|
idx.str.split("_", expand="not_a_boolean")
|
|
|
|
|
|
def test_rsplit_to_dataframe_expand_no_splits(any_string_dtype):
|
|
s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
|
|
result = s.str.rsplit("_", expand=True)
|
|
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])}, dtype=any_string_dtype)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_rsplit_to_dataframe_expand(any_string_dtype):
|
|
s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
|
|
result = s.str.rsplit("_", expand=True)
|
|
exp = DataFrame(
|
|
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
result = s.str.rsplit("_", expand=True, n=2)
|
|
exp = DataFrame(
|
|
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
result = s.str.rsplit("_", expand=True, n=1)
|
|
exp = DataFrame(
|
|
{0: ["some_equal", "with_no"], 1: ["splits", "nans"]}, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_rsplit_to_dataframe_expand_with_index(any_string_dtype):
|
|
s = Series(
|
|
["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
|
|
)
|
|
result = s.str.rsplit("_", expand=True)
|
|
exp = DataFrame(
|
|
{0: ["some", "with"], 1: ["splits", "index"]},
|
|
index=["preserve", "me"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_rsplit_to_multiindex_expand_no_split():
|
|
idx = Index(["nosplit", "alsonosplit"])
|
|
result = idx.str.rsplit("_", expand=True)
|
|
exp = idx
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == 1
|
|
|
|
|
|
def test_rsplit_to_multiindex_expand():
|
|
idx = Index(["some_equal_splits", "with_no_nans"])
|
|
result = idx.str.rsplit("_", expand=True)
|
|
exp = MultiIndex.from_tuples([("some", "equal", "splits"), ("with", "no", "nans")])
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == 3
|
|
|
|
|
|
def test_rsplit_to_multiindex_expand_n():
|
|
idx = Index(["some_equal_splits", "with_no_nans"])
|
|
result = idx.str.rsplit("_", expand=True, n=1)
|
|
exp = MultiIndex.from_tuples([("some_equal", "splits"), ("with_no", "nans")])
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == 2
|
|
|
|
|
|
def test_split_nan_expand(any_string_dtype):
|
|
# gh-18450
|
|
s = Series(["foo,bar,baz", np.nan], dtype=any_string_dtype)
|
|
result = s.str.split(",", expand=True)
|
|
exp = DataFrame(
|
|
[["foo", "bar", "baz"], [np.nan, np.nan, np.nan]], dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
# check that these are actually np.nan/pd.NA and not None
|
|
# TODO see GH 18463
|
|
# tm.assert_frame_equal does not differentiate
|
|
if any_string_dtype in object_pyarrow_numpy:
|
|
assert all(np.isnan(x) for x in result.iloc[1])
|
|
else:
|
|
assert all(x is pd.NA for x in result.iloc[1])
|
|
|
|
|
|
def test_split_with_name_series(any_string_dtype):
|
|
# GH 12617
|
|
|
|
# should preserve name
|
|
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
|
|
res = s.str.split(",")
|
|
exp = Series([["a", "b"], ["c", "d"]], name="xxx")
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
res = s.str.split(",", expand=True)
|
|
exp = DataFrame([["a", "b"], ["c", "d"]], dtype=any_string_dtype)
|
|
tm.assert_frame_equal(res, exp)
|
|
|
|
|
|
def test_split_with_name_index():
|
|
# GH 12617
|
|
idx = Index(["a,b", "c,d"], name="xxx")
|
|
res = idx.str.split(",")
|
|
exp = Index([["a", "b"], ["c", "d"]], name="xxx")
|
|
assert res.nlevels == 1
|
|
tm.assert_index_equal(res, exp)
|
|
|
|
res = idx.str.split(",", expand=True)
|
|
exp = MultiIndex.from_tuples([("a", "b"), ("c", "d")])
|
|
assert res.nlevels == 2
|
|
tm.assert_index_equal(res, exp)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, exp",
|
|
[
|
|
[
|
|
"partition",
|
|
[
|
|
("a", "__", "b__c"),
|
|
("c", "__", "d__e"),
|
|
np.nan,
|
|
("f", "__", "g__h"),
|
|
None,
|
|
],
|
|
],
|
|
[
|
|
"rpartition",
|
|
[
|
|
("a__b", "__", "c"),
|
|
("c__d", "__", "e"),
|
|
np.nan,
|
|
("f__g", "__", "h"),
|
|
None,
|
|
],
|
|
],
|
|
],
|
|
)
|
|
def test_partition_series_more_than_one_char(method, exp, any_string_dtype):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
# more than one char
|
|
s = Series(["a__b__c", "c__d__e", np.nan, "f__g__h", None], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)("__", expand=False)
|
|
expected = Series(exp)
|
|
expected = _convert_na_value(s, expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, exp",
|
|
[
|
|
[
|
|
"partition",
|
|
[("a", " ", "b c"), ("c", " ", "d e"), np.nan, ("f", " ", "g h"), None],
|
|
],
|
|
[
|
|
"rpartition",
|
|
[("a b", " ", "c"), ("c d", " ", "e"), np.nan, ("f g", " ", "h"), None],
|
|
],
|
|
],
|
|
)
|
|
def test_partition_series_none(any_string_dtype, method, exp):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
# None
|
|
s = Series(["a b c", "c d e", np.nan, "f g h", None], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)(expand=False)
|
|
expected = Series(exp)
|
|
expected = _convert_na_value(s, expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, exp",
|
|
[
|
|
[
|
|
"partition",
|
|
[("abc", "", ""), ("cde", "", ""), np.nan, ("fgh", "", ""), None],
|
|
],
|
|
[
|
|
"rpartition",
|
|
[("", "", "abc"), ("", "", "cde"), np.nan, ("", "", "fgh"), None],
|
|
],
|
|
],
|
|
)
|
|
def test_partition_series_not_split(any_string_dtype, method, exp):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
# Not split
|
|
s = Series(["abc", "cde", np.nan, "fgh", None], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)("_", expand=False)
|
|
expected = Series(exp)
|
|
expected = _convert_na_value(s, expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, exp",
|
|
[
|
|
[
|
|
"partition",
|
|
[("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h")],
|
|
],
|
|
[
|
|
"rpartition",
|
|
[("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h")],
|
|
],
|
|
],
|
|
)
|
|
def test_partition_series_unicode(any_string_dtype, method, exp):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
# unicode
|
|
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
|
|
|
result = getattr(s.str, method)("_", expand=False)
|
|
expected = Series(exp)
|
|
expected = _convert_na_value(s, expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["partition", "rpartition"])
|
|
def test_partition_series_stdlib(any_string_dtype, method):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
# compare to standard lib
|
|
s = Series(["A_B_C", "B_C_D", "E_F_G", "EFGHEF"], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)("_", expand=False).tolist()
|
|
assert result == [getattr(v, method)("_") for v in s]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, expand, exp, exp_levels",
|
|
[
|
|
[
|
|
"partition",
|
|
False,
|
|
np.array(
|
|
[("a", "_", "b_c"), ("c", "_", "d_e"), ("f", "_", "g_h"), np.nan, None],
|
|
dtype=object,
|
|
),
|
|
1,
|
|
],
|
|
[
|
|
"rpartition",
|
|
False,
|
|
np.array(
|
|
[("a_b", "_", "c"), ("c_d", "_", "e"), ("f_g", "_", "h"), np.nan, None],
|
|
dtype=object,
|
|
),
|
|
1,
|
|
],
|
|
],
|
|
)
|
|
def test_partition_index(method, expand, exp, exp_levels):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
|
|
values = Index(["a_b_c", "c_d_e", "f_g_h", np.nan, None])
|
|
|
|
result = getattr(values.str, method)("_", expand=expand)
|
|
exp = Index(exp)
|
|
tm.assert_index_equal(result, exp)
|
|
assert result.nlevels == exp_levels
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, exp",
|
|
[
|
|
[
|
|
"partition",
|
|
{
|
|
0: ["a", "c", np.nan, "f", None],
|
|
1: ["_", "_", np.nan, "_", None],
|
|
2: ["b_c", "d_e", np.nan, "g_h", None],
|
|
},
|
|
],
|
|
[
|
|
"rpartition",
|
|
{
|
|
0: ["a_b", "c_d", np.nan, "f_g", None],
|
|
1: ["_", "_", np.nan, "_", None],
|
|
2: ["c", "e", np.nan, "h", None],
|
|
},
|
|
],
|
|
],
|
|
)
|
|
def test_partition_to_dataframe(any_string_dtype, method, exp):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
|
|
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)("_")
|
|
expected = DataFrame(
|
|
exp,
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, exp",
|
|
[
|
|
[
|
|
"partition",
|
|
{
|
|
0: ["a", "c", np.nan, "f", None],
|
|
1: ["_", "_", np.nan, "_", None],
|
|
2: ["b_c", "d_e", np.nan, "g_h", None],
|
|
},
|
|
],
|
|
[
|
|
"rpartition",
|
|
{
|
|
0: ["a_b", "c_d", np.nan, "f_g", None],
|
|
1: ["_", "_", np.nan, "_", None],
|
|
2: ["c", "e", np.nan, "h", None],
|
|
},
|
|
],
|
|
],
|
|
)
|
|
def test_partition_to_dataframe_from_series(any_string_dtype, method, exp):
|
|
# https://github.com/pandas-dev/pandas/issues/23558
|
|
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
|
|
result = getattr(s.str, method)("_", expand=True)
|
|
expected = DataFrame(
|
|
exp,
|
|
dtype=any_string_dtype,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_partition_with_name(any_string_dtype):
|
|
# GH 12617
|
|
|
|
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
|
|
result = s.str.partition(",")
|
|
expected = DataFrame(
|
|
{0: ["a", "c"], 1: [",", ","], 2: ["b", "d"]}, dtype=any_string_dtype
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_partition_with_name_expand(any_string_dtype):
|
|
# GH 12617
|
|
# should preserve name
|
|
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
|
|
result = s.str.partition(",", expand=False)
|
|
expected = Series([("a", ",", "b"), ("c", ",", "d")], name="xxx")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_partition_index_with_name():
|
|
idx = Index(["a,b", "c,d"], name="xxx")
|
|
result = idx.str.partition(",")
|
|
expected = MultiIndex.from_tuples([("a", ",", "b"), ("c", ",", "d")])
|
|
assert result.nlevels == 3
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_partition_index_with_name_expand_false():
|
|
idx = Index(["a,b", "c,d"], name="xxx")
|
|
# should preserve name
|
|
result = idx.str.partition(",", expand=False)
|
|
expected = Index(np.array([("a", ",", "b"), ("c", ",", "d")]), name="xxx")
|
|
assert result.nlevels == 1
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["partition", "rpartition"])
|
|
def test_partition_sep_kwarg(any_string_dtype, method):
|
|
# GH 22676; depr kwarg "pat" in favor of "sep"
|
|
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
|
|
|
|
expected = getattr(s.str, method)(sep="_")
|
|
result = getattr(s.str, method)("_")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_get():
|
|
ser = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
|
result = ser.str.split("_").str.get(1)
|
|
expected = Series(["b", "d", np.nan, "g"], dtype=object)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_get_mixed_object():
|
|
ser = Series(["a_b_c", np.nan, "c_d_e", True, datetime.today(), None, 1, 2.0])
|
|
result = ser.str.split("_").str.get(1)
|
|
expected = Series(
|
|
["b", np.nan, "d", np.nan, np.nan, None, np.nan, np.nan], dtype=object
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("idx", [2, -3])
|
|
def test_get_bounds(idx):
|
|
ser = Series(["1_2_3_4_5", "6_7_8_9_10", "11_12"])
|
|
result = ser.str.split("_").str.get(idx)
|
|
expected = Series(["3", "8", np.nan], dtype=object)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"idx, exp", [[2, [3, 3, np.nan, "b"]], [-1, [3, 3, np.nan, np.nan]]]
|
|
)
|
|
def test_get_complex(idx, exp):
|
|
# GH 20671, getting value not in dict raising `KeyError`
|
|
ser = Series([(1, 2, 3), [1, 2, 3], {1, 2, 3}, {1: "a", 2: "b", 3: "c"}])
|
|
|
|
result = ser.str.get(idx)
|
|
expected = Series(exp)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("to_type", [tuple, list, np.array])
|
|
def test_get_complex_nested(to_type):
|
|
ser = Series([to_type([to_type([1, 2])])])
|
|
|
|
result = ser.str.get(0)
|
|
expected = Series([to_type([1, 2])])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ser.str.get(1)
|
|
expected = Series([np.nan])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_get_strings(any_string_dtype):
|
|
ser = Series(["a", "ab", np.nan, "abc"], dtype=any_string_dtype)
|
|
result = ser.str.get(2)
|
|
expected = Series([np.nan, np.nan, np.nan, "c"], dtype=any_string_dtype)
|
|
tm.assert_series_equal(result, expected)
|