You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

113 lines
3.5 KiB

import numpy as np
import pytest
from pandas._libs import lib
from pandas import (
NA,
DataFrame,
Series,
_testing as tm,
option_context,
)
@pytest.mark.filterwarnings("ignore:Falling back")
def test_string_array(nullable_string_dtype, any_string_method):
method_name, args, kwargs = any_string_method
data = ["a", "bb", np.nan, "ccc"]
a = Series(data, dtype=object)
b = Series(data, dtype=nullable_string_dtype)
if method_name == "decode":
with pytest.raises(TypeError, match="a bytes-like object is required"):
getattr(b.str, method_name)(*args, **kwargs)
return
expected = getattr(a.str, method_name)(*args, **kwargs)
result = getattr(b.str, method_name)(*args, **kwargs)
if isinstance(expected, Series):
if expected.dtype == "object" and lib.is_string_array(
expected.dropna().values,
):
assert result.dtype == nullable_string_dtype
result = result.astype(object)
elif expected.dtype == "object" and lib.is_bool_array(
expected.values, skipna=True
):
assert result.dtype == "boolean"
result = result.astype(object)
elif expected.dtype == "bool":
assert result.dtype == "boolean"
result = result.astype("bool")
elif expected.dtype == "float" and expected.isna().any():
assert result.dtype == "Int64"
result = result.astype("float")
if expected.dtype == object:
# GH#18463
expected[expected.isna()] = NA
elif isinstance(expected, DataFrame):
columns = expected.select_dtypes(include="object").columns
assert all(result[columns].dtypes == nullable_string_dtype)
result[columns] = result[columns].astype(object)
with option_context("future.no_silent_downcasting", True):
expected[columns] = expected[columns].fillna(NA) # GH#18463
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"method,expected",
[
("count", [2, None]),
("find", [0, None]),
("index", [0, None]),
("rindex", [2, None]),
],
)
def test_string_array_numeric_integer_array(nullable_string_dtype, method, expected):
s = Series(["aba", None], dtype=nullable_string_dtype)
result = getattr(s.str, method)("a")
expected = Series(expected, dtype="Int64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method,expected",
[
("isdigit", [False, None, True]),
("isalpha", [True, None, False]),
("isalnum", [True, None, True]),
("isnumeric", [False, None, True]),
],
)
def test_string_array_boolean_array(nullable_string_dtype, method, expected):
s = Series(["a", None, "1"], dtype=nullable_string_dtype)
result = getattr(s.str, method)()
expected = Series(expected, dtype="boolean")
tm.assert_series_equal(result, expected)
def test_string_array_extract(nullable_string_dtype):
# https://github.com/pandas-dev/pandas/issues/30969
# Only expand=False & multiple groups was failing
a = Series(["a1", "b2", "cc"], dtype=nullable_string_dtype)
b = Series(["a1", "b2", "cc"], dtype="object")
pat = r"(\w)(\d)"
result = a.str.extract(pat, expand=False)
expected = b.str.extract(pat, expand=False)
expected = expected.fillna(NA) # GH#18463
assert all(result.dtypes == nullable_string_dtype)
result = result.astype(object)
tm.assert_equal(result, expected)