You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

482 lines
13 KiB

from __future__ import annotations
import random
from typing import TYPE_CHECKING
from matplotlib import patches
import matplotlib.lines as mlines
import numpy as np
from pandas.core.dtypes.missing import notna
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
do_adjust_figure,
maybe_adjust_figure,
set_ticks_props,
)
if TYPE_CHECKING:
from collections.abc import Hashable
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas import (
DataFrame,
Index,
Series,
)
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax=None,
grid: bool = False,
diagonal: str = "hist",
marker: str = ".",
density_kwds=None,
hist_kwds=None,
range_padding: float = 0.05,
**kwds,
):
df = frame._get_numeric_data()
n = df.columns.size
naxes = n * n
fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)
# no gaps between subplots
maybe_adjust_figure(fig, wspace=0, hspace=0)
mask = notna(df)
marker = _get_marker_compat(marker)
hist_kwds = hist_kwds or {}
density_kwds = density_kwds or {}
# GH 14855
kwds.setdefault("edgecolors", "none")
boundaries_list = []
for a in df.columns:
values = df[a].values[mask[a].values]
rmin_, rmax_ = np.min(values), np.max(values)
rdelta_ext = (rmax_ - rmin_) * range_padding / 2
boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))
for i, a in enumerate(df.columns):
for j, b in enumerate(df.columns):
ax = axes[i, j]
if i == j:
values = df[a].values[mask[a].values]
# Deal with the diagonal by drawing a histogram there.
if diagonal == "hist":
ax.hist(values, **hist_kwds)
elif diagonal in ("kde", "density"):
from scipy.stats import gaussian_kde
y = values
gkde = gaussian_kde(y)
ind = np.linspace(y.min(), y.max(), 1000)
ax.plot(ind, gkde.evaluate(ind), **density_kwds)
ax.set_xlim(boundaries_list[i])
else:
common = (mask[a] & mask[b]).values
ax.scatter(
df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds
)
ax.set_xlim(boundaries_list[j])
ax.set_ylim(boundaries_list[i])
ax.set_xlabel(b)
ax.set_ylabel(a)
if j != 0:
ax.yaxis.set_visible(False)
if i != n - 1:
ax.xaxis.set_visible(False)
if len(df.columns) > 1:
lim1 = boundaries_list[0]
locs = axes[0][1].yaxis.get_majorticklocs()
locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
adj = (locs - lim1[0]) / (lim1[1] - lim1[0])
lim0 = axes[0][0].get_ylim()
adj = adj * (lim0[1] - lim0[0]) + lim0[0]
axes[0][0].yaxis.set_ticks(adj)
if np.all(locs == locs.astype(int)):
# if all ticks are int
locs = locs.astype(int)
axes[0][0].yaxis.set_ticklabels(locs)
set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
return axes
def _get_marker_compat(marker):
if marker not in mlines.lineMarkers:
return "o"
return marker
def radviz(
frame: DataFrame,
class_column,
ax: Axes | None = None,
color=None,
colormap=None,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
def normalize(series):
a = min(series)
b = max(series)
return (series - a) / (b - a)
n = len(frame)
classes = frame[class_column].drop_duplicates()
class_col = frame[class_column]
df = frame.drop(class_column, axis=1).apply(normalize)
if ax is None:
ax = plt.gca()
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
to_plot: dict[Hashable, list[list]] = {}
colors = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
for kls in classes:
to_plot[kls] = [[], []]
m = len(frame.columns) - 1
s = np.array(
[(np.cos(t), np.sin(t)) for t in [2 * np.pi * (i / m) for i in range(m)]]
)
for i in range(n):
row = df.iloc[i].values
row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
y = (s * row_).sum(axis=0) / row.sum()
kls = class_col.iat[i]
to_plot[kls][0].append(y[0])
to_plot[kls][1].append(y[1])
for i, kls in enumerate(classes):
ax.scatter(
to_plot[kls][0],
to_plot[kls][1],
color=colors[i],
label=pprint_thing(kls),
**kwds,
)
ax.legend()
ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor="none"))
for xy, name in zip(s, df.columns):
ax.add_patch(patches.Circle(xy, radius=0.025, facecolor="gray"))
if xy[0] < 0.0 and xy[1] < 0.0:
ax.text(
xy[0] - 0.025, xy[1] - 0.025, name, ha="right", va="top", size="small"
)
elif xy[0] < 0.0 <= xy[1]:
ax.text(
xy[0] - 0.025,
xy[1] + 0.025,
name,
ha="right",
va="bottom",
size="small",
)
elif xy[1] < 0.0 <= xy[0]:
ax.text(
xy[0] + 0.025, xy[1] - 0.025, name, ha="left", va="top", size="small"
)
elif xy[0] >= 0.0 and xy[1] >= 0.0:
ax.text(
xy[0] + 0.025, xy[1] + 0.025, name, ha="left", va="bottom", size="small"
)
ax.axis("equal")
return ax
def andrews_curves(
frame: DataFrame,
class_column,
ax: Axes | None = None,
samples: int = 200,
color=None,
colormap=None,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
def function(amplitudes):
def f(t):
x1 = amplitudes[0]
result = x1 / np.sqrt(2.0)
# Take the rest of the coefficients and resize them
# appropriately. Take a copy of amplitudes as otherwise numpy
# deletes the element from amplitudes itself.
coeffs = np.delete(np.copy(amplitudes), 0)
coeffs = np.resize(coeffs, (int((coeffs.size + 1) / 2), 2))
# Generate the harmonics and arguments for the sin and cos
# functions.
harmonics = np.arange(0, coeffs.shape[0]) + 1
trig_args = np.outer(harmonics, t)
result += np.sum(
coeffs[:, 0, np.newaxis] * np.sin(trig_args)
+ coeffs[:, 1, np.newaxis] * np.cos(trig_args),
axis=0,
)
return result
return f
n = len(frame)
class_col = frame[class_column]
classes = frame[class_column].drop_duplicates()
df = frame.drop(class_column, axis=1)
t = np.linspace(-np.pi, np.pi, samples)
used_legends: set[str] = set()
color_values = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
colors = dict(zip(classes, color_values))
if ax is None:
ax = plt.gca()
ax.set_xlim(-np.pi, np.pi)
for i in range(n):
row = df.iloc[i].values
f = function(row)
y = f(t)
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(t, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(t, y, color=colors[kls], **kwds)
ax.legend(loc="upper right")
ax.grid()
return ax
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure:
import matplotlib.pyplot as plt
# TODO: is the failure mentioned below still relevant?
# random.sample(ndarray, int) fails on python 3.3, sigh
data = list(series.values)
samplings = [random.sample(data, size) for _ in range(samples)]
means = np.array([np.mean(sampling) for sampling in samplings])
medians = np.array([np.median(sampling) for sampling in samplings])
midranges = np.array(
[(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]
)
if fig is None:
fig = plt.figure()
x = list(range(samples))
axes = []
ax1 = fig.add_subplot(2, 3, 1)
ax1.set_xlabel("Sample")
axes.append(ax1)
ax1.plot(x, means, **kwds)
ax2 = fig.add_subplot(2, 3, 2)
ax2.set_xlabel("Sample")
axes.append(ax2)
ax2.plot(x, medians, **kwds)
ax3 = fig.add_subplot(2, 3, 3)
ax3.set_xlabel("Sample")
axes.append(ax3)
ax3.plot(x, midranges, **kwds)
ax4 = fig.add_subplot(2, 3, 4)
ax4.set_xlabel("Mean")
axes.append(ax4)
ax4.hist(means, **kwds)
ax5 = fig.add_subplot(2, 3, 5)
ax5.set_xlabel("Median")
axes.append(ax5)
ax5.hist(medians, **kwds)
ax6 = fig.add_subplot(2, 3, 6)
ax6.set_xlabel("Midrange")
axes.append(ax6)
ax6.hist(midranges, **kwds)
for axis in axes:
plt.setp(axis.get_xticklabels(), fontsize=8)
plt.setp(axis.get_yticklabels(), fontsize=8)
if do_adjust_figure(fig):
plt.tight_layout()
return fig
def parallel_coordinates(
frame: DataFrame,
class_column,
cols=None,
ax: Axes | None = None,
color=None,
use_columns: bool = False,
xticks=None,
colormap=None,
axvlines: bool = True,
axvlines_kwds=None,
sort_labels: bool = False,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
if axvlines_kwds is None:
axvlines_kwds = {"linewidth": 1, "color": "black"}
n = len(frame)
classes = frame[class_column].drop_duplicates()
class_col = frame[class_column]
if cols is None:
df = frame.drop(class_column, axis=1)
else:
df = frame[cols]
used_legends: set[str] = set()
ncols = len(df.columns)
# determine values to use for xticks
x: list[int] | Index
if use_columns is True:
if not np.all(np.isreal(list(df.columns))):
raise ValueError("Columns must be numeric to be used as xticks")
x = df.columns
elif xticks is not None:
if not np.all(np.isreal(xticks)):
raise ValueError("xticks specified must be numeric")
if len(xticks) != ncols:
raise ValueError("Length of xticks must match number of columns")
x = xticks
else:
x = list(range(ncols))
if ax is None:
ax = plt.gca()
color_values = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
if sort_labels:
classes = sorted(classes)
color_values = sorted(color_values)
colors = dict(zip(classes, color_values))
for i in range(n):
y = df.iloc[i].values
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(x, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(x, y, color=colors[kls], **kwds)
if axvlines:
for i in x:
ax.axvline(i, **axvlines_kwds)
ax.set_xticks(x)
ax.set_xticklabels(df.columns)
ax.set_xlim(x[0], x[-1])
ax.legend(loc="upper right")
ax.grid()
return ax
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
# workaround because `c='b'` is hardcoded in matplotlib's scatter method
import matplotlib.pyplot as plt
kwds.setdefault("c", plt.rcParams["patch.facecolor"])
data = series.values
y1 = data[:-lag]
y2 = data[lag:]
if ax is None:
ax = plt.gca()
ax.set_xlabel("y(t)")
ax.set_ylabel(f"y(t + {lag})")
ax.scatter(y1, y2, **kwds)
return ax
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwds) -> Axes:
import matplotlib.pyplot as plt
n = len(series)
data = np.asarray(series)
if ax is None:
ax = plt.gca()
ax.set_xlim(1, n)
ax.set_ylim(-1.0, 1.0)
mean = np.mean(data)
c0 = np.sum((data - mean) ** 2) / n
def r(h):
return ((data[: n - h] - mean) * (data[h:] - mean)).sum() / n / c0
x = np.arange(n) + 1
y = [r(loc) for loc in x]
z95 = 1.959963984540054
z99 = 2.5758293035489004
ax.axhline(y=z99 / np.sqrt(n), linestyle="--", color="grey")
ax.axhline(y=z95 / np.sqrt(n), color="grey")
ax.axhline(y=0.0, color="black")
ax.axhline(y=-z95 / np.sqrt(n), color="grey")
ax.axhline(y=-z99 / np.sqrt(n), linestyle="--", color="grey")
ax.set_xlabel("Lag")
ax.set_ylabel("Autocorrelation")
ax.plot(x, y, **kwds)
if "label" in kwds:
ax.legend()
ax.grid()
return ax
def unpack_single_str_list(keys):
# GH 42795
if isinstance(keys, list) and len(keys) == 1:
keys = keys[0]
return keys