You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

184 lines
5.7 KiB

import numpy as np
import pytest
from pandas.core.dtypes.dtypes import DatetimeTZDtype
import pandas as pd
from pandas import NaT
import pandas._testing as tm
from pandas.core.arrays import DatetimeArray
class TestReductions:
@pytest.fixture(params=["s", "ms", "us", "ns"])
def unit(self, request):
return request.param
@pytest.fixture
def arr1d(self, tz_naive_fixture):
"""Fixture returning DatetimeArray with parametrized timezones"""
tz = tz_naive_fixture
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
arr = DatetimeArray._from_sequence(
[
"2000-01-03",
"2000-01-03",
"NaT",
"2000-01-02",
"2000-01-05",
"2000-01-04",
],
dtype=dtype,
)
return arr
def test_min_max(self, arr1d, unit):
arr = arr1d
arr = arr.as_unit(unit)
tz = arr.tz
result = arr.min()
expected = pd.Timestamp("2000-01-02", tz=tz).as_unit(unit)
assert result == expected
assert result.unit == expected.unit
result = arr.max()
expected = pd.Timestamp("2000-01-05", tz=tz).as_unit(unit)
assert result == expected
assert result.unit == expected.unit
result = arr.min(skipna=False)
assert result is NaT
result = arr.max(skipna=False)
assert result is NaT
@pytest.mark.parametrize("tz", [None, "US/Central"])
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max_empty(self, skipna, tz):
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
arr = DatetimeArray._from_sequence([], dtype=dtype)
result = arr.min(skipna=skipna)
assert result is NaT
result = arr.max(skipna=skipna)
assert result is NaT
@pytest.mark.parametrize("tz", [None, "US/Central"])
@pytest.mark.parametrize("skipna", [True, False])
def test_median_empty(self, skipna, tz):
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
arr = DatetimeArray._from_sequence([], dtype=dtype)
result = arr.median(skipna=skipna)
assert result is NaT
arr = arr.reshape(0, 3)
result = arr.median(axis=0, skipna=skipna)
expected = type(arr)._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
tm.assert_equal(result, expected)
result = arr.median(axis=1, skipna=skipna)
expected = type(arr)._from_sequence([], dtype=arr.dtype)
tm.assert_equal(result, expected)
def test_median(self, arr1d):
arr = arr1d
result = arr.median()
assert result == arr[0]
result = arr.median(skipna=False)
assert result is NaT
result = arr.dropna().median(skipna=False)
assert result == arr[0]
result = arr.median(axis=0)
assert result == arr[0]
def test_median_axis(self, arr1d):
arr = arr1d
assert arr.median(axis=0) == arr.median()
assert arr.median(axis=0, skipna=False) is NaT
msg = r"abs\(axis\) must be less than ndim"
with pytest.raises(ValueError, match=msg):
arr.median(axis=1)
@pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
def test_median_2d(self, arr1d):
arr = arr1d.reshape(1, -1)
# axis = None
assert arr.median() == arr1d.median()
assert arr.median(skipna=False) is NaT
# axis = 0
result = arr.median(axis=0)
expected = arr1d
tm.assert_equal(result, expected)
# Since column 3 is all-NaT, we get NaT there with or without skipna
result = arr.median(axis=0, skipna=False)
expected = arr1d
tm.assert_equal(result, expected)
# axis = 1
result = arr.median(axis=1)
expected = type(arr)._from_sequence([arr1d.median()], dtype=arr.dtype)
tm.assert_equal(result, expected)
result = arr.median(axis=1, skipna=False)
expected = type(arr)._from_sequence([NaT], dtype=arr.dtype)
tm.assert_equal(result, expected)
def test_mean(self, arr1d):
arr = arr1d
# manually verified result
expected = arr[0] + 0.4 * pd.Timedelta(days=1)
result = arr.mean()
assert result == expected
result = arr.mean(skipna=False)
assert result is NaT
result = arr.dropna().mean(skipna=False)
assert result == expected
result = arr.mean(axis=0)
assert result == expected
def test_mean_2d(self):
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
dta = dti._data.reshape(3, 2)
result = dta.mean(axis=0)
expected = dta[1]
tm.assert_datetime_array_equal(result, expected)
result = dta.mean(axis=1)
expected = dta[:, 0] + pd.Timedelta(hours=12)
tm.assert_datetime_array_equal(result, expected)
result = dta.mean(axis=None)
expected = dti.mean()
assert result == expected
@pytest.mark.parametrize("skipna", [True, False])
def test_mean_empty(self, arr1d, skipna):
arr = arr1d[:0]
assert arr.mean(skipna=skipna) is NaT
arr2d = arr.reshape(0, 3)
result = arr2d.mean(axis=0, skipna=skipna)
expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
tm.assert_datetime_array_equal(result, expected)
result = arr2d.mean(axis=1, skipna=skipna)
expected = arr # i.e. 1D, empty
tm.assert_datetime_array_equal(result, expected)
result = arr2d.mean(axis=None, skipna=skipna)
assert result is NaT