You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
690 lines
20 KiB
690 lines
20 KiB
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
RangeIndex,
|
|
Series,
|
|
date_range,
|
|
period_range,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
def gen_obj(klass, index):
|
|
if klass is Series:
|
|
obj = Series(np.arange(len(index)), index=index)
|
|
else:
|
|
obj = DataFrame(
|
|
np.random.default_rng(2).standard_normal((len(index), len(index))),
|
|
index=index,
|
|
columns=index,
|
|
)
|
|
return obj
|
|
|
|
|
|
class TestFloatIndexers:
|
|
def check(self, result, original, indexer, getitem):
|
|
"""
|
|
comparator for results
|
|
we need to take care if we are indexing on a
|
|
Series or a frame
|
|
"""
|
|
if isinstance(original, Series):
|
|
expected = original.iloc[indexer]
|
|
elif getitem:
|
|
expected = original.iloc[:, indexer]
|
|
else:
|
|
expected = original.iloc[indexer]
|
|
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(list("abcde")),
|
|
Index(list("abcde"), dtype="category"),
|
|
date_range("2020-01-01", periods=5),
|
|
timedelta_range("1 day", periods=5),
|
|
period_range("2020-01-01", periods=5),
|
|
],
|
|
)
|
|
def test_scalar_non_numeric(self, index, frame_or_series, indexer_sl):
|
|
# GH 4892
|
|
# float_indexers should raise exceptions
|
|
# on appropriate Index types & accessors
|
|
|
|
s = gen_obj(frame_or_series, index)
|
|
|
|
# getting
|
|
with pytest.raises(KeyError, match="^3.0$"):
|
|
indexer_sl(s)[3.0]
|
|
|
|
# contains
|
|
assert 3.0 not in s
|
|
|
|
s2 = s.copy()
|
|
indexer_sl(s2)[3.0] = 10
|
|
|
|
if indexer_sl is tm.setitem:
|
|
assert 3.0 in s2.axes[-1]
|
|
elif indexer_sl is tm.loc:
|
|
assert 3.0 in s2.axes[0]
|
|
else:
|
|
assert 3.0 not in s2.axes[0]
|
|
assert 3.0 not in s2.axes[-1]
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(list("abcde")),
|
|
Index(list("abcde"), dtype="category"),
|
|
date_range("2020-01-01", periods=5),
|
|
timedelta_range("1 day", periods=5),
|
|
period_range("2020-01-01", periods=5),
|
|
],
|
|
)
|
|
def test_scalar_non_numeric_series_fallback(self, index):
|
|
# fallsback to position selection, series only
|
|
s = Series(np.arange(len(index)), index=index)
|
|
|
|
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
s[3]
|
|
with pytest.raises(KeyError, match="^3.0$"):
|
|
s[3.0]
|
|
|
|
def test_scalar_with_mixed(self, indexer_sl):
|
|
s2 = Series([1, 2, 3], index=["a", "b", "c"])
|
|
s3 = Series([1, 2, 3], index=["a", "b", 1.5])
|
|
|
|
# lookup in a pure string index with an invalid indexer
|
|
|
|
with pytest.raises(KeyError, match="^1.0$"):
|
|
indexer_sl(s2)[1.0]
|
|
|
|
with pytest.raises(KeyError, match=r"^1\.0$"):
|
|
indexer_sl(s2)[1.0]
|
|
|
|
result = indexer_sl(s2)["b"]
|
|
expected = 2
|
|
assert result == expected
|
|
|
|
# mixed index so we have label
|
|
# indexing
|
|
with pytest.raises(KeyError, match="^1.0$"):
|
|
indexer_sl(s3)[1.0]
|
|
|
|
if indexer_sl is not tm.loc:
|
|
# __getitem__ falls back to positional
|
|
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = s3[1]
|
|
expected = 2
|
|
assert result == expected
|
|
|
|
with pytest.raises(KeyError, match=r"^1\.0$"):
|
|
indexer_sl(s3)[1.0]
|
|
|
|
result = indexer_sl(s3)[1.5]
|
|
expected = 3
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
|
|
)
|
|
def test_scalar_integer(self, index, frame_or_series, indexer_sl):
|
|
getitem = indexer_sl is not tm.loc
|
|
|
|
# test how scalar float indexers work on int indexes
|
|
|
|
# integer index
|
|
i = index
|
|
obj = gen_obj(frame_or_series, i)
|
|
|
|
# coerce to equal int
|
|
|
|
result = indexer_sl(obj)[3.0]
|
|
self.check(result, obj, 3, getitem)
|
|
|
|
if isinstance(obj, Series):
|
|
|
|
def compare(x, y):
|
|
assert x == y
|
|
|
|
expected = 100
|
|
else:
|
|
compare = tm.assert_series_equal
|
|
if getitem:
|
|
expected = Series(100, index=range(len(obj)), name=3)
|
|
else:
|
|
expected = Series(100.0, index=range(len(obj)), name=3)
|
|
|
|
s2 = obj.copy()
|
|
indexer_sl(s2)[3.0] = 100
|
|
|
|
result = indexer_sl(s2)[3.0]
|
|
compare(result, expected)
|
|
|
|
result = indexer_sl(s2)[3]
|
|
compare(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
|
|
)
|
|
def test_scalar_integer_contains_float(self, index, frame_or_series):
|
|
# contains
|
|
# integer index
|
|
obj = gen_obj(frame_or_series, index)
|
|
|
|
# coerce to equal int
|
|
assert 3.0 in obj
|
|
|
|
def test_scalar_float(self, frame_or_series):
|
|
# scalar float indexers work on a float index
|
|
index = Index(np.arange(5.0))
|
|
s = gen_obj(frame_or_series, index)
|
|
|
|
# assert all operations except for iloc are ok
|
|
indexer = index[3]
|
|
for idxr in [tm.loc, tm.setitem]:
|
|
getitem = idxr is not tm.loc
|
|
|
|
# getting
|
|
result = idxr(s)[indexer]
|
|
self.check(result, s, 3, getitem)
|
|
|
|
# setting
|
|
s2 = s.copy()
|
|
|
|
result = idxr(s2)[indexer]
|
|
self.check(result, s, 3, getitem)
|
|
|
|
# random float is a KeyError
|
|
with pytest.raises(KeyError, match=r"^3\.5$"):
|
|
idxr(s)[3.5]
|
|
|
|
# contains
|
|
assert 3.0 in s
|
|
|
|
# iloc succeeds with an integer
|
|
expected = s.iloc[3]
|
|
s2 = s.copy()
|
|
|
|
s2.iloc[3] = expected
|
|
result = s2.iloc[3]
|
|
self.check(result, s, 3, False)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(list("abcde"), dtype=object),
|
|
date_range("2020-01-01", periods=5),
|
|
timedelta_range("1 day", periods=5),
|
|
period_range("2020-01-01", periods=5),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
|
|
def test_slice_non_numeric(self, index, idx, frame_or_series, indexer_sli):
|
|
# GH 4892
|
|
# float_indexers should raise exceptions
|
|
# on appropriate Index types & accessors
|
|
|
|
s = gen_obj(frame_or_series, index)
|
|
|
|
# getitem
|
|
if indexer_sli is tm.iloc:
|
|
msg = (
|
|
"cannot do positional indexing "
|
|
rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
|
|
"type float"
|
|
)
|
|
else:
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers "
|
|
r"\[(3|4)(\.0)?\] "
|
|
r"of type (float|int)"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
indexer_sli(s)[idx]
|
|
|
|
# setitem
|
|
if indexer_sli is tm.iloc:
|
|
# otherwise we keep the same message as above
|
|
msg = "slice indices must be integers or None or have an __index__ method"
|
|
with pytest.raises(TypeError, match=msg):
|
|
indexer_sli(s)[idx] = 0
|
|
|
|
def test_slice_integer(self):
|
|
# same as above, but for Integer based indexes
|
|
# these coerce to a like integer
|
|
# oob indicates if we are out of bounds
|
|
# of positional indexing
|
|
for index, oob in [
|
|
(Index(np.arange(5, dtype=np.int64)), False),
|
|
(RangeIndex(5), False),
|
|
(Index(np.arange(5, dtype=np.int64) + 10), True),
|
|
]:
|
|
# s is an in-range index
|
|
s = Series(range(5), index=index)
|
|
|
|
# getitem
|
|
for idx in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]:
|
|
result = s.loc[idx]
|
|
|
|
# these are all label indexing
|
|
# except getitem which is positional
|
|
# empty
|
|
if oob:
|
|
indexer = slice(0, 0)
|
|
else:
|
|
indexer = slice(3, 5)
|
|
self.check(result, s, indexer, False)
|
|
|
|
# getitem out-of-bounds
|
|
for idx in [slice(-6, 6), slice(-6.0, 6.0)]:
|
|
result = s.loc[idx]
|
|
|
|
# these are all label indexing
|
|
# except getitem which is positional
|
|
# empty
|
|
if oob:
|
|
indexer = slice(0, 0)
|
|
else:
|
|
indexer = slice(-6, 6)
|
|
self.check(result, s, indexer, False)
|
|
|
|
# positional indexing
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers \[-6\.0\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[slice(-6.0, 6.0)]
|
|
|
|
# getitem odd floats
|
|
for idx, res1 in [
|
|
(slice(2.5, 4), slice(3, 5)),
|
|
(slice(2, 3.5), slice(2, 4)),
|
|
(slice(2.5, 3.5), slice(3, 4)),
|
|
]:
|
|
result = s.loc[idx]
|
|
if oob:
|
|
res = slice(0, 0)
|
|
else:
|
|
res = res1
|
|
|
|
self.check(result, s, res, False)
|
|
|
|
# positional indexing
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers \[(2|3)\.5\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[idx]
|
|
|
|
@pytest.mark.parametrize("idx", [slice(2, 4.0), slice(2.0, 4), slice(2.0, 4.0)])
|
|
def test_integer_positional_indexing(self, idx):
|
|
"""make sure that we are raising on positional indexing
|
|
w.r.t. an integer index
|
|
"""
|
|
s = Series(range(2, 6), index=range(2, 6))
|
|
|
|
result = s[2:4]
|
|
expected = s.iloc[2:4]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
klass = RangeIndex
|
|
msg = (
|
|
"cannot do (slice|positional) indexing "
|
|
rf"on {klass.__name__} with these indexers \[(2|4)\.0\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[idx]
|
|
with pytest.raises(TypeError, match=msg):
|
|
s.iloc[idx]
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
|
|
)
|
|
def test_slice_integer_frame_getitem(self, index):
|
|
# similar to above, but on the getitem dim (of a DataFrame)
|
|
s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
|
|
|
|
# getitem
|
|
for idx in [slice(0.0, 1), slice(0, 1.0), slice(0.0, 1.0)]:
|
|
result = s.loc[idx]
|
|
indexer = slice(0, 2)
|
|
self.check(result, s, indexer, False)
|
|
|
|
# positional indexing
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers \[(0|1)\.0\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[idx]
|
|
|
|
# getitem out-of-bounds
|
|
for idx in [slice(-10, 10), slice(-10.0, 10.0)]:
|
|
result = s.loc[idx]
|
|
self.check(result, s, slice(-10, 10), True)
|
|
|
|
# positional indexing
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers \[-10\.0\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[slice(-10.0, 10.0)]
|
|
|
|
# getitem odd floats
|
|
for idx, res in [
|
|
(slice(0.5, 1), slice(1, 2)),
|
|
(slice(0, 0.5), slice(0, 1)),
|
|
(slice(0.5, 1.5), slice(1, 2)),
|
|
]:
|
|
result = s.loc[idx]
|
|
self.check(result, s, res, False)
|
|
|
|
# positional indexing
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers \[0\.5\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[idx]
|
|
|
|
@pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
|
|
@pytest.mark.parametrize(
|
|
"index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
|
|
)
|
|
def test_float_slice_getitem_with_integer_index_raises(self, idx, index):
|
|
# similar to above, but on the getitem dim (of a DataFrame)
|
|
s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
|
|
|
|
# setitem
|
|
sc = s.copy()
|
|
sc.loc[idx] = 0
|
|
result = sc.loc[idx].values.ravel()
|
|
assert (result == 0).all()
|
|
|
|
# positional indexing
|
|
msg = (
|
|
"cannot do slice indexing "
|
|
rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
|
|
"type float"
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[idx] = 0
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
s[idx]
|
|
|
|
@pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
|
|
def test_slice_float(self, idx, frame_or_series, indexer_sl):
|
|
# same as above, but for floats
|
|
index = Index(np.arange(5.0)) + 0.1
|
|
s = gen_obj(frame_or_series, index)
|
|
|
|
expected = s.iloc[3:4]
|
|
|
|
# getitem
|
|
result = indexer_sl(s)[idx]
|
|
assert isinstance(result, type(s))
|
|
tm.assert_equal(result, expected)
|
|
|
|
# setitem
|
|
s2 = s.copy()
|
|
indexer_sl(s2)[idx] = 0
|
|
result = indexer_sl(s2)[idx].values.ravel()
|
|
assert (result == 0).all()
|
|
|
|
def test_floating_index_doc_example(self):
|
|
index = Index([1.5, 2, 3, 4.5, 5])
|
|
s = Series(range(5), index=index)
|
|
assert s[3] == 2
|
|
assert s.loc[3] == 2
|
|
assert s.iloc[3] == 3
|
|
|
|
def test_floating_misc(self, indexer_sl):
|
|
# related 236
|
|
# scalar/slicing of a float index
|
|
s = Series(np.arange(5), index=np.arange(5) * 2.5, dtype=np.int64)
|
|
|
|
# label based slicing
|
|
result = indexer_sl(s)[1.0:3.0]
|
|
expected = Series(1, index=[2.5])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# exact indexing when found
|
|
|
|
result = indexer_sl(s)[5.0]
|
|
assert result == 2
|
|
|
|
result = indexer_sl(s)[5]
|
|
assert result == 2
|
|
|
|
# value not found (and no fallbacking at all)
|
|
|
|
# scalar integers
|
|
with pytest.raises(KeyError, match=r"^4$"):
|
|
indexer_sl(s)[4]
|
|
|
|
# fancy floats/integers create the correct entry (as nan)
|
|
# fancy tests
|
|
expected = Series([2, 0], index=Index([5.0, 0.0], dtype=np.float64))
|
|
for fancy_idx in [[5.0, 0.0], np.array([5.0, 0.0])]: # float
|
|
tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
|
|
|
|
expected = Series([2, 0], index=Index([5, 0], dtype="float64"))
|
|
for fancy_idx in [[5, 0], np.array([5, 0])]:
|
|
tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
|
|
|
|
warn = FutureWarning if indexer_sl is tm.setitem else None
|
|
msg = r"The behavior of obj\[i:j\] with a float-dtype index"
|
|
|
|
# all should return the same as we are slicing 'the same'
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
result1 = indexer_sl(s)[2:5]
|
|
result2 = indexer_sl(s)[2.0:5.0]
|
|
result3 = indexer_sl(s)[2.0:5]
|
|
result4 = indexer_sl(s)[2.1:5]
|
|
tm.assert_series_equal(result1, result2)
|
|
tm.assert_series_equal(result1, result3)
|
|
tm.assert_series_equal(result1, result4)
|
|
|
|
expected = Series([1, 2], index=[2.5, 5.0])
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
result = indexer_sl(s)[2:5]
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# list selection
|
|
result1 = indexer_sl(s)[[0.0, 5, 10]]
|
|
result2 = s.iloc[[0, 2, 4]]
|
|
tm.assert_series_equal(result1, result2)
|
|
|
|
with pytest.raises(KeyError, match="not in index"):
|
|
indexer_sl(s)[[1.6, 5, 10]]
|
|
|
|
with pytest.raises(KeyError, match="not in index"):
|
|
indexer_sl(s)[[0, 1, 2]]
|
|
|
|
result = indexer_sl(s)[[2.5, 5]]
|
|
tm.assert_series_equal(result, Series([1, 2], index=[2.5, 5.0]))
|
|
|
|
result = indexer_sl(s)[[2.5]]
|
|
tm.assert_series_equal(result, Series([1], index=[2.5]))
|
|
|
|
def test_floatindex_slicing_bug(self, float_numpy_dtype):
|
|
# GH 5557, related to slicing a float index
|
|
dtype = float_numpy_dtype
|
|
ser = {
|
|
256: 2321.0,
|
|
1: 78.0,
|
|
2: 2716.0,
|
|
3: 0.0,
|
|
4: 369.0,
|
|
5: 0.0,
|
|
6: 269.0,
|
|
7: 0.0,
|
|
8: 0.0,
|
|
9: 0.0,
|
|
10: 3536.0,
|
|
11: 0.0,
|
|
12: 24.0,
|
|
13: 0.0,
|
|
14: 931.0,
|
|
15: 0.0,
|
|
16: 101.0,
|
|
17: 78.0,
|
|
18: 9643.0,
|
|
19: 0.0,
|
|
20: 0.0,
|
|
21: 0.0,
|
|
22: 63761.0,
|
|
23: 0.0,
|
|
24: 446.0,
|
|
25: 0.0,
|
|
26: 34773.0,
|
|
27: 0.0,
|
|
28: 729.0,
|
|
29: 78.0,
|
|
30: 0.0,
|
|
31: 0.0,
|
|
32: 3374.0,
|
|
33: 0.0,
|
|
34: 1391.0,
|
|
35: 0.0,
|
|
36: 361.0,
|
|
37: 0.0,
|
|
38: 61808.0,
|
|
39: 0.0,
|
|
40: 0.0,
|
|
41: 0.0,
|
|
42: 6677.0,
|
|
43: 0.0,
|
|
44: 802.0,
|
|
45: 0.0,
|
|
46: 2691.0,
|
|
47: 0.0,
|
|
48: 3582.0,
|
|
49: 0.0,
|
|
50: 734.0,
|
|
51: 0.0,
|
|
52: 627.0,
|
|
53: 70.0,
|
|
54: 2584.0,
|
|
55: 0.0,
|
|
56: 324.0,
|
|
57: 0.0,
|
|
58: 605.0,
|
|
59: 0.0,
|
|
60: 0.0,
|
|
61: 0.0,
|
|
62: 3989.0,
|
|
63: 10.0,
|
|
64: 42.0,
|
|
65: 0.0,
|
|
66: 904.0,
|
|
67: 0.0,
|
|
68: 88.0,
|
|
69: 70.0,
|
|
70: 8172.0,
|
|
71: 0.0,
|
|
72: 0.0,
|
|
73: 0.0,
|
|
74: 64902.0,
|
|
75: 0.0,
|
|
76: 347.0,
|
|
77: 0.0,
|
|
78: 36605.0,
|
|
79: 0.0,
|
|
80: 379.0,
|
|
81: 70.0,
|
|
82: 0.0,
|
|
83: 0.0,
|
|
84: 3001.0,
|
|
85: 0.0,
|
|
86: 1630.0,
|
|
87: 7.0,
|
|
88: 364.0,
|
|
89: 0.0,
|
|
90: 67404.0,
|
|
91: 9.0,
|
|
92: 0.0,
|
|
93: 0.0,
|
|
94: 7685.0,
|
|
95: 0.0,
|
|
96: 1017.0,
|
|
97: 0.0,
|
|
98: 2831.0,
|
|
99: 0.0,
|
|
100: 2963.0,
|
|
101: 0.0,
|
|
102: 854.0,
|
|
103: 0.0,
|
|
104: 0.0,
|
|
105: 0.0,
|
|
106: 0.0,
|
|
107: 0.0,
|
|
108: 0.0,
|
|
109: 0.0,
|
|
110: 0.0,
|
|
111: 0.0,
|
|
112: 0.0,
|
|
113: 0.0,
|
|
114: 0.0,
|
|
115: 0.0,
|
|
116: 0.0,
|
|
117: 0.0,
|
|
118: 0.0,
|
|
119: 0.0,
|
|
120: 0.0,
|
|
121: 0.0,
|
|
122: 0.0,
|
|
123: 0.0,
|
|
124: 0.0,
|
|
125: 0.0,
|
|
126: 67744.0,
|
|
127: 22.0,
|
|
128: 264.0,
|
|
129: 0.0,
|
|
260: 197.0,
|
|
268: 0.0,
|
|
265: 0.0,
|
|
269: 0.0,
|
|
261: 0.0,
|
|
266: 1198.0,
|
|
267: 0.0,
|
|
262: 2629.0,
|
|
258: 775.0,
|
|
257: 0.0,
|
|
263: 0.0,
|
|
259: 0.0,
|
|
264: 163.0,
|
|
250: 10326.0,
|
|
251: 0.0,
|
|
252: 1228.0,
|
|
253: 0.0,
|
|
254: 2769.0,
|
|
255: 0.0,
|
|
}
|
|
|
|
# smoke test for the repr
|
|
s = Series(ser, dtype=dtype)
|
|
result = s.value_counts()
|
|
assert result.index.dtype == dtype
|
|
str(result)
|