You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
4.2 KiB

import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
pytest.importorskip("xarray")
class TestDataFrameToXArray:
@pytest.fixture
def df(self):
return DataFrame(
{
"a": list("abcd"),
"b": list(range(1, 5)),
"c": np.arange(3, 7).astype("u1"),
"d": np.arange(4.0, 8.0, dtype="float64"),
"e": [True, False, True, False],
"f": Categorical(list("abcd")),
"g": date_range("20130101", periods=4),
"h": date_range("20130101", periods=4, tz="US/Eastern"),
}
)
def test_to_xarray_index_types(self, index_flat, df, using_infer_string):
index = index_flat
# MultiIndex is tested in test_to_xarray_with_multiindex
if len(index) == 0:
pytest.skip("Test doesn't make sense for empty index")
from xarray import Dataset
df.index = index[:4]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
assert result.sizes["foo"] == 4
assert len(result.coords) == 1
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, Dataset)
# idempotency
# datetimes w/tz are preserved
# column names are lost
expected = df.copy()
expected["f"] = expected["f"].astype(
object if not using_infer_string else "string[pyarrow_numpy]"
)
expected.columns.name = None
tm.assert_frame_equal(result.to_dataframe(), expected)
def test_to_xarray_empty(self, df):
from xarray import Dataset
df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.sizes["foo"] == 0
assert isinstance(result, Dataset)
def test_to_xarray_with_multiindex(self, df, using_infer_string):
from xarray import Dataset
# MultiIndex
df.index = MultiIndex.from_product([["a"], range(4)], names=["one", "two"])
result = df.to_xarray()
assert result.sizes["one"] == 1
assert result.sizes["two"] == 4
assert len(result.coords) == 2
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, Dataset)
result = result.to_dataframe()
expected = df.copy()
expected["f"] = expected["f"].astype(
object if not using_infer_string else "string[pyarrow_numpy]"
)
expected.columns.name = None
tm.assert_frame_equal(result, expected)
class TestSeriesToXArray:
def test_to_xarray_index_types(self, index_flat):
index = index_flat
# MultiIndex is tested in test_to_xarray_with_multiindex
from xarray import DataArray
ser = Series(range(len(index)), index=index, dtype="int64")
ser.index.name = "foo"
result = ser.to_xarray()
repr(result)
assert len(result) == len(index)
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
# idempotency
tm.assert_series_equal(result.to_series(), ser)
def test_to_xarray_empty(self):
from xarray import DataArray
ser = Series([], dtype=object)
ser.index.name = "foo"
result = ser.to_xarray()
assert len(result) == 0
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
def test_to_xarray_with_multiindex(self):
from xarray import DataArray
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
ser = Series(range(6), dtype="int64", index=mi)
result = ser.to_xarray()
assert len(result) == 2
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, DataArray)
res = result.to_series()
tm.assert_series_equal(res, ser)