You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
4.2 KiB
131 lines
4.2 KiB
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
Categorical,
|
|
DataFrame,
|
|
MultiIndex,
|
|
Series,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
pytest.importorskip("xarray")
|
|
|
|
|
|
class TestDataFrameToXArray:
|
|
@pytest.fixture
|
|
def df(self):
|
|
return DataFrame(
|
|
{
|
|
"a": list("abcd"),
|
|
"b": list(range(1, 5)),
|
|
"c": np.arange(3, 7).astype("u1"),
|
|
"d": np.arange(4.0, 8.0, dtype="float64"),
|
|
"e": [True, False, True, False],
|
|
"f": Categorical(list("abcd")),
|
|
"g": date_range("20130101", periods=4),
|
|
"h": date_range("20130101", periods=4, tz="US/Eastern"),
|
|
}
|
|
)
|
|
|
|
def test_to_xarray_index_types(self, index_flat, df, using_infer_string):
|
|
index = index_flat
|
|
# MultiIndex is tested in test_to_xarray_with_multiindex
|
|
if len(index) == 0:
|
|
pytest.skip("Test doesn't make sense for empty index")
|
|
|
|
from xarray import Dataset
|
|
|
|
df.index = index[:4]
|
|
df.index.name = "foo"
|
|
df.columns.name = "bar"
|
|
result = df.to_xarray()
|
|
assert result.sizes["foo"] == 4
|
|
assert len(result.coords) == 1
|
|
assert len(result.data_vars) == 8
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
|
assert isinstance(result, Dataset)
|
|
|
|
# idempotency
|
|
# datetimes w/tz are preserved
|
|
# column names are lost
|
|
expected = df.copy()
|
|
expected["f"] = expected["f"].astype(
|
|
object if not using_infer_string else "string[pyarrow_numpy]"
|
|
)
|
|
expected.columns.name = None
|
|
tm.assert_frame_equal(result.to_dataframe(), expected)
|
|
|
|
def test_to_xarray_empty(self, df):
|
|
from xarray import Dataset
|
|
|
|
df.index.name = "foo"
|
|
result = df[0:0].to_xarray()
|
|
assert result.sizes["foo"] == 0
|
|
assert isinstance(result, Dataset)
|
|
|
|
def test_to_xarray_with_multiindex(self, df, using_infer_string):
|
|
from xarray import Dataset
|
|
|
|
# MultiIndex
|
|
df.index = MultiIndex.from_product([["a"], range(4)], names=["one", "two"])
|
|
result = df.to_xarray()
|
|
assert result.sizes["one"] == 1
|
|
assert result.sizes["two"] == 4
|
|
assert len(result.coords) == 2
|
|
assert len(result.data_vars) == 8
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
|
|
assert isinstance(result, Dataset)
|
|
|
|
result = result.to_dataframe()
|
|
expected = df.copy()
|
|
expected["f"] = expected["f"].astype(
|
|
object if not using_infer_string else "string[pyarrow_numpy]"
|
|
)
|
|
expected.columns.name = None
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
class TestSeriesToXArray:
|
|
def test_to_xarray_index_types(self, index_flat):
|
|
index = index_flat
|
|
# MultiIndex is tested in test_to_xarray_with_multiindex
|
|
|
|
from xarray import DataArray
|
|
|
|
ser = Series(range(len(index)), index=index, dtype="int64")
|
|
ser.index.name = "foo"
|
|
result = ser.to_xarray()
|
|
repr(result)
|
|
assert len(result) == len(index)
|
|
assert len(result.coords) == 1
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
|
assert isinstance(result, DataArray)
|
|
|
|
# idempotency
|
|
tm.assert_series_equal(result.to_series(), ser)
|
|
|
|
def test_to_xarray_empty(self):
|
|
from xarray import DataArray
|
|
|
|
ser = Series([], dtype=object)
|
|
ser.index.name = "foo"
|
|
result = ser.to_xarray()
|
|
assert len(result) == 0
|
|
assert len(result.coords) == 1
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
|
assert isinstance(result, DataArray)
|
|
|
|
def test_to_xarray_with_multiindex(self):
|
|
from xarray import DataArray
|
|
|
|
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
|
|
ser = Series(range(6), dtype="int64", index=mi)
|
|
result = ser.to_xarray()
|
|
assert len(result) == 2
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
|
|
assert isinstance(result, DataArray)
|
|
res = result.to_series()
|
|
tm.assert_series_equal(res, ser)
|