You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
515 lines
20 KiB
515 lines
20 KiB
import operator
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import SparseDtype
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays.sparse import SparseArray
|
|
|
|
|
|
@pytest.fixture(params=["integer", "block"])
|
|
def kind(request):
|
|
"""kind kwarg to pass to SparseArray"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False])
|
|
def mix(request):
|
|
"""
|
|
Fixture returning True or False, determining whether to operate
|
|
op(sparse, dense) instead of op(sparse, sparse)
|
|
"""
|
|
return request.param
|
|
|
|
|
|
class TestSparseArrayArithmetics:
|
|
def _assert(self, a, b):
|
|
# We have to use tm.assert_sp_array_equal. See GH #45126
|
|
tm.assert_numpy_array_equal(a, b)
|
|
|
|
def _check_numeric_ops(self, a, b, a_dense, b_dense, mix: bool, op):
|
|
# Check that arithmetic behavior matches non-Sparse Series arithmetic
|
|
|
|
if isinstance(a_dense, np.ndarray):
|
|
expected = op(pd.Series(a_dense), b_dense).values
|
|
elif isinstance(b_dense, np.ndarray):
|
|
expected = op(a_dense, pd.Series(b_dense)).values
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
with np.errstate(invalid="ignore", divide="ignore"):
|
|
if mix:
|
|
result = op(a, b_dense).to_dense()
|
|
else:
|
|
result = op(a, b).to_dense()
|
|
|
|
self._assert(result, expected)
|
|
|
|
def _check_bool_result(self, res):
|
|
assert isinstance(res, SparseArray)
|
|
assert isinstance(res.dtype, SparseDtype)
|
|
assert res.dtype.subtype == np.bool_
|
|
assert isinstance(res.fill_value, bool)
|
|
|
|
def _check_comparison_ops(self, a, b, a_dense, b_dense):
|
|
with np.errstate(invalid="ignore"):
|
|
# Unfortunately, trying to wrap the computation of each expected
|
|
# value is with np.errstate() is too tedious.
|
|
#
|
|
# sparse & sparse
|
|
self._check_bool_result(a == b)
|
|
self._assert((a == b).to_dense(), a_dense == b_dense)
|
|
|
|
self._check_bool_result(a != b)
|
|
self._assert((a != b).to_dense(), a_dense != b_dense)
|
|
|
|
self._check_bool_result(a >= b)
|
|
self._assert((a >= b).to_dense(), a_dense >= b_dense)
|
|
|
|
self._check_bool_result(a <= b)
|
|
self._assert((a <= b).to_dense(), a_dense <= b_dense)
|
|
|
|
self._check_bool_result(a > b)
|
|
self._assert((a > b).to_dense(), a_dense > b_dense)
|
|
|
|
self._check_bool_result(a < b)
|
|
self._assert((a < b).to_dense(), a_dense < b_dense)
|
|
|
|
# sparse & dense
|
|
self._check_bool_result(a == b_dense)
|
|
self._assert((a == b_dense).to_dense(), a_dense == b_dense)
|
|
|
|
self._check_bool_result(a != b_dense)
|
|
self._assert((a != b_dense).to_dense(), a_dense != b_dense)
|
|
|
|
self._check_bool_result(a >= b_dense)
|
|
self._assert((a >= b_dense).to_dense(), a_dense >= b_dense)
|
|
|
|
self._check_bool_result(a <= b_dense)
|
|
self._assert((a <= b_dense).to_dense(), a_dense <= b_dense)
|
|
|
|
self._check_bool_result(a > b_dense)
|
|
self._assert((a > b_dense).to_dense(), a_dense > b_dense)
|
|
|
|
self._check_bool_result(a < b_dense)
|
|
self._assert((a < b_dense).to_dense(), a_dense < b_dense)
|
|
|
|
def _check_logical_ops(self, a, b, a_dense, b_dense):
|
|
# sparse & sparse
|
|
self._check_bool_result(a & b)
|
|
self._assert((a & b).to_dense(), a_dense & b_dense)
|
|
|
|
self._check_bool_result(a | b)
|
|
self._assert((a | b).to_dense(), a_dense | b_dense)
|
|
# sparse & dense
|
|
self._check_bool_result(a & b_dense)
|
|
self._assert((a & b_dense).to_dense(), a_dense & b_dense)
|
|
|
|
self._check_bool_result(a | b_dense)
|
|
self._assert((a | b_dense).to_dense(), a_dense | b_dense)
|
|
|
|
@pytest.mark.parametrize("scalar", [0, 1, 3])
|
|
@pytest.mark.parametrize("fill_value", [None, 0, 2])
|
|
def test_float_scalar(
|
|
self, kind, mix, all_arithmetic_functions, fill_value, scalar, request
|
|
):
|
|
op = all_arithmetic_functions
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
a = SparseArray(values, kind=kind, fill_value=fill_value)
|
|
self._check_numeric_ops(a, scalar, values, scalar, mix, op)
|
|
|
|
def test_float_scalar_comparison(self, kind):
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
self._check_comparison_ops(a, 1, values, 1)
|
|
self._check_comparison_ops(a, 0, values, 0)
|
|
self._check_comparison_ops(a, 3, values, 3)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
self._check_comparison_ops(a, 1, values, 1)
|
|
self._check_comparison_ops(a, 0, values, 0)
|
|
self._check_comparison_ops(a, 3, values, 3)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=2)
|
|
self._check_comparison_ops(a, 1, values, 1)
|
|
self._check_comparison_ops(a, 0, values, 0)
|
|
self._check_comparison_ops(a, 3, values, 3)
|
|
|
|
def test_float_same_index_without_nans(self, kind, mix, all_arithmetic_functions):
|
|
# when sp_index are the same
|
|
op = all_arithmetic_functions
|
|
|
|
values = np.array([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
|
|
rvalues = np.array([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
def test_float_same_index_with_nans(
|
|
self, kind, mix, all_arithmetic_functions, request
|
|
):
|
|
# when sp_index are the same
|
|
op = all_arithmetic_functions
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
def test_float_same_index_comparison(self, kind):
|
|
# when sp_index are the same
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
values = np.array([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
|
|
rvalues = np.array([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
def test_float_array(self, kind, mix, all_arithmetic_functions):
|
|
op = all_arithmetic_functions
|
|
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=1)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
def test_float_array_different_kind(self, mix, all_arithmetic_functions):
|
|
op = all_arithmetic_functions
|
|
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
|
|
|
a = SparseArray(values, kind="integer")
|
|
b = SparseArray(rvalues, kind="block")
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
|
|
|
a = SparseArray(values, kind="integer", fill_value=0)
|
|
b = SparseArray(rvalues, kind="block")
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, kind="integer", fill_value=0)
|
|
b = SparseArray(rvalues, kind="block", fill_value=0)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, kind="integer", fill_value=1)
|
|
b = SparseArray(rvalues, kind="block", fill_value=2)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
def test_float_array_comparison(self, kind):
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=1)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
def test_int_array(self, kind, mix, all_arithmetic_functions):
|
|
op = all_arithmetic_functions
|
|
|
|
# have to specify dtype explicitly until fixing GH 667
|
|
dtype = np.int64
|
|
|
|
values = np.array([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
|
|
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
|
|
|
|
a = SparseArray(values, dtype=dtype, kind=kind)
|
|
assert a.dtype == SparseDtype(dtype)
|
|
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
|
assert b.dtype == SparseDtype(dtype)
|
|
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
|
|
|
a = SparseArray(values, fill_value=0, dtype=dtype, kind=kind)
|
|
assert a.dtype == SparseDtype(dtype)
|
|
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
|
assert b.dtype == SparseDtype(dtype)
|
|
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, fill_value=0, dtype=dtype, kind=kind)
|
|
assert a.dtype == SparseDtype(dtype)
|
|
b = SparseArray(rvalues, fill_value=0, dtype=dtype, kind=kind)
|
|
assert b.dtype == SparseDtype(dtype)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, fill_value=1, dtype=dtype, kind=kind)
|
|
assert a.dtype == SparseDtype(dtype, fill_value=1)
|
|
b = SparseArray(rvalues, fill_value=2, dtype=dtype, kind=kind)
|
|
assert b.dtype == SparseDtype(dtype, fill_value=2)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
def test_int_array_comparison(self, kind):
|
|
dtype = "int64"
|
|
# int32 NI ATM
|
|
|
|
values = np.array([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
|
|
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
|
|
|
|
a = SparseArray(values, dtype=dtype, kind=kind)
|
|
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
|
|
|
a = SparseArray(values, dtype=dtype, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
a = SparseArray(values, dtype=dtype, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, dtype=dtype, kind=kind, fill_value=0)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
a = SparseArray(values, dtype=dtype, kind=kind, fill_value=1)
|
|
b = SparseArray(rvalues, dtype=dtype, kind=kind, fill_value=2)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
|
|
def test_bool_same_index(self, kind, fill_value):
|
|
# GH 14000
|
|
# when sp_index are the same
|
|
values = np.array([True, False, True, True], dtype=np.bool_)
|
|
rvalues = np.array([True, False, True, True], dtype=np.bool_)
|
|
|
|
a = SparseArray(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
|
b = SparseArray(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
|
self._check_logical_ops(a, b, values, rvalues)
|
|
|
|
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
|
|
def test_bool_array_logical(self, kind, fill_value):
|
|
# GH 14000
|
|
# when sp_index are the same
|
|
values = np.array([True, False, True, False, True, True], dtype=np.bool_)
|
|
rvalues = np.array([True, False, False, True, False, True], dtype=np.bool_)
|
|
|
|
a = SparseArray(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
|
b = SparseArray(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
|
self._check_logical_ops(a, b, values, rvalues)
|
|
|
|
def test_mixed_array_float_int(self, kind, mix, all_arithmetic_functions, request):
|
|
op = all_arithmetic_functions
|
|
rdtype = "int64"
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
assert b.dtype == SparseDtype(rdtype)
|
|
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
assert b.dtype == SparseDtype(rdtype)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
|
assert b.dtype == SparseDtype(rdtype)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=1)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
|
assert b.dtype == SparseDtype(rdtype, fill_value=2)
|
|
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
|
|
|
def test_mixed_array_comparison(self, kind):
|
|
rdtype = "int64"
|
|
# int32 NI ATM
|
|
|
|
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
|
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
|
|
|
|
a = SparseArray(values, kind=kind)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
assert b.dtype == SparseDtype(rdtype)
|
|
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind)
|
|
assert b.dtype == SparseDtype(rdtype)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=0)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
|
assert b.dtype == SparseDtype(rdtype)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
a = SparseArray(values, kind=kind, fill_value=1)
|
|
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
|
assert b.dtype == SparseDtype(rdtype, fill_value=2)
|
|
self._check_comparison_ops(a, b, values, rvalues)
|
|
|
|
def test_xor(self):
|
|
s = SparseArray([True, True, False, False])
|
|
t = SparseArray([True, False, True, False])
|
|
result = s ^ t
|
|
sp_index = pd.core.arrays.sparse.IntIndex(4, np.array([0, 1, 2], dtype="int32"))
|
|
expected = SparseArray([False, True, True], sparse_index=sp_index)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("op", [operator.eq, operator.add])
|
|
def test_with_list(op):
|
|
arr = SparseArray([0, 1], fill_value=0)
|
|
result = op(arr, [0, 1])
|
|
expected = op(arr, SparseArray([0, 1]))
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
|
|
def test_with_dataframe():
|
|
# GH#27910
|
|
arr = SparseArray([0, 1], fill_value=0)
|
|
df = pd.DataFrame([[1, 2], [3, 4]])
|
|
result = arr.__add__(df)
|
|
assert result is NotImplemented
|
|
|
|
|
|
def test_with_zerodim_ndarray():
|
|
# GH#27910
|
|
arr = SparseArray([0, 1], fill_value=0)
|
|
|
|
result = arr * np.array(2)
|
|
expected = arr * 2
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("ufunc", [np.abs, np.exp])
|
|
@pytest.mark.parametrize(
|
|
"arr", [SparseArray([0, 0, -1, 1]), SparseArray([None, None, -1, 1])]
|
|
)
|
|
def test_ufuncs(ufunc, arr):
|
|
result = ufunc(arr)
|
|
fill_value = ufunc(arr.fill_value)
|
|
expected = SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"a, b",
|
|
[
|
|
(SparseArray([0, 0, 0]), np.array([0, 1, 2])),
|
|
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
|
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
|
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
|
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("ufunc", [np.add, np.greater])
|
|
def test_binary_ufuncs(ufunc, a, b):
|
|
# can't say anything about fill value here.
|
|
result = ufunc(a, b)
|
|
expected = ufunc(np.asarray(a), np.asarray(b))
|
|
assert isinstance(result, SparseArray)
|
|
tm.assert_numpy_array_equal(np.asarray(result), expected)
|
|
|
|
|
|
def test_ndarray_inplace():
|
|
sparray = SparseArray([0, 2, 0, 0])
|
|
ndarray = np.array([0, 1, 2, 3])
|
|
ndarray += sparray
|
|
expected = np.array([0, 3, 2, 3])
|
|
tm.assert_numpy_array_equal(ndarray, expected)
|
|
|
|
|
|
def test_sparray_inplace():
|
|
sparray = SparseArray([0, 2, 0, 0])
|
|
ndarray = np.array([0, 1, 2, 3])
|
|
sparray += ndarray
|
|
expected = SparseArray([0, 3, 2, 3], fill_value=0)
|
|
tm.assert_sp_array_equal(sparray, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("cons", [list, np.array, SparseArray])
|
|
def test_mismatched_length_cmp_op(cons):
|
|
left = SparseArray([True, True])
|
|
right = cons([True, True, True])
|
|
with pytest.raises(ValueError, match="operands have mismatched length"):
|
|
left & right
|
|
|
|
|
|
@pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"])
|
|
@pytest.mark.parametrize("fill_value", [np.nan, 3])
|
|
def test_binary_operators(op, fill_value):
|
|
op = getattr(operator, op)
|
|
data1 = np.random.default_rng(2).standard_normal(20)
|
|
data2 = np.random.default_rng(2).standard_normal(20)
|
|
|
|
data1[::2] = fill_value
|
|
data2[::3] = fill_value
|
|
|
|
first = SparseArray(data1, fill_value=fill_value)
|
|
second = SparseArray(data2, fill_value=fill_value)
|
|
|
|
with np.errstate(all="ignore"):
|
|
res = op(first, second)
|
|
exp = SparseArray(
|
|
op(first.to_dense(), second.to_dense()), fill_value=first.fill_value
|
|
)
|
|
assert isinstance(res, SparseArray)
|
|
tm.assert_almost_equal(res.to_dense(), exp.to_dense())
|
|
|
|
res2 = op(first, second.to_dense())
|
|
assert isinstance(res2, SparseArray)
|
|
tm.assert_sp_array_equal(res, res2)
|
|
|
|
res3 = op(first.to_dense(), second)
|
|
assert isinstance(res3, SparseArray)
|
|
tm.assert_sp_array_equal(res, res3)
|
|
|
|
res4 = op(first, 4)
|
|
assert isinstance(res4, SparseArray)
|
|
|
|
# Ignore this if the actual op raises (e.g. pow).
|
|
try:
|
|
exp = op(first.to_dense(), 4)
|
|
exp_fv = op(first.fill_value, 4)
|
|
except ValueError:
|
|
pass
|
|
else:
|
|
tm.assert_almost_equal(res4.fill_value, exp_fv)
|
|
tm.assert_almost_equal(res4.to_dense(), exp)
|