You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.8 KiB
80 lines
2.8 KiB
import operator
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import SparseArray
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:invalid value encountered in cast:RuntimeWarning")
|
|
@pytest.mark.parametrize("fill_value", [0, np.nan])
|
|
@pytest.mark.parametrize("op", [operator.pos, operator.neg])
|
|
def test_unary_op(op, fill_value):
|
|
arr = np.array([0, 1, np.nan, 2])
|
|
sparray = SparseArray(arr, fill_value=fill_value)
|
|
result = op(sparray)
|
|
expected = SparseArray(op(arr), fill_value=op(fill_value))
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("fill_value", [True, False])
|
|
def test_invert(fill_value):
|
|
arr = np.array([True, False, False, True])
|
|
sparray = SparseArray(arr, fill_value=fill_value)
|
|
result = ~sparray
|
|
expected = SparseArray(~arr, fill_value=not fill_value)
|
|
tm.assert_sp_array_equal(result, expected)
|
|
|
|
result = ~pd.Series(sparray)
|
|
expected = pd.Series(expected)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = ~pd.DataFrame({"A": sparray})
|
|
expected = pd.DataFrame({"A": expected})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
class TestUnaryMethods:
|
|
@pytest.mark.filterwarnings(
|
|
"ignore:invalid value encountered in cast:RuntimeWarning"
|
|
)
|
|
def test_neg_operator(self):
|
|
arr = SparseArray([-1, -2, np.nan, 3], fill_value=np.nan, dtype=np.int8)
|
|
res = -arr
|
|
exp = SparseArray([1, 2, np.nan, -3], fill_value=np.nan, dtype=np.int8)
|
|
tm.assert_sp_array_equal(exp, res)
|
|
|
|
arr = SparseArray([-1, -2, 1, 3], fill_value=-1, dtype=np.int8)
|
|
res = -arr
|
|
exp = SparseArray([1, 2, -1, -3], fill_value=1, dtype=np.int8)
|
|
tm.assert_sp_array_equal(exp, res)
|
|
|
|
@pytest.mark.filterwarnings(
|
|
"ignore:invalid value encountered in cast:RuntimeWarning"
|
|
)
|
|
def test_abs_operator(self):
|
|
arr = SparseArray([-1, -2, np.nan, 3], fill_value=np.nan, dtype=np.int8)
|
|
res = abs(arr)
|
|
exp = SparseArray([1, 2, np.nan, 3], fill_value=np.nan, dtype=np.int8)
|
|
tm.assert_sp_array_equal(exp, res)
|
|
|
|
arr = SparseArray([-1, -2, 1, 3], fill_value=-1, dtype=np.int8)
|
|
res = abs(arr)
|
|
exp = SparseArray([1, 2, 1, 3], fill_value=1, dtype=np.int8)
|
|
tm.assert_sp_array_equal(exp, res)
|
|
|
|
def test_invert_operator(self):
|
|
arr = SparseArray([False, True, False, True], fill_value=False, dtype=np.bool_)
|
|
exp = SparseArray(
|
|
np.invert([False, True, False, True]), fill_value=True, dtype=np.bool_
|
|
)
|
|
res = ~arr
|
|
tm.assert_sp_array_equal(exp, res)
|
|
|
|
arr = SparseArray([0, 1, 0, 2, 3, 0], fill_value=0, dtype=np.int32)
|
|
res = ~arr
|
|
exp = SparseArray([-1, -2, -1, -3, -4, -1], fill_value=-1, dtype=np.int32)
|
|
tm.assert_sp_array_equal(exp, res)
|