You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2063 lines
66 KiB

from __future__ import annotations
import abc
from collections import defaultdict
import functools
from functools import partial
import inspect
from typing import (
TYPE_CHECKING,
Any,
Callable,
Literal,
cast,
)
import warnings
import numpy as np
from pandas._config import option_context
from pandas._libs import lib
from pandas._libs.internals import BlockValuesRefs
from pandas._typing import (
AggFuncType,
AggFuncTypeBase,
AggFuncTypeDict,
AggObjType,
Axis,
AxisInt,
NDFrameT,
npt,
)
from pandas.compat._optional import import_optional_dependency
from pandas.errors import SpecificationError
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.cast import is_nested_object
from pandas.core.dtypes.common import (
is_dict_like,
is_extension_array_dtype,
is_list_like,
is_numeric_dtype,
is_sequence,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
ExtensionDtype,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCNDFrame,
ABCSeries,
)
from pandas.core._numba.executor import generate_apply_looper
import pandas.core.common as com
from pandas.core.construction import ensure_wrapped_if_datetimelike
if TYPE_CHECKING:
from collections.abc import (
Generator,
Hashable,
Iterable,
MutableMapping,
Sequence,
)
from pandas import (
DataFrame,
Index,
Series,
)
from pandas.core.groupby import GroupBy
from pandas.core.resample import Resampler
from pandas.core.window.rolling import BaseWindow
ResType = dict[int, Any]
def frame_apply(
obj: DataFrame,
func: AggFuncType,
axis: Axis = 0,
raw: bool = False,
result_type: str | None = None,
by_row: Literal[False, "compat"] = "compat",
engine: str = "python",
engine_kwargs: dict[str, bool] | None = None,
args=None,
kwargs=None,
) -> FrameApply:
"""construct and return a row or column based frame apply object"""
axis = obj._get_axis_number(axis)
klass: type[FrameApply]
if axis == 0:
klass = FrameRowApply
elif axis == 1:
klass = FrameColumnApply
_, func, _, _ = reconstruct_func(func, **kwargs)
assert func is not None
return klass(
obj,
func,
raw=raw,
result_type=result_type,
by_row=by_row,
engine=engine,
engine_kwargs=engine_kwargs,
args=args,
kwargs=kwargs,
)
class Apply(metaclass=abc.ABCMeta):
axis: AxisInt
def __init__(
self,
obj: AggObjType,
func: AggFuncType,
raw: bool,
result_type: str | None,
*,
by_row: Literal[False, "compat", "_compat"] = "compat",
engine: str = "python",
engine_kwargs: dict[str, bool] | None = None,
args,
kwargs,
) -> None:
self.obj = obj
self.raw = raw
assert by_row is False or by_row in ["compat", "_compat"]
self.by_row = by_row
self.args = args or ()
self.kwargs = kwargs or {}
self.engine = engine
self.engine_kwargs = {} if engine_kwargs is None else engine_kwargs
if result_type not in [None, "reduce", "broadcast", "expand"]:
raise ValueError(
"invalid value for result_type, must be one "
"of {None, 'reduce', 'broadcast', 'expand'}"
)
self.result_type = result_type
self.func = func
@abc.abstractmethod
def apply(self) -> DataFrame | Series:
pass
@abc.abstractmethod
def agg_or_apply_list_like(
self, op_name: Literal["agg", "apply"]
) -> DataFrame | Series:
pass
@abc.abstractmethod
def agg_or_apply_dict_like(
self, op_name: Literal["agg", "apply"]
) -> DataFrame | Series:
pass
def agg(self) -> DataFrame | Series | None:
"""
Provide an implementation for the aggregators.
Returns
-------
Result of aggregation, or None if agg cannot be performed by
this method.
"""
obj = self.obj
func = self.func
args = self.args
kwargs = self.kwargs
if isinstance(func, str):
return self.apply_str()
if is_dict_like(func):
return self.agg_dict_like()
elif is_list_like(func):
# we require a list, but not a 'str'
return self.agg_list_like()
if callable(func):
f = com.get_cython_func(func)
if f and not args and not kwargs:
warn_alias_replacement(obj, func, f)
return getattr(obj, f)()
# caller can react
return None
def transform(self) -> DataFrame | Series:
"""
Transform a DataFrame or Series.
Returns
-------
DataFrame or Series
Result of applying ``func`` along the given axis of the
Series or DataFrame.
Raises
------
ValueError
If the transform function fails or does not transform.
"""
obj = self.obj
func = self.func
axis = self.axis
args = self.args
kwargs = self.kwargs
is_series = obj.ndim == 1
if obj._get_axis_number(axis) == 1:
assert not is_series
return obj.T.transform(func, 0, *args, **kwargs).T
if is_list_like(func) and not is_dict_like(func):
func = cast(list[AggFuncTypeBase], func)
# Convert func equivalent dict
if is_series:
func = {com.get_callable_name(v) or v: v for v in func}
else:
func = {col: func for col in obj}
if is_dict_like(func):
func = cast(AggFuncTypeDict, func)
return self.transform_dict_like(func)
# func is either str or callable
func = cast(AggFuncTypeBase, func)
try:
result = self.transform_str_or_callable(func)
except TypeError:
raise
except Exception as err:
raise ValueError("Transform function failed") from err
# Functions that transform may return empty Series/DataFrame
# when the dtype is not appropriate
if (
isinstance(result, (ABCSeries, ABCDataFrame))
and result.empty
and not obj.empty
):
raise ValueError("Transform function failed")
# error: Argument 1 to "__get__" of "AxisProperty" has incompatible type
# "Union[Series, DataFrame, GroupBy[Any], SeriesGroupBy,
# DataFrameGroupBy, BaseWindow, Resampler]"; expected "Union[DataFrame,
# Series]"
if not isinstance(result, (ABCSeries, ABCDataFrame)) or not result.index.equals(
obj.index # type: ignore[arg-type]
):
raise ValueError("Function did not transform")
return result
def transform_dict_like(self, func) -> DataFrame:
"""
Compute transform in the case of a dict-like func
"""
from pandas.core.reshape.concat import concat
obj = self.obj
args = self.args
kwargs = self.kwargs
# transform is currently only for Series/DataFrame
assert isinstance(obj, ABCNDFrame)
if len(func) == 0:
raise ValueError("No transform functions were provided")
func = self.normalize_dictlike_arg("transform", obj, func)
results: dict[Hashable, DataFrame | Series] = {}
for name, how in func.items():
colg = obj._gotitem(name, ndim=1)
results[name] = colg.transform(how, 0, *args, **kwargs)
return concat(results, axis=1)
def transform_str_or_callable(self, func) -> DataFrame | Series:
"""
Compute transform in the case of a string or callable func
"""
obj = self.obj
args = self.args
kwargs = self.kwargs
if isinstance(func, str):
return self._apply_str(obj, func, *args, **kwargs)
if not args and not kwargs:
f = com.get_cython_func(func)
if f:
warn_alias_replacement(obj, func, f)
return getattr(obj, f)()
# Two possible ways to use a UDF - apply or call directly
try:
return obj.apply(func, args=args, **kwargs)
except Exception:
return func(obj, *args, **kwargs)
def agg_list_like(self) -> DataFrame | Series:
"""
Compute aggregation in the case of a list-like argument.
Returns
-------
Result of aggregation.
"""
return self.agg_or_apply_list_like(op_name="agg")
def compute_list_like(
self,
op_name: Literal["agg", "apply"],
selected_obj: Series | DataFrame,
kwargs: dict[str, Any],
) -> tuple[list[Hashable] | Index, list[Any]]:
"""
Compute agg/apply results for like-like input.
Parameters
----------
op_name : {"agg", "apply"}
Operation being performed.
selected_obj : Series or DataFrame
Data to perform operation on.
kwargs : dict
Keyword arguments to pass to the functions.
Returns
-------
keys : list[Hashable] or Index
Index labels for result.
results : list
Data for result. When aggregating with a Series, this can contain any
Python objects.
"""
func = cast(list[AggFuncTypeBase], self.func)
obj = self.obj
results = []
keys = []
# degenerate case
if selected_obj.ndim == 1:
for a in func:
colg = obj._gotitem(selected_obj.name, ndim=1, subset=selected_obj)
args = (
[self.axis, *self.args]
if include_axis(op_name, colg)
else self.args
)
new_res = getattr(colg, op_name)(a, *args, **kwargs)
results.append(new_res)
# make sure we find a good name
name = com.get_callable_name(a) or a
keys.append(name)
else:
indices = []
for index, col in enumerate(selected_obj):
colg = obj._gotitem(col, ndim=1, subset=selected_obj.iloc[:, index])
args = (
[self.axis, *self.args]
if include_axis(op_name, colg)
else self.args
)
new_res = getattr(colg, op_name)(func, *args, **kwargs)
results.append(new_res)
indices.append(index)
# error: Incompatible types in assignment (expression has type "Any |
# Index", variable has type "list[Any | Callable[..., Any] | str]")
keys = selected_obj.columns.take(indices) # type: ignore[assignment]
return keys, results
def wrap_results_list_like(
self, keys: Iterable[Hashable], results: list[Series | DataFrame]
):
from pandas.core.reshape.concat import concat
obj = self.obj
try:
return concat(results, keys=keys, axis=1, sort=False)
except TypeError as err:
# we are concatting non-NDFrame objects,
# e.g. a list of scalars
from pandas import Series
result = Series(results, index=keys, name=obj.name)
if is_nested_object(result):
raise ValueError(
"cannot combine transform and aggregation operations"
) from err
return result
def agg_dict_like(self) -> DataFrame | Series:
"""
Compute aggregation in the case of a dict-like argument.
Returns
-------
Result of aggregation.
"""
return self.agg_or_apply_dict_like(op_name="agg")
def compute_dict_like(
self,
op_name: Literal["agg", "apply"],
selected_obj: Series | DataFrame,
selection: Hashable | Sequence[Hashable],
kwargs: dict[str, Any],
) -> tuple[list[Hashable], list[Any]]:
"""
Compute agg/apply results for dict-like input.
Parameters
----------
op_name : {"agg", "apply"}
Operation being performed.
selected_obj : Series or DataFrame
Data to perform operation on.
selection : hashable or sequence of hashables
Used by GroupBy, Window, and Resample if selection is applied to the object.
kwargs : dict
Keyword arguments to pass to the functions.
Returns
-------
keys : list[hashable]
Index labels for result.
results : list
Data for result. When aggregating with a Series, this can contain any
Python object.
"""
from pandas.core.groupby.generic import (
DataFrameGroupBy,
SeriesGroupBy,
)
obj = self.obj
is_groupby = isinstance(obj, (DataFrameGroupBy, SeriesGroupBy))
func = cast(AggFuncTypeDict, self.func)
func = self.normalize_dictlike_arg(op_name, selected_obj, func)
is_non_unique_col = (
selected_obj.ndim == 2
and selected_obj.columns.nunique() < len(selected_obj.columns)
)
if selected_obj.ndim == 1:
# key only used for output
colg = obj._gotitem(selection, ndim=1)
results = [getattr(colg, op_name)(how, **kwargs) for _, how in func.items()]
keys = list(func.keys())
elif not is_groupby and is_non_unique_col:
# key used for column selection and output
# GH#51099
results = []
keys = []
for key, how in func.items():
indices = selected_obj.columns.get_indexer_for([key])
labels = selected_obj.columns.take(indices)
label_to_indices = defaultdict(list)
for index, label in zip(indices, labels):
label_to_indices[label].append(index)
key_data = [
getattr(selected_obj._ixs(indice, axis=1), op_name)(how, **kwargs)
for label, indices in label_to_indices.items()
for indice in indices
]
keys += [key] * len(key_data)
results += key_data
else:
# key used for column selection and output
results = [
getattr(obj._gotitem(key, ndim=1), op_name)(how, **kwargs)
for key, how in func.items()
]
keys = list(func.keys())
return keys, results
def wrap_results_dict_like(
self,
selected_obj: Series | DataFrame,
result_index: list[Hashable],
result_data: list,
):
from pandas import Index
from pandas.core.reshape.concat import concat
obj = self.obj
# Avoid making two isinstance calls in all and any below
is_ndframe = [isinstance(r, ABCNDFrame) for r in result_data]
if all(is_ndframe):
results = dict(zip(result_index, result_data))
keys_to_use: Iterable[Hashable]
keys_to_use = [k for k in result_index if not results[k].empty]
# Have to check, if at least one DataFrame is not empty.
keys_to_use = keys_to_use if keys_to_use != [] else result_index
if selected_obj.ndim == 2:
# keys are columns, so we can preserve names
ktu = Index(keys_to_use)
ktu._set_names(selected_obj.columns.names)
keys_to_use = ktu
axis: AxisInt = 0 if isinstance(obj, ABCSeries) else 1
result = concat(
{k: results[k] for k in keys_to_use},
axis=axis,
keys=keys_to_use,
)
elif any(is_ndframe):
# There is a mix of NDFrames and scalars
raise ValueError(
"cannot perform both aggregation "
"and transformation operations "
"simultaneously"
)
else:
from pandas import Series
# we have a list of scalars
# GH 36212 use name only if obj is a series
if obj.ndim == 1:
obj = cast("Series", obj)
name = obj.name
else:
name = None
result = Series(result_data, index=result_index, name=name)
return result
def apply_str(self) -> DataFrame | Series:
"""
Compute apply in case of a string.
Returns
-------
result: Series or DataFrame
"""
# Caller is responsible for checking isinstance(self.f, str)
func = cast(str, self.func)
obj = self.obj
from pandas.core.groupby.generic import (
DataFrameGroupBy,
SeriesGroupBy,
)
# Support for `frame.transform('method')`
# Some methods (shift, etc.) require the axis argument, others
# don't, so inspect and insert if necessary.
method = getattr(obj, func, None)
if callable(method):
sig = inspect.getfullargspec(method)
arg_names = (*sig.args, *sig.kwonlyargs)
if self.axis != 0 and (
"axis" not in arg_names or func in ("corrwith", "skew")
):
raise ValueError(f"Operation {func} does not support axis=1")
if "axis" in arg_names:
if isinstance(obj, (SeriesGroupBy, DataFrameGroupBy)):
# Try to avoid FutureWarning for deprecated axis keyword;
# If self.axis matches the axis we would get by not passing
# axis, we safely exclude the keyword.
default_axis = 0
if func in ["idxmax", "idxmin"]:
# DataFrameGroupBy.idxmax, idxmin axis defaults to self.axis,
# whereas other axis keywords default to 0
default_axis = self.obj.axis
if default_axis != self.axis:
self.kwargs["axis"] = self.axis
else:
self.kwargs["axis"] = self.axis
return self._apply_str(obj, func, *self.args, **self.kwargs)
def apply_list_or_dict_like(self) -> DataFrame | Series:
"""
Compute apply in case of a list-like or dict-like.
Returns
-------
result: Series, DataFrame, or None
Result when self.func is a list-like or dict-like, None otherwise.
"""
if self.engine == "numba":
raise NotImplementedError(
"The 'numba' engine doesn't support list-like/"
"dict likes of callables yet."
)
if self.axis == 1 and isinstance(self.obj, ABCDataFrame):
return self.obj.T.apply(self.func, 0, args=self.args, **self.kwargs).T
func = self.func
kwargs = self.kwargs
if is_dict_like(func):
result = self.agg_or_apply_dict_like(op_name="apply")
else:
result = self.agg_or_apply_list_like(op_name="apply")
result = reconstruct_and_relabel_result(result, func, **kwargs)
return result
def normalize_dictlike_arg(
self, how: str, obj: DataFrame | Series, func: AggFuncTypeDict
) -> AggFuncTypeDict:
"""
Handler for dict-like argument.
Ensures that necessary columns exist if obj is a DataFrame, and
that a nested renamer is not passed. Also normalizes to all lists
when values consists of a mix of list and non-lists.
"""
assert how in ("apply", "agg", "transform")
# Can't use func.values(); wouldn't work for a Series
if (
how == "agg"
and isinstance(obj, ABCSeries)
and any(is_list_like(v) for _, v in func.items())
) or (any(is_dict_like(v) for _, v in func.items())):
# GH 15931 - deprecation of renaming keys
raise SpecificationError("nested renamer is not supported")
if obj.ndim != 1:
# Check for missing columns on a frame
from pandas import Index
cols = Index(list(func.keys())).difference(obj.columns, sort=True)
if len(cols) > 0:
raise KeyError(f"Column(s) {list(cols)} do not exist")
aggregator_types = (list, tuple, dict)
# if we have a dict of any non-scalars
# eg. {'A' : ['mean']}, normalize all to
# be list-likes
# Cannot use func.values() because arg may be a Series
if any(isinstance(x, aggregator_types) for _, x in func.items()):
new_func: AggFuncTypeDict = {}
for k, v in func.items():
if not isinstance(v, aggregator_types):
new_func[k] = [v]
else:
new_func[k] = v
func = new_func
return func
def _apply_str(self, obj, func: str, *args, **kwargs):
"""
if arg is a string, then try to operate on it:
- try to find a function (or attribute) on obj
- try to find a numpy function
- raise
"""
assert isinstance(func, str)
if hasattr(obj, func):
f = getattr(obj, func)
if callable(f):
return f(*args, **kwargs)
# people may aggregate on a non-callable attribute
# but don't let them think they can pass args to it
assert len(args) == 0
assert len([kwarg for kwarg in kwargs if kwarg not in ["axis"]]) == 0
return f
elif hasattr(np, func) and hasattr(obj, "__array__"):
# in particular exclude Window
f = getattr(np, func)
return f(obj, *args, **kwargs)
else:
msg = f"'{func}' is not a valid function for '{type(obj).__name__}' object"
raise AttributeError(msg)
class NDFrameApply(Apply):
"""
Methods shared by FrameApply and SeriesApply but
not GroupByApply or ResamplerWindowApply
"""
obj: DataFrame | Series
@property
def index(self) -> Index:
return self.obj.index
@property
def agg_axis(self) -> Index:
return self.obj._get_agg_axis(self.axis)
def agg_or_apply_list_like(
self, op_name: Literal["agg", "apply"]
) -> DataFrame | Series:
obj = self.obj
kwargs = self.kwargs
if op_name == "apply":
if isinstance(self, FrameApply):
by_row = self.by_row
elif isinstance(self, SeriesApply):
by_row = "_compat" if self.by_row else False
else:
by_row = False
kwargs = {**kwargs, "by_row": by_row}
if getattr(obj, "axis", 0) == 1:
raise NotImplementedError("axis other than 0 is not supported")
keys, results = self.compute_list_like(op_name, obj, kwargs)
result = self.wrap_results_list_like(keys, results)
return result
def agg_or_apply_dict_like(
self, op_name: Literal["agg", "apply"]
) -> DataFrame | Series:
assert op_name in ["agg", "apply"]
obj = self.obj
kwargs = {}
if op_name == "apply":
by_row = "_compat" if self.by_row else False
kwargs.update({"by_row": by_row})
if getattr(obj, "axis", 0) == 1:
raise NotImplementedError("axis other than 0 is not supported")
selection = None
result_index, result_data = self.compute_dict_like(
op_name, obj, selection, kwargs
)
result = self.wrap_results_dict_like(obj, result_index, result_data)
return result
class FrameApply(NDFrameApply):
obj: DataFrame
def __init__(
self,
obj: AggObjType,
func: AggFuncType,
raw: bool,
result_type: str | None,
*,
by_row: Literal[False, "compat"] = False,
engine: str = "python",
engine_kwargs: dict[str, bool] | None = None,
args,
kwargs,
) -> None:
if by_row is not False and by_row != "compat":
raise ValueError(f"by_row={by_row} not allowed")
super().__init__(
obj,
func,
raw,
result_type,
by_row=by_row,
engine=engine,
engine_kwargs=engine_kwargs,
args=args,
kwargs=kwargs,
)
# ---------------------------------------------------------------
# Abstract Methods
@property
@abc.abstractmethod
def result_index(self) -> Index:
pass
@property
@abc.abstractmethod
def result_columns(self) -> Index:
pass
@property
@abc.abstractmethod
def series_generator(self) -> Generator[Series, None, None]:
pass
@staticmethod
@functools.cache
@abc.abstractmethod
def generate_numba_apply_func(
func, nogil=True, nopython=True, parallel=False
) -> Callable[[npt.NDArray, Index, Index], dict[int, Any]]:
pass
@abc.abstractmethod
def apply_with_numba(self):
pass
def validate_values_for_numba(self):
# Validate column dtyps all OK
for colname, dtype in self.obj.dtypes.items():
if not is_numeric_dtype(dtype):
raise ValueError(
f"Column {colname} must have a numeric dtype. "
f"Found '{dtype}' instead"
)
if is_extension_array_dtype(dtype):
raise ValueError(
f"Column {colname} is backed by an extension array, "
f"which is not supported by the numba engine."
)
@abc.abstractmethod
def wrap_results_for_axis(
self, results: ResType, res_index: Index
) -> DataFrame | Series:
pass
# ---------------------------------------------------------------
@property
def res_columns(self) -> Index:
return self.result_columns
@property
def columns(self) -> Index:
return self.obj.columns
@cache_readonly
def values(self):
return self.obj.values
def apply(self) -> DataFrame | Series:
"""compute the results"""
# dispatch to handle list-like or dict-like
if is_list_like(self.func):
if self.engine == "numba":
raise NotImplementedError(
"the 'numba' engine doesn't support lists of callables yet"
)
return self.apply_list_or_dict_like()
# all empty
if len(self.columns) == 0 and len(self.index) == 0:
return self.apply_empty_result()
# string dispatch
if isinstance(self.func, str):
if self.engine == "numba":
raise NotImplementedError(
"the 'numba' engine doesn't support using "
"a string as the callable function"
)
return self.apply_str()
# ufunc
elif isinstance(self.func, np.ufunc):
if self.engine == "numba":
raise NotImplementedError(
"the 'numba' engine doesn't support "
"using a numpy ufunc as the callable function"
)
with np.errstate(all="ignore"):
results = self.obj._mgr.apply("apply", func=self.func)
# _constructor will retain self.index and self.columns
return self.obj._constructor_from_mgr(results, axes=results.axes)
# broadcasting
if self.result_type == "broadcast":
if self.engine == "numba":
raise NotImplementedError(
"the 'numba' engine doesn't support result_type='broadcast'"
)
return self.apply_broadcast(self.obj)
# one axis empty
elif not all(self.obj.shape):
return self.apply_empty_result()
# raw
elif self.raw:
return self.apply_raw(engine=self.engine, engine_kwargs=self.engine_kwargs)
return self.apply_standard()
def agg(self):
obj = self.obj
axis = self.axis
# TODO: Avoid having to change state
self.obj = self.obj if self.axis == 0 else self.obj.T
self.axis = 0
result = None
try:
result = super().agg()
finally:
self.obj = obj
self.axis = axis
if axis == 1:
result = result.T if result is not None else result
if result is None:
result = self.obj.apply(self.func, axis, args=self.args, **self.kwargs)
return result
def apply_empty_result(self):
"""
we have an empty result; at least 1 axis is 0
we will try to apply the function to an empty
series in order to see if this is a reduction function
"""
assert callable(self.func)
# we are not asked to reduce or infer reduction
# so just return a copy of the existing object
if self.result_type not in ["reduce", None]:
return self.obj.copy()
# we may need to infer
should_reduce = self.result_type == "reduce"
from pandas import Series
if not should_reduce:
try:
if self.axis == 0:
r = self.func(
Series([], dtype=np.float64), *self.args, **self.kwargs
)
else:
r = self.func(
Series(index=self.columns, dtype=np.float64),
*self.args,
**self.kwargs,
)
except Exception:
pass
else:
should_reduce = not isinstance(r, Series)
if should_reduce:
if len(self.agg_axis):
r = self.func(Series([], dtype=np.float64), *self.args, **self.kwargs)
else:
r = np.nan
return self.obj._constructor_sliced(r, index=self.agg_axis)
else:
return self.obj.copy()
def apply_raw(self, engine="python", engine_kwargs=None):
"""apply to the values as a numpy array"""
def wrap_function(func):
"""
Wrap user supplied function to work around numpy issue.
see https://github.com/numpy/numpy/issues/8352
"""
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
if isinstance(result, str):
result = np.array(result, dtype=object)
return result
return wrapper
if engine == "numba":
engine_kwargs = {} if engine_kwargs is None else engine_kwargs
# error: Argument 1 to "__call__" of "_lru_cache_wrapper" has
# incompatible type "Callable[..., Any] | str | list[Callable
# [..., Any] | str] | dict[Hashable,Callable[..., Any] | str |
# list[Callable[..., Any] | str]]"; expected "Hashable"
nb_looper = generate_apply_looper(
self.func, **engine_kwargs # type: ignore[arg-type]
)
result = nb_looper(self.values, self.axis)
# If we made the result 2-D, squeeze it back to 1-D
result = np.squeeze(result)
else:
result = np.apply_along_axis(
wrap_function(self.func),
self.axis,
self.values,
*self.args,
**self.kwargs,
)
# TODO: mixed type case
if result.ndim == 2:
return self.obj._constructor(result, index=self.index, columns=self.columns)
else:
return self.obj._constructor_sliced(result, index=self.agg_axis)
def apply_broadcast(self, target: DataFrame) -> DataFrame:
assert callable(self.func)
result_values = np.empty_like(target.values)
# axis which we want to compare compliance
result_compare = target.shape[0]
for i, col in enumerate(target.columns):
res = self.func(target[col], *self.args, **self.kwargs)
ares = np.asarray(res).ndim
# must be a scalar or 1d
if ares > 1:
raise ValueError("too many dims to broadcast")
if ares == 1:
# must match return dim
if result_compare != len(res):
raise ValueError("cannot broadcast result")
result_values[:, i] = res
# we *always* preserve the original index / columns
result = self.obj._constructor(
result_values, index=target.index, columns=target.columns
)
return result
def apply_standard(self):
if self.engine == "python":
results, res_index = self.apply_series_generator()
else:
results, res_index = self.apply_series_numba()
# wrap results
return self.wrap_results(results, res_index)
def apply_series_generator(self) -> tuple[ResType, Index]:
assert callable(self.func)
series_gen = self.series_generator
res_index = self.result_index
results = {}
with option_context("mode.chained_assignment", None):
for i, v in enumerate(series_gen):
# ignore SettingWithCopy here in case the user mutates
results[i] = self.func(v, *self.args, **self.kwargs)
if isinstance(results[i], ABCSeries):
# If we have a view on v, we need to make a copy because
# series_generator will swap out the underlying data
results[i] = results[i].copy(deep=False)
return results, res_index
def apply_series_numba(self):
if self.engine_kwargs.get("parallel", False):
raise NotImplementedError(
"Parallel apply is not supported when raw=False and engine='numba'"
)
if not self.obj.index.is_unique or not self.columns.is_unique:
raise NotImplementedError(
"The index/columns must be unique when raw=False and engine='numba'"
)
self.validate_values_for_numba()
results = self.apply_with_numba()
return results, self.result_index
def wrap_results(self, results: ResType, res_index: Index) -> DataFrame | Series:
from pandas import Series
# see if we can infer the results
if len(results) > 0 and 0 in results and is_sequence(results[0]):
return self.wrap_results_for_axis(results, res_index)
# dict of scalars
# the default dtype of an empty Series is `object`, but this
# code can be hit by df.mean() where the result should have dtype
# float64 even if it's an empty Series.
constructor_sliced = self.obj._constructor_sliced
if len(results) == 0 and constructor_sliced is Series:
result = constructor_sliced(results, dtype=np.float64)
else:
result = constructor_sliced(results)
result.index = res_index
return result
def apply_str(self) -> DataFrame | Series:
# Caller is responsible for checking isinstance(self.func, str)
# TODO: GH#39993 - Avoid special-casing by replacing with lambda
if self.func == "size":
# Special-cased because DataFrame.size returns a single scalar
obj = self.obj
value = obj.shape[self.axis]
return obj._constructor_sliced(value, index=self.agg_axis)
return super().apply_str()
class FrameRowApply(FrameApply):
axis: AxisInt = 0
@property
def series_generator(self) -> Generator[Series, None, None]:
return (self.obj._ixs(i, axis=1) for i in range(len(self.columns)))
@staticmethod
@functools.cache
def generate_numba_apply_func(
func, nogil=True, nopython=True, parallel=False
) -> Callable[[npt.NDArray, Index, Index], dict[int, Any]]:
numba = import_optional_dependency("numba")
from pandas import Series
# Import helper from extensions to cast string object -> np strings
# Note: This also has the side effect of loading our numba extensions
from pandas.core._numba.extensions import maybe_cast_str
jitted_udf = numba.extending.register_jitable(func)
# Currently the parallel argument doesn't get passed through here
# (it's disabled) since the dicts in numba aren't thread-safe.
@numba.jit(nogil=nogil, nopython=nopython, parallel=parallel)
def numba_func(values, col_names, df_index):
results = {}
for j in range(values.shape[1]):
# Create the series
ser = Series(
values[:, j], index=df_index, name=maybe_cast_str(col_names[j])
)
results[j] = jitted_udf(ser)
return results
return numba_func
def apply_with_numba(self) -> dict[int, Any]:
nb_func = self.generate_numba_apply_func(
cast(Callable, self.func), **self.engine_kwargs
)
from pandas.core._numba.extensions import set_numba_data
index = self.obj.index
if index.dtype == "string":
index = index.astype(object)
columns = self.obj.columns
if columns.dtype == "string":
columns = columns.astype(object)
# Convert from numba dict to regular dict
# Our isinstance checks in the df constructor don't pass for numbas typed dict
with set_numba_data(index) as index, set_numba_data(columns) as columns:
res = dict(nb_func(self.values, columns, index))
return res
@property
def result_index(self) -> Index:
return self.columns
@property
def result_columns(self) -> Index:
return self.index
def wrap_results_for_axis(
self, results: ResType, res_index: Index
) -> DataFrame | Series:
"""return the results for the rows"""
if self.result_type == "reduce":
# e.g. test_apply_dict GH#8735
res = self.obj._constructor_sliced(results)
res.index = res_index
return res
elif self.result_type is None and all(
isinstance(x, dict) for x in results.values()
):
# Our operation was a to_dict op e.g.
# test_apply_dict GH#8735, test_apply_reduce_to_dict GH#25196 #37544
res = self.obj._constructor_sliced(results)
res.index = res_index
return res
try:
result = self.obj._constructor(data=results)
except ValueError as err:
if "All arrays must be of the same length" in str(err):
# e.g. result = [[2, 3], [1.5], ['foo', 'bar']]
# see test_agg_listlike_result GH#29587
res = self.obj._constructor_sliced(results)
res.index = res_index
return res
else:
raise
if not isinstance(results[0], ABCSeries):
if len(result.index) == len(self.res_columns):
result.index = self.res_columns
if len(result.columns) == len(res_index):
result.columns = res_index
return result
class FrameColumnApply(FrameApply):
axis: AxisInt = 1
def apply_broadcast(self, target: DataFrame) -> DataFrame:
result = super().apply_broadcast(target.T)
return result.T
@property
def series_generator(self) -> Generator[Series, None, None]:
values = self.values
values = ensure_wrapped_if_datetimelike(values)
assert len(values) > 0
# We create one Series object, and will swap out the data inside
# of it. Kids: don't do this at home.
ser = self.obj._ixs(0, axis=0)
mgr = ser._mgr
is_view = mgr.blocks[0].refs.has_reference() # type: ignore[union-attr]
if isinstance(ser.dtype, ExtensionDtype):
# values will be incorrect for this block
# TODO(EA2D): special case would be unnecessary with 2D EAs
obj = self.obj
for i in range(len(obj)):
yield obj._ixs(i, axis=0)
else:
for arr, name in zip(values, self.index):
# GH#35462 re-pin mgr in case setitem changed it
ser._mgr = mgr
mgr.set_values(arr)
object.__setattr__(ser, "_name", name)
if not is_view:
# In apply_series_generator we store the a shallow copy of the
# result, which potentially increases the ref count of this reused
# `ser` object (depending on the result of the applied function)
# -> if that happened and `ser` is already a copy, then we reset
# the refs here to avoid triggering a unnecessary CoW inside the
# applied function (https://github.com/pandas-dev/pandas/pull/56212)
mgr.blocks[0].refs = BlockValuesRefs(mgr.blocks[0]) # type: ignore[union-attr]
yield ser
@staticmethod
@functools.cache
def generate_numba_apply_func(
func, nogil=True, nopython=True, parallel=False
) -> Callable[[npt.NDArray, Index, Index], dict[int, Any]]:
numba = import_optional_dependency("numba")
from pandas import Series
from pandas.core._numba.extensions import maybe_cast_str
jitted_udf = numba.extending.register_jitable(func)
@numba.jit(nogil=nogil, nopython=nopython, parallel=parallel)
def numba_func(values, col_names_index, index):
results = {}
# Currently the parallel argument doesn't get passed through here
# (it's disabled) since the dicts in numba aren't thread-safe.
for i in range(values.shape[0]):
# Create the series
# TODO: values corrupted without the copy
ser = Series(
values[i].copy(),
index=col_names_index,
name=maybe_cast_str(index[i]),
)
results[i] = jitted_udf(ser)
return results
return numba_func
def apply_with_numba(self) -> dict[int, Any]:
nb_func = self.generate_numba_apply_func(
cast(Callable, self.func), **self.engine_kwargs
)
from pandas.core._numba.extensions import set_numba_data
# Convert from numba dict to regular dict
# Our isinstance checks in the df constructor don't pass for numbas typed dict
with set_numba_data(self.obj.index) as index, set_numba_data(
self.columns
) as columns:
res = dict(nb_func(self.values, columns, index))
return res
@property
def result_index(self) -> Index:
return self.index
@property
def result_columns(self) -> Index:
return self.columns
def wrap_results_for_axis(
self, results: ResType, res_index: Index
) -> DataFrame | Series:
"""return the results for the columns"""
result: DataFrame | Series
# we have requested to expand
if self.result_type == "expand":
result = self.infer_to_same_shape(results, res_index)
# we have a non-series and don't want inference
elif not isinstance(results[0], ABCSeries):
result = self.obj._constructor_sliced(results)
result.index = res_index
# we may want to infer results
else:
result = self.infer_to_same_shape(results, res_index)
return result
def infer_to_same_shape(self, results: ResType, res_index: Index) -> DataFrame:
"""infer the results to the same shape as the input object"""
result = self.obj._constructor(data=results)
result = result.T
# set the index
result.index = res_index
# infer dtypes
result = result.infer_objects(copy=False)
return result
class SeriesApply(NDFrameApply):
obj: Series
axis: AxisInt = 0
by_row: Literal[False, "compat", "_compat"] # only relevant for apply()
def __init__(
self,
obj: Series,
func: AggFuncType,
*,
convert_dtype: bool | lib.NoDefault = lib.no_default,
by_row: Literal[False, "compat", "_compat"] = "compat",
args,
kwargs,
) -> None:
if convert_dtype is lib.no_default:
convert_dtype = True
else:
warnings.warn(
"the convert_dtype parameter is deprecated and will be removed in a "
"future version. Do ``ser.astype(object).apply()`` "
"instead if you want ``convert_dtype=False``.",
FutureWarning,
stacklevel=find_stack_level(),
)
self.convert_dtype = convert_dtype
super().__init__(
obj,
func,
raw=False,
result_type=None,
by_row=by_row,
args=args,
kwargs=kwargs,
)
def apply(self) -> DataFrame | Series:
obj = self.obj
if len(obj) == 0:
return self.apply_empty_result()
# dispatch to handle list-like or dict-like
if is_list_like(self.func):
return self.apply_list_or_dict_like()
if isinstance(self.func, str):
# if we are a string, try to dispatch
return self.apply_str()
if self.by_row == "_compat":
return self.apply_compat()
# self.func is Callable
return self.apply_standard()
def agg(self):
result = super().agg()
if result is None:
obj = self.obj
func = self.func
# string, list-like, and dict-like are entirely handled in super
assert callable(func)
# GH53325: The setup below is just to keep current behavior while emitting a
# deprecation message. In the future this will all be replaced with a simple
# `result = f(self.obj, *self.args, **self.kwargs)`.
try:
result = obj.apply(func, args=self.args, **self.kwargs)
except (ValueError, AttributeError, TypeError):
result = func(obj, *self.args, **self.kwargs)
else:
msg = (
f"using {func} in {type(obj).__name__}.agg cannot aggregate and "
f"has been deprecated. Use {type(obj).__name__}.transform to "
f"keep behavior unchanged."
)
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
return result
def apply_empty_result(self) -> Series:
obj = self.obj
return obj._constructor(dtype=obj.dtype, index=obj.index).__finalize__(
obj, method="apply"
)
def apply_compat(self):
"""compat apply method for funcs in listlikes and dictlikes.
Used for each callable when giving listlikes and dictlikes of callables to
apply. Needed for compatibility with Pandas < v2.1.
.. versionadded:: 2.1.0
"""
obj = self.obj
func = self.func
if callable(func):
f = com.get_cython_func(func)
if f and not self.args and not self.kwargs:
return obj.apply(func, by_row=False)
try:
result = obj.apply(func, by_row="compat")
except (ValueError, AttributeError, TypeError):
result = obj.apply(func, by_row=False)
return result
def apply_standard(self) -> DataFrame | Series:
# caller is responsible for ensuring that f is Callable
func = cast(Callable, self.func)
obj = self.obj
if isinstance(func, np.ufunc):
with np.errstate(all="ignore"):
return func(obj, *self.args, **self.kwargs)
elif not self.by_row:
return func(obj, *self.args, **self.kwargs)
if self.args or self.kwargs:
# _map_values does not support args/kwargs
def curried(x):
return func(x, *self.args, **self.kwargs)
else:
curried = func
# row-wise access
# apply doesn't have a `na_action` keyword and for backward compat reasons
# we need to give `na_action="ignore"` for categorical data.
# TODO: remove the `na_action="ignore"` when that default has been changed in
# Categorical (GH51645).
action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None
mapped = obj._map_values(
mapper=curried, na_action=action, convert=self.convert_dtype
)
if len(mapped) and isinstance(mapped[0], ABCSeries):
# GH#43986 Need to do list(mapped) in order to get treated as nested
# See also GH#25959 regarding EA support
return obj._constructor_expanddim(list(mapped), index=obj.index)
else:
return obj._constructor(mapped, index=obj.index).__finalize__(
obj, method="apply"
)
class GroupByApply(Apply):
obj: GroupBy | Resampler | BaseWindow
def __init__(
self,
obj: GroupBy[NDFrameT],
func: AggFuncType,
*,
args,
kwargs,
) -> None:
kwargs = kwargs.copy()
self.axis = obj.obj._get_axis_number(kwargs.get("axis", 0))
super().__init__(
obj,
func,
raw=False,
result_type=None,
args=args,
kwargs=kwargs,
)
def apply(self):
raise NotImplementedError
def transform(self):
raise NotImplementedError
def agg_or_apply_list_like(
self, op_name: Literal["agg", "apply"]
) -> DataFrame | Series:
obj = self.obj
kwargs = self.kwargs
if op_name == "apply":
kwargs = {**kwargs, "by_row": False}
if getattr(obj, "axis", 0) == 1:
raise NotImplementedError("axis other than 0 is not supported")
if obj._selected_obj.ndim == 1:
# For SeriesGroupBy this matches _obj_with_exclusions
selected_obj = obj._selected_obj
else:
selected_obj = obj._obj_with_exclusions
# Only set as_index=True on groupby objects, not Window or Resample
# that inherit from this class.
with com.temp_setattr(
obj, "as_index", True, condition=hasattr(obj, "as_index")
):
keys, results = self.compute_list_like(op_name, selected_obj, kwargs)
result = self.wrap_results_list_like(keys, results)
return result
def agg_or_apply_dict_like(
self, op_name: Literal["agg", "apply"]
) -> DataFrame | Series:
from pandas.core.groupby.generic import (
DataFrameGroupBy,
SeriesGroupBy,
)
assert op_name in ["agg", "apply"]
obj = self.obj
kwargs = {}
if op_name == "apply":
by_row = "_compat" if self.by_row else False
kwargs.update({"by_row": by_row})
if getattr(obj, "axis", 0) == 1:
raise NotImplementedError("axis other than 0 is not supported")
selected_obj = obj._selected_obj
selection = obj._selection
is_groupby = isinstance(obj, (DataFrameGroupBy, SeriesGroupBy))
# Numba Groupby engine/engine-kwargs passthrough
if is_groupby:
engine = self.kwargs.get("engine", None)
engine_kwargs = self.kwargs.get("engine_kwargs", None)
kwargs.update({"engine": engine, "engine_kwargs": engine_kwargs})
with com.temp_setattr(
obj, "as_index", True, condition=hasattr(obj, "as_index")
):
result_index, result_data = self.compute_dict_like(
op_name, selected_obj, selection, kwargs
)
result = self.wrap_results_dict_like(selected_obj, result_index, result_data)
return result
class ResamplerWindowApply(GroupByApply):
axis: AxisInt = 0
obj: Resampler | BaseWindow
def __init__(
self,
obj: Resampler | BaseWindow,
func: AggFuncType,
*,
args,
kwargs,
) -> None:
super(GroupByApply, self).__init__(
obj,
func,
raw=False,
result_type=None,
args=args,
kwargs=kwargs,
)
def apply(self):
raise NotImplementedError
def transform(self):
raise NotImplementedError
def reconstruct_func(
func: AggFuncType | None, **kwargs
) -> tuple[bool, AggFuncType, tuple[str, ...] | None, npt.NDArray[np.intp] | None]:
"""
This is the internal function to reconstruct func given if there is relabeling
or not and also normalize the keyword to get new order of columns.
If named aggregation is applied, `func` will be None, and kwargs contains the
column and aggregation function information to be parsed;
If named aggregation is not applied, `func` is either string (e.g. 'min') or
Callable, or list of them (e.g. ['min', np.max]), or the dictionary of column name
and str/Callable/list of them (e.g. {'A': 'min'}, or {'A': [np.min, lambda x: x]})
If relabeling is True, will return relabeling, reconstructed func, column
names, and the reconstructed order of columns.
If relabeling is False, the columns and order will be None.
Parameters
----------
func: agg function (e.g. 'min' or Callable) or list of agg functions
(e.g. ['min', np.max]) or dictionary (e.g. {'A': ['min', np.max]}).
**kwargs: dict, kwargs used in is_multi_agg_with_relabel and
normalize_keyword_aggregation function for relabelling
Returns
-------
relabelling: bool, if there is relabelling or not
func: normalized and mangled func
columns: tuple of column names
order: array of columns indices
Examples
--------
>>> reconstruct_func(None, **{"foo": ("col", "min")})
(True, defaultdict(<class 'list'>, {'col': ['min']}), ('foo',), array([0]))
>>> reconstruct_func("min")
(False, 'min', None, None)
"""
relabeling = func is None and is_multi_agg_with_relabel(**kwargs)
columns: tuple[str, ...] | None = None
order: npt.NDArray[np.intp] | None = None
if not relabeling:
if isinstance(func, list) and len(func) > len(set(func)):
# GH 28426 will raise error if duplicated function names are used and
# there is no reassigned name
raise SpecificationError(
"Function names must be unique if there is no new column names "
"assigned"
)
if func is None:
# nicer error message
raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).")
if relabeling:
# error: Incompatible types in assignment (expression has type
# "MutableMapping[Hashable, list[Callable[..., Any] | str]]", variable has type
# "Callable[..., Any] | str | list[Callable[..., Any] | str] |
# MutableMapping[Hashable, Callable[..., Any] | str | list[Callable[..., Any] |
# str]] | None")
func, columns, order = normalize_keyword_aggregation( # type: ignore[assignment]
kwargs
)
assert func is not None
return relabeling, func, columns, order
def is_multi_agg_with_relabel(**kwargs) -> bool:
"""
Check whether kwargs passed to .agg look like multi-agg with relabeling.
Parameters
----------
**kwargs : dict
Returns
-------
bool
Examples
--------
>>> is_multi_agg_with_relabel(a="max")
False
>>> is_multi_agg_with_relabel(a_max=("a", "max"), a_min=("a", "min"))
True
>>> is_multi_agg_with_relabel()
False
"""
return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and (
len(kwargs) > 0
)
def normalize_keyword_aggregation(
kwargs: dict,
) -> tuple[
MutableMapping[Hashable, list[AggFuncTypeBase]],
tuple[str, ...],
npt.NDArray[np.intp],
]:
"""
Normalize user-provided "named aggregation" kwargs.
Transforms from the new ``Mapping[str, NamedAgg]`` style kwargs
to the old Dict[str, List[scalar]]].
Parameters
----------
kwargs : dict
Returns
-------
aggspec : dict
The transformed kwargs.
columns : tuple[str, ...]
The user-provided keys.
col_idx_order : List[int]
List of columns indices.
Examples
--------
>>> normalize_keyword_aggregation({"output": ("input", "sum")})
(defaultdict(<class 'list'>, {'input': ['sum']}), ('output',), array([0]))
"""
from pandas.core.indexes.base import Index
# Normalize the aggregation functions as Mapping[column, List[func]],
# process normally, then fixup the names.
# TODO: aggspec type: typing.Dict[str, List[AggScalar]]
aggspec = defaultdict(list)
order = []
columns, pairs = list(zip(*kwargs.items()))
for column, aggfunc in pairs:
aggspec[column].append(aggfunc)
order.append((column, com.get_callable_name(aggfunc) or aggfunc))
# uniquify aggfunc name if duplicated in order list
uniquified_order = _make_unique_kwarg_list(order)
# GH 25719, due to aggspec will change the order of assigned columns in aggregation
# uniquified_aggspec will store uniquified order list and will compare it with order
# based on index
aggspec_order = [
(column, com.get_callable_name(aggfunc) or aggfunc)
for column, aggfuncs in aggspec.items()
for aggfunc in aggfuncs
]
uniquified_aggspec = _make_unique_kwarg_list(aggspec_order)
# get the new index of columns by comparison
col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order)
return aggspec, columns, col_idx_order
def _make_unique_kwarg_list(
seq: Sequence[tuple[Any, Any]]
) -> Sequence[tuple[Any, Any]]:
"""
Uniquify aggfunc name of the pairs in the order list
Examples:
--------
>>> kwarg_list = [('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')]
>>> _make_unique_kwarg_list(kwarg_list)
[('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')]
"""
return [
(pair[0], f"{pair[1]}_{seq[:i].count(pair)}") if seq.count(pair) > 1 else pair
for i, pair in enumerate(seq)
]
def relabel_result(
result: DataFrame | Series,
func: dict[str, list[Callable | str]],
columns: Iterable[Hashable],
order: Iterable[int],
) -> dict[Hashable, Series]:
"""
Internal function to reorder result if relabelling is True for
dataframe.agg, and return the reordered result in dict.
Parameters:
----------
result: Result from aggregation
func: Dict of (column name, funcs)
columns: New columns name for relabelling
order: New order for relabelling
Examples
--------
>>> from pandas.core.apply import relabel_result
>>> result = pd.DataFrame(
... {"A": [np.nan, 2, np.nan], "C": [6, np.nan, np.nan], "B": [np.nan, 4, 2.5]},
... index=["max", "mean", "min"]
... )
>>> funcs = {"A": ["max"], "C": ["max"], "B": ["mean", "min"]}
>>> columns = ("foo", "aab", "bar", "dat")
>>> order = [0, 1, 2, 3]
>>> result_in_dict = relabel_result(result, funcs, columns, order)
>>> pd.DataFrame(result_in_dict, index=columns)
A C B
foo 2.0 NaN NaN
aab NaN 6.0 NaN
bar NaN NaN 4.0
dat NaN NaN 2.5
"""
from pandas.core.indexes.base import Index
reordered_indexes = [
pair[0] for pair in sorted(zip(columns, order), key=lambda t: t[1])
]
reordered_result_in_dict: dict[Hashable, Series] = {}
idx = 0
reorder_mask = not isinstance(result, ABCSeries) and len(result.columns) > 1
for col, fun in func.items():
s = result[col].dropna()
# In the `_aggregate`, the callable names are obtained and used in `result`, and
# these names are ordered alphabetically. e.g.
# C2 C1
# <lambda> 1 NaN
# amax NaN 4.0
# max NaN 4.0
# sum 18.0 6.0
# Therefore, the order of functions for each column could be shuffled
# accordingly so need to get the callable name if it is not parsed names, and
# reorder the aggregated result for each column.
# e.g. if df.agg(c1=("C2", sum), c2=("C2", lambda x: min(x))), correct order is
# [sum, <lambda>], but in `result`, it will be [<lambda>, sum], and we need to
# reorder so that aggregated values map to their functions regarding the order.
# However there is only one column being used for aggregation, not need to
# reorder since the index is not sorted, and keep as is in `funcs`, e.g.
# A
# min 1.0
# mean 1.5
# mean 1.5
if reorder_mask:
fun = [
com.get_callable_name(f) if not isinstance(f, str) else f for f in fun
]
col_idx_order = Index(s.index).get_indexer(fun)
s = s.iloc[col_idx_order]
# assign the new user-provided "named aggregation" as index names, and reindex
# it based on the whole user-provided names.
s.index = reordered_indexes[idx : idx + len(fun)]
reordered_result_in_dict[col] = s.reindex(columns, copy=False)
idx = idx + len(fun)
return reordered_result_in_dict
def reconstruct_and_relabel_result(result, func, **kwargs) -> DataFrame | Series:
from pandas import DataFrame
relabeling, func, columns, order = reconstruct_func(func, **kwargs)
if relabeling:
# This is to keep the order to columns occurrence unchanged, and also
# keep the order of new columns occurrence unchanged
# For the return values of reconstruct_func, if relabeling is
# False, columns and order will be None.
assert columns is not None
assert order is not None
result_in_dict = relabel_result(result, func, columns, order)
result = DataFrame(result_in_dict, index=columns)
return result
# TODO: Can't use, because mypy doesn't like us setting __name__
# error: "partial[Any]" has no attribute "__name__"
# the type is:
# typing.Sequence[Callable[..., ScalarResult]]
# -> typing.Sequence[Callable[..., ScalarResult]]:
def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]:
"""
Possibly mangle a list of aggfuncs.
Parameters
----------
aggfuncs : Sequence
Returns
-------
mangled: list-like
A new AggSpec sequence, where lambdas have been converted
to have unique names.
Notes
-----
If just one aggfunc is passed, the name will not be mangled.
"""
if len(aggfuncs) <= 1:
# don't mangle for .agg([lambda x: .])
return aggfuncs
i = 0
mangled_aggfuncs = []
for aggfunc in aggfuncs:
if com.get_callable_name(aggfunc) == "<lambda>":
aggfunc = partial(aggfunc)
aggfunc.__name__ = f"<lambda_{i}>"
i += 1
mangled_aggfuncs.append(aggfunc)
return mangled_aggfuncs
def maybe_mangle_lambdas(agg_spec: Any) -> Any:
"""
Make new lambdas with unique names.
Parameters
----------
agg_spec : Any
An argument to GroupBy.agg.
Non-dict-like `agg_spec` are pass through as is.
For dict-like `agg_spec` a new spec is returned
with name-mangled lambdas.
Returns
-------
mangled : Any
Same type as the input.
Examples
--------
>>> maybe_mangle_lambdas('sum')
'sum'
>>> maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP
[<function __main__.<lambda_0>,
<function pandas...._make_lambda.<locals>.f(*args, **kwargs)>]
"""
is_dict = is_dict_like(agg_spec)
if not (is_dict or is_list_like(agg_spec)):
return agg_spec
mangled_aggspec = type(agg_spec)() # dict or OrderedDict
if is_dict:
for key, aggfuncs in agg_spec.items():
if is_list_like(aggfuncs) and not is_dict_like(aggfuncs):
mangled_aggfuncs = _managle_lambda_list(aggfuncs)
else:
mangled_aggfuncs = aggfuncs
mangled_aggspec[key] = mangled_aggfuncs
else:
mangled_aggspec = _managle_lambda_list(agg_spec)
return mangled_aggspec
def validate_func_kwargs(
kwargs: dict,
) -> tuple[list[str], list[str | Callable[..., Any]]]:
"""
Validates types of user-provided "named aggregation" kwargs.
`TypeError` is raised if aggfunc is not `str` or callable.
Parameters
----------
kwargs : dict
Returns
-------
columns : List[str]
List of user-provided keys.
func : List[Union[str, callable[...,Any]]]
List of user-provided aggfuncs
Examples
--------
>>> validate_func_kwargs({'one': 'min', 'two': 'max'})
(['one', 'two'], ['min', 'max'])
"""
tuple_given_message = "func is expected but received {} in **kwargs."
columns = list(kwargs)
func = []
for col_func in kwargs.values():
if not (isinstance(col_func, str) or callable(col_func)):
raise TypeError(tuple_given_message.format(type(col_func).__name__))
func.append(col_func)
if not columns:
no_arg_message = "Must provide 'func' or named aggregation **kwargs."
raise TypeError(no_arg_message)
return columns, func
def include_axis(op_name: Literal["agg", "apply"], colg: Series | DataFrame) -> bool:
return isinstance(colg, ABCDataFrame) or (
isinstance(colg, ABCSeries) and op_name == "agg"
)
def warn_alias_replacement(
obj: AggObjType,
func: Callable,
alias: str,
) -> None:
if alias.startswith("np."):
full_alias = alias
else:
full_alias = f"{type(obj).__name__}.{alias}"
alias = f'"{alias}"'
warnings.warn(
f"The provided callable {func} is currently using "
f"{full_alias}. In a future version of pandas, "
f"the provided callable will be used directly. To keep current "
f"behavior pass the string {alias} instead.",
category=FutureWarning,
stacklevel=find_stack_level(),
)